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Omics studies contribute to the elucidation of genomes and profiles of gene expression. In
the ascidian Ciona intestinalis Type A (Ciona robusta), mass spectrometry (MS)-based
peptidomic studies have detected numerous Ciona-specific (nonhomologous)
neuropeptides as well as Ciona homologs of typical vertebrate neuropeptides and
hypothalamic peptide hormones. Candidates for cognate G protein-coupled receptors
(GPCRs) for these peptides have been found in the Ciona transcriptome by two ways.
First, Ciona homologous GPCRs of vertebrate counterparts have been detected by
sequence homology searches of cognate transcriptomes. Second, the transcriptome-
derived GPCR candidates have been used for machine learning-based systematic
prediction of interactions not only between Ciona homologous peptides and GPCRs
but also between novel Ciona peptides and GPCRs. These data have ultimately led to
experimental evidence for various Ciona peptide-GPCR interactions. Comparative
transcriptomics between the wildtype and Ciona vasopressin (CiVP) gene-edited Ciona
provide clues to the biological functions of CiVP in ovarian follicular development and
whole body growth. Furthermore, the transcriptomes of follicles treated with peptides,
such as Ciona tachykinin and cionin (a Ciona cholecystokinin homolog), have revealed key
regulatory genes for Ciona follicle growth, maturation, and ovulation, eventually leading to
the verification of essential and novel molecular mechanisms underlying these biological
events. These findings indicate that omics studies, combined with artificial intelligence and
single-cell technologies, pave the way for investigating in greater details the nervous,
neuroendocrine, and endocrine systems of ascidians and the molecular and functional
evolution and diversity of peptidergic regulatory networks throughout chordates.
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INTRODUCTION

Ascidians are aquatic organisms that live all over the world and
belong to the phylum Urochordata and superphylum Chordata;
they are one of the closest relatives of vertebrates (1–3). They
have been used in developmental biology as model organisms for
more than 50 years, and the genome of Ciona intestinalis Type A
(Ciona robusta) was sequenced in 2002 (4). At the dawn of the
omics era, expressed sequence tags (ESTs) and gene model
analyses identified approximately 16,000 protein-coding genes
and various vertebrate orthologs in the C. robusta genome (4, 5).
Furthermore, the gene expression profiles during embryonic
development have been determined by in situ hybridization
and transcriptomics (6–9), and similarities between the
transcriptional network of C. robusta and vertebrates have
been clarified (10–13). These genomic and transcriptomic
studies have highlighted the importance of C. robusta in
comparative and evolutionary developmental and genome
biology (13–16). In contrast, less attention was paid to the
reproductive mechanisms of Ciona.

In vertebrates, ovarian follicular development is accurately
regulated by the hypothalamic-pituitary-gonadal axis (HPG
axis). A hypothalamic neuropeptide, gonadotropin-releasing
hormone (GnRH), stimulates the synthesis and secretion of
gonadotropins in the pituitary, which induces follicle growth,
maturation, ovulation, and the production of sex steroid
hormones for negative feedback regulation in the ovary (17–
20). Recent studies have further revealed that more
neuropeptides, including kisspeptin, neurokinin B, dynorphin
A, and gonadotropin-inhibitory hormone, play important roles
in the regulation of the HPG axis (21, 22). Thus, neuropeptides,
as major signaling factors, are responsible for the regulation of
the HPG axis in vertebrates. In contrast, C. robusta is not
endowed with the HPG axis, leading to the presumption that
neuropeptides produced in the neuroendocrine system directly
regulate follicle development via neural network transport
instead of regulation by the HPG axis. Combined with the
crucial phylogenetic position of ascidians as a sister group of
the vertebrates, elucidation of the mechanisms of reproduction
regulated by ascidian neuropeptides will provide insight into the
molecular and functional evolution of the endocrine and
neuroendocrine systems in chordates.

As stated above, gene model analyses of C. robusta have found
approximately 16,000 protein-coding genes. However, few
neuropeptide genes were annotated on the original version,
given that homology-based searching methods are frequently
useless for the detection of small peptides or their genes due to
far less sequence homology information, compared with that of
proteins. Over the last two decades, peptidomic analyses have
advanced due to mass spectrometry (MS)-based technology,
leading to the sensitive detection of small amounts of peptides.
An MS-based peptidomic analysis has characterized 33 peptides,
including 26 novel peptides, from the Ciona neural complex
followed by the detection of their genes by referencing the
resultant peptide sequences to the genome/EST database and
by localization of their gene expression (Figure 1A) (23). These
ascidian neuropeptides are largely classified into two groups: (i)
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homologs of vertebrate peptides, and (ii) Ciona-specific peptides.
The former group includes typical vertebrate neuropeptide
homologs, including a vasopressin homolog (CiVP) (24),
a tachykinin homolog (CiTK) (25), GnRH homologs
(tGnRHs) (26), and a cholecystokinin/gastrin homolog (cionin)
(27, 28), while the latter group contains CiLFs, CiYFVs,
and CiNTLPs including partial neurotensin-like sequences
(23) (Supplementary Table 1). The identification of
these neuropeptides has paved the way to understanding the
ascidian neuroendocrine and nervous systems involved in
reproductive functions.

Omics analyses are also powerful tools to identify
comprehensive gene expression profiles. Gene ontology (GO)
analyses using comprehensive gene expression profiles provide
clues to the elucidation of the biological features and functions of
target tissues or cells (Figure 1B). Comparisons of gene
expression profiles between tissues treated or untreated with a
target peptide or between target gene-knockdown organisms and
wildtype organisms can identify key molecules induced by a
target peptide (Figure 1B). In this review, we provide an
overview of essential neuropeptidergic regulatory mechanisms
underlying Ciona follicle growth, oocyte maturation, and
ovulation, which have been elucidated by a combination of
omics and physiological analyses.
NERVOUS SYSTEM AND OVARY
IN CIONA

Recent morphological studies using prohormone convertase 2
promoter-Kaede transgenic Ciona showed that the peptidergic
nervous system directly innervates to the ovary (29, 30). The
innervations of nerves to the ovary were also found in CiVP
promoter-Venus transgenic Ciona, suggesting that CiVP acts as
an endogenous factor in the ovary (31). In addition to these
morphological characteristics of the peptidergic nervous system,
expression of the receptors for neuropeptides, including CiTK,
CiVP, and cionin, was detected in the ovary (24, 25, 32). These
findings indicate that the ovary is a major target of the
neuropeptides produced in the neural complex of
Ciona (Figure 2A).

Ciona ovarian follicles are classified into four major
developmental stages: stage I (pre-vitellogenic), stage II
(vitellogenic), stage III (post-vitellogenic and pre-mature), and
stage IV (mature) oocytes (33). This classification is based on
criteria including size, pigmentation of the oocytes, and changes
in the cellular layer surrounding the oocytes (33). Recently, an
efficient follicle size-fractionation method using stainless steel
sieves of various particle sizes was developed (34, 35). This
method enables physiological assays as well as transcriptome
analyses of the respective stages of follicles. Furthermore, an in
vitro evaluation of follicle growth, maturation, and ovulation of
Ciona follicles has been established (34–37). These novel
experimental procedures can lead to the investigation of the
specific biological functions of neuropeptides on follicles at
individual stages.
March 2022 | Volume 13 | Article 858885

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Kawada et al. Omics Study for Ciona
OVARIAN FOLLICULAR DEVELOPMENT

Consistent with transcriptomic data showing high expression of
the Citk receptor gene during follicle development (34), our in
vitro incubation system and morphological evaluation of isolated
follicles demonstrated that CiTK stimulates follicle growth from
stage II to stage III (36). Microarray and biochemical analyses of
CiTK-treated and -untreated follicles revealed that CiTK induces
the expression and enzymatic activities of chymotrypsin, carboxy-
peptidase B1, and cathepsin D (36). Moreover, CiTK was shown
to directly induce the gene expression and resulting enzymatic
activity of cathepsin D in test cells (oocyte-accessory cells)
expressing the CiTK receptor, and to secondarily activate the
gene expression and resulting enzymatic activity of chymotrypsin
and carboxypeptidase B1 in follicle cells (37). These proteases are
all responsible for CiTK-induced follicle growth, given that
inhibition of any one of these proteases resulted in the arrest of
follicle growth (36). Also of interest is that CiNTLP6 treatment
for stage II follicles suppresses CiTK-induced gene expression of
Frontiers in Endocrinology | www.frontiersin.org 3
these proteases and the subsequent follicle development to stage
III (23). Consequently, CiTK and CiNTLP6 regulate follicle
development from stage II to stage III via activation of the gene
expression and enzymatic activities of cathepsin D in test cells and
chymotrypsin and carboxypeptidase B1 in follicle cells
(Figures 2B, C) (23, 36, 37). These findings provide evidence
that CiTK is essential for the development of premature follicles.

The expression of the CiVP receptor also suggests important
roles of CiVP in the ovary (24). In a TALEN-based CiVP mutant
of Ciona, the number of stage III follicles is markedly decreased
and the numbers of stage I and stage II follicles are increased in
the ovaries (31). In the ovary of CiVP-mutant Ciona,
transcriptome analysis and subsequent gene ontology (GO)
analysis showed that the downregulated genes were categorized
as the genes related to “Binding”, “Phosphorylation”, and
“Organelles”, whereas upregulated genes were categorized as
the genes related to “Nucleus” or “Ribosomes” (31).
Interestingly, the ceramide synthase homologous gene that
participates in the removal of low-quality early follicles as a
A

B

FIGURE 1 | Experimental strategies including omics analyses. (A) Experimental strategy to identify novel ascidian peptides and their receptors. (B) Experimental
strategy to elucidate the biology of the Ciona ovary using transcriptome data. NGS, Next Generation Sequencing; MS, Mass Spectrometry; PD, Peptide Descriptor;
SVM, Support Vector Machine; FACS, Fluorescence-Activated Cell Sorting; GO, Gene Ontology.
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lipid mediator in mammals is downregulated in CiVP-mutants
(31). Protein kinase C b, which is an important factor for vesicle
transport during the secretion of signaling molecules as well as
organelle formation, is also downregulated in CiVP-mutants
(31). In contrast, the MutL-homolog 3 gene, which is known to
repair DNA mismatch during DNA replication and meiosis, is
upregulated in CiVP-mutants (31). These findings suggest that
CiVP plays multiple important roles to maintain the normal
growth of early-stage follicles via the regulation of diverse genes.

OOCYTE MATURATION AND OVULATION
In addition to the in vivo analysis of CiVP (31), in vitro assays and
transcriptomic analyses following the aforementioned ovarian
Frontiers in Endocrinology | www.frontiersin.org 4
follicle fractionation have helped clarify the roles of
neuropeptides in Ciona oocyte maturation and ovulation (34,
35). In line with receptor expression in the ovary (24, 32), CiVP
and cionin have been demonstrated to promote follicle maturation
and ovulation in vitro (34, 38). Transcriptomic analyses of
fractionated follicles have contributed a great deal to our
understanding of the essential molecular mechanisms underlying
CiVP- and cionin-induced oocyte maturation and ovulation; the
expressions of Civp receptor and the Ciona-extracellular signal-
related kinase homolog, CiErk1/2, were elevated toward oocyte
maturation and ovulation. Gene expression of a matrix
metalloproteinase, CiMmp2/9/13, was suppressed in MEK
(MAPK kinase)-inhibited follicles (i.e., CiErk1/2-inhibited
immature, unovulated), compared with those that are
A

C

B

FIGURE 2 | Peptidergic systems in Ciona. (A) Various neuropeptides are expressed in the neural complex. Peptidergic nerves directly innervate from the neural
complex to the peripheral organs (red arrows). The ovary, which expresses various peptide receptors, is a major target of the neuropeptides. AS, atrial siphon; En,
endostyle; Gd, gonoduct; H, heart; Int, intestine; NC, neural complex; OS, oral siphon; Ov, ovary; Ph, pharynx; Rec, rectum; St, stomach. (B, C) Peptidergic regulation
of ovarian follicular growth, oocyte maturation, and ovulation in Ciona. Overview (B) and the enlarged structure of a follicle (C) as indicated by red boxes in (B) are
shown. In vitellogenic (stage II) follicles, CiTK induces the expression of CiCathepsin D in test cells and CiChymotrypsin and CiCarboxypeptidase B1 in inner follicular
cells and promotes follicle growth from stage II to stage III. CiNTLP6 suppresses CiTK-induced gene expression and subsequent follicle growth. In postvitellogenic
(stage III) follicles, CiVP activates CiMEK/CiErk1/2 in oocytes and promotes oocyte maturation and ovulation via activation of CiMPF and CiMMP2/9/13, respectively.
Cionin also induces CiMMP2/9/13 expression via CioR2 in inner follicular cells and RTK signaling and subsequent ovulation in stage III follicles.
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uninhibited (mature, ovulated) (34). The expressions of the
receptor tyrosine kinase (RTK) signaling genes and CiMmp2/9/13
were upregulated in cionin-treated follicles, compared with
untreated ones (38). Physiological assays and qRT-PCR
validation following transcriptomic analyses have verified that
CiVP activates CiErk1/2 and promotes oocyte maturation via
activation of the maturation promoting factor and ovulation via
induction of CiMmp2/9/13 expression (34), and that cionin also
induces CiMmp2/9/13 expression and ovulation via upregulation
of the RTK signaling genes (38). Combined with visualizing the
entire projection of peptidergic neurons from the neural complex
to the peripheral tissues (29, 30) and in vivo analysis of CiVP (31),
in vitro physiological analyses have revealed that neuropeptides
such as CiVP and cionin are produced in the neural complex (23,
24, 32) and regulate follicular development, oocyte maturation, and
ovulation directly through the neuroendocrine system.
Consequently, a combination of the classical bioassays and
transcriptomic analyses has revealed the major regulatory
pathways of Ciona oocyte maturation and ovulation
(Figures 2B, C).

In other invertebrates, species-specific neuropeptides have been
identified as maturation-inducing hormones (MIHs) such as W/
RPRPamide for jellyfish in the phylum Cnidaria (39), relaxin-like
gonad stimulating peptide for starfish (40), and cubifrin
(NGIWYamide) for sea cucumber (41) in the phylum
Echinodermata. In contrast to the variable MIHs, some molecular
mechanisms underlying oocyte maturation and ovulation have
been conserved among phyla. For example, the MOS (MAPK
kinase kinase)/MAPK-maturation promoting factor (MPF, a
complex of Cdk1 and Cyclin B) pathway in oocyte maturation is
conserved in jellyfish and vertebrates (42). Moreover, degradation
of extracellular matrix by matrix metalloproteinases (MMPs) was
also found to be important for ovulation in fish (Vertebrata) (43,
44) and in Drosophila (Arthropod) (45). Furthermore, vasotocin, a
non-mammalian vertebrate VP family peptide, has been reported to
induce oocyte maturation and ovulation in catfish (Vertebrata) (46,
47), and RTK signaling was also reported to be involved in
ovulation in mouse (Vertebrata) (48). Collectively, these studies,
combined with the aforementioned Ciona (Urochordata) oocyte
maturation and ovulation processes, shed light on species-
specificity of triggering peptides in invertebrates and on the
conserved mechanisms of oocyte maturation and ovulation
among phyla. Further studies on oocyte maturation and
ovulation in various animal species will pave the way for
understanding the evolutionary processes of these biological events.
CONCLUSION AND PERSPECTIVES

Omics studies are powerful tools to reveal the molecular
mechanisms of biological events. In studies on Ciona,
peptidomics and transcriptomics and subsequent molecular
and physiological analyses have revealed that neuropeptides,
including CiTK, CiNTLP6, CiVP, and cionin, regulate follicle
growth, oocyte maturation, and ovulation (Figures 1, 2B, C). In
addition to omics, newly developed techniques including follicle
Frontiers in Endocrinology | www.frontiersin.org 5
fractionation and gene-knockout have also contributed to the
analysis of signaling networks induced by neuropeptides
(Figure 1B). Moreover, a comparison of gene expression
profiles between the tissues treated or untreated with a target
peptide or between target gene-knockdown organisms and
wildtype organisms will lead to the elucidation of reliable
signaling networks induced by the target peptide (Figure 1B).
Furthermore, comparisons of transcriptomic profiles of target
peptide receptor homolog-expressing cells in closely related
species will elucidate the evolution and diversification of
signaling networks induced by the target peptide.

To develop omics-based biology to the next stage, single-cell
transcriptomes, whose expression profiles exhibit more relevant
signaling networks than whole-tissue transcriptomes, will play
important roles. In C. robusta, Horie et al. analyzed a single-cell
transcriptomic profile of the ascidian embryo at the mid-tailbud
stage and determined the regulatory mechanism for
dopaminergic neurons on the basis of marker gene homolog
expression (49). The transcriptome profile showed that the
Pancreas associated transcription factor 1a (Ptf1a) homolog
gene is specifically expressed in ascidian dopaminergic neuron
cells, and knock-down and misexpression of the Ptf1a homolog
gene suggest that it functions as a crucial factor in dopaminergic
neuronal differentiation (49). Thus, the profiling of single-cell
transcriptomic data is a useful method to find crucial factors for
biological functions. Moreover, fluorescence-activated cell
sorting (FACS) is also a useful technique that can collect single
cells expressing a target protein, including receptors of
neuropeptides on the plasma membrane. FACS sorting and
subsequent transcriptomic analyses of single cells expressing a
target receptor provide clues that clarify the effects of the target
peptide, uncovering the mechanism of signal transduction via
peptide-receptor interactions in target cells (Figure 1B).

C. robusta possesses neuropeptides that are categorized as
homologs of mammalian peptides or Ciona-specific peptides.
Homology-based searches have contributed to the identification
of ascidian peptides and receptors of mammalian homologs.
However, homology-based identification of receptors for Ciona-
specific peptides is virtually impossible due to the low sequence
identity of Ciona-specific peptides or their receptors to known
ones. In mammals, ligand-screening of orphan receptors has been
widely employed by high-throughput reverse-pharmacological
assays based on evaluating typical signal transductions. Due to
the time, cost, and labor required, only a limited number of
ligand-receptor pairs have been identified recently (50). During
the past decade, artificial intelligence (AI) technologies have been
developed and utilized to search for ligand-receptor pairs within
enormous amounts of omics data (51–53). In a machine-learning
system, chemical, physicochemical, and biochemical properties
and sequence information of “known” ligand-receptor pairs are
converted to numerical vectors (descriptors) and used to predict
“novel” ligand-receptor pairs. Recently, the peptide descriptor
(PD)-incorporated support vector machine (SVM) was developed
to predict novel neuropeptide-receptor interactions, and
receptors for Ciona-specific peptides were predicted (54). The
predicted receptors for Ciona-specific peptides, CiLF1, CiLF2,
March 2022 | Volume 13 | Article 858885
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CiLF5, CiLF6, CiLF7, CiLF8, CiYFV1, CiYFV3, and CiNTLP2,
were validated by intracellular calcium mobilization assays
(Figure 1A) (54). Thus, AI-based prediction of ligand-receptor
pairs without sequence homology and molecular phylogenetic
relatedness is contributing to the deorphanization of receptors. In
other words, these studies obviously demonstrate the usefulness
of omics data in “post-omics” research strategies, such as the
machine learning-based prediction of novel peptide-receptor
pairs. CiLF receptors are expressed in the ovaries (54),
suggesting that at least several CiLFs participate in ovarian
events, including follicle growth, oocyte maturation, or
ovulation. In addition, transcriptomic profiles of Ciona follicles
suggest that several orphan receptors are expressed in the follicles
(34). The determination of novel peptide-receptor pairs using
PD-incorporated SVM and cell-based validations will surely lead
to the verification of the biological events in the ascidian ovary.

Taken together, the integration of omics analyses,
physiological analyses, single-cell technologies, and AI
technologies will provide novel insight into the mechanisms of
the endocrine system and signaling networks in Ciona.
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