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Sensitivity to near-future CO2 
conditions in marine crabs depends 
on their compensatory capacities 
for salinity change
Nia M. Whiteley  1, Coleen C. Suckling1,2,4, Benjamin J. Ciotti  3,5, James Brown1, 
Ian D. McCarthy2, Luis Gimenez2 & Chris Hauton3

Marine crabs inhabit shallow coastal/estuarine habitats particularly sensitive to climate change, and 
yet we know very little about the diversity of their responses to environmental change. We report 
the effects of a rarely studied, but increasingly prevalent, combination of environmental factors, 
that of near-future pCO2 (~1000 µatm) and a physiologically relevant 20% reduction in salinity. We 
focused on two crab species with differing abilities to cope with natural salinity change, and revealed 
via physiological and molecular studies that salinity had an overriding effect on ion exchange in the 
osmoregulating shore crab, Carcinus maenas. This species was unaffected by elevated CO2, and was 
able to hyper-osmoregulate and maintain haemolymph pH homeostasis for at least one year. By 
contrast, the commercially important edible crab, Cancer pagurus, an osmoconformer, had limited 
ion-transporting capacities, which were unresponsive to dilute seawater. Elevated CO2 disrupted 
haemolymph pH homeostasis, but there was some respite in dilute seawater due to a salinity-induced 
metabolic alkalosis (increase in HCO3

− at constant pCO2). Ultimately, Cancer pagurus was poorly 
equipped to compensate for change, and exposures were limited to 9 months. Failure to understand the 
full spectrum of species-related vulnerabilities could lead to erroneous predictions of the impacts of a 
changing marine climate.

Estuarine and shallow coastal habitats are complex ecosystems of high productivity facing conflicting 
socio-economic and environmental demands1. Estuaries, for instance, are important areas for fisheries and aqua-
culture production and yet are challenging environments in which to live because of the co-occurrence of fluc-
tuations in salinity, temperature, pH and oxygen on different spatial and temporal scales2. Climate change is 
inflicting further environmental change with global increases in atmospheric CO2 leading to elevated sea surface 
temperatures and CO2-driven reductions in ocean pH, broadly termed ‘ocean acidification’ (OA)3. Increased 
surface temperature is also leading to an intensification of the global water cycle resulting in changing patterns of 
ocean surface salinity4. Shallow coastal and estuarine regions may experience greater changes in pH and salinity 
than the open ocean through an increased frequency of exceptional storm events and freshwater runoff from 
terrestrial flooding5,6.

The impacts of reductions in salinity and pH on marine communities and populations are difficult to assess 
because of the complexity of species and community interactions, and the time scales involved in observing 
changes in biodiversity, abundance and geographical range7. Individual physiologies, however, are ecologically 
relevant as they may provide mechanistic explanations for differences in sensitivity, performance, adaptive 
potential, and ultimately survival to environmental change among species and taxa8,9. For example, physiological 
responses to salinity change influence salinity tolerances of aquatic organisms and can be related to community 
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structure and boundaries of species distribution2. Indeed, marine invertebrates demonstrate a range of osmoreg-
ulatory strategies from independent regulation of body fluid osmolality to conformity10. Conventionally, species 
that demonstrate active life styles with high metabolic rates are considered less vulnerable7,11–13. Physiologically, 
it is argued that such species have greater capacities for ion exchange and for buffering and transporting CO2 in 
the blood8,11,12,14. However, much of our understanding of these responses comes from short-term experiments 
(e.g. days to weeks) and acute exposures to single stressors12,14,15. Of more concern, comparatively little is known 
about physiological responses to environmentally relevant changes under more realistic climate change scenarios 
of multiple interacting environmental drivers over the longer term (months to years)16–19.

Multifactorial experiments are beginning to show interactive effects on an organism’s physiology, which might 
have significant longer-term repercussions on performance than each factor in isolation19–23. The research focus 
to date, however, has been on elevated pCO2 and warming20,24. Experiments investigating combined effects of 
elevated pCO2 and salinity have received much less attention, especially the ability of species to compensate for 
CO2-induced changes in extracellular pH (acid-base status). Compensation of extracellular pH is fundamental 
to survival during elevated pCO2

12,13,15,25, but is itself influenced by salinity, with seawater dilution disrupting 
extracellular acid-base status26 and energy status27. The combined effects of both environmental factors are diffi-
cult to predict as acid-base adjustments occur via ion exchange mechanisms, which may also have the opposing 
function of ion uptake during low salinity exposure for the purposes of osmoregulation. Ion regulation, however, 
is an energetically demanding process suggesting that osmoregulation in marine invertebrates under low salinity 
may be a distinct disadvantage in the longer-term due to trade-offs with ecologically important processes such as 
growth and reproduction15,27,28.

Marine crabs are important predators of molluscs, polychaetes and other crustaceans and have significant 
effects on community structure in shallow coastal and estuarine ecosystems. Many crab species are also commer-
cially important and increasingly contribute to global food security through capture fisheries and aquaculture. 
Marine crustaceans are generally considered to be more tolerant of increasing CO2 levels than other taxa, but 
physiological studies are mainly limited to those species more capable of coping with environmental change12,13. 
Here we test these broad assumptions about the performance of key taxa, and explore the prediction that compen-
satory capacities are complex, highly variable but intrinsically linked with the ability to ion and osmo-regulate12 
by examining two species of marine crabs with differing abilities to compensate for salinity change. We studied a 
moderate osmoregulator, the intertidal/estuarine shore crab, Carcinus maenas and an osmoconformer, the sub-
tidal edible crab, Cancer pagurus. Carcinus maenas is euryhaline and capable of hyper-osmoregulation down to 
an external salinity of 829, but Cancer pagurus is stenohaline, and prefers marine habitats usually buffered from 
salinity change. Carcinus maenas demonstrates remarkable environmental tolerance, has a wide geographical 
distribution and is highly invasive outside of Europe30. Cancer pagurus inhabits shallow shelf waters of the NE 
Atlantic from tidal levels (juveniles) down to 50–100 m (adults)31, and supports one of the most important fisher-
ies in Europe32. Little is known about Cancer pagurus physiology, apart from the fact that it is an osmoconformer 
unable to maintain body fluid osmolality separate from that of the external environment33, and is more sensitive 
to rising temperatures when exposed to high CO2

34. We exposed both species to combinations of pCO2 (ambient 
at 400 µatm vs ‘business as usual’ predictions for 2100 at ~1000 µatm), and salinity (SW, full strength salinity = 33 
vs DW, reduced salinity = 25) according to a fully factorial design, and studied key physiological processes of pH 
homeostasis and ion regulation for up to 12 months. The purpose here was to provide a physiological framework 
to explain species-specific differences in CO2 tolerances, to further understand vulnerabilities of marine inverte-
brates to future coastal/estuarine environments.

Results
Seawater Chemistry. Seawater locally sourced from the Menai Strait was unpolluted and had an ionic com-
position in agreement with that of reference seawater (Table 1 in35). Variations in seawater carbonate chemistry 
were greater among treatments than within treatments over time. The seawater manipulations produced reason-
ably stable and accurate experimental parameters as detailed in Supplementary Table S1. Overall, salinity had 
no effect on seawater pCO2 but AT and DIC were significantly higher and pH significantly lower in SW com-
pared with DW. Under elevated pCO2, seawater pCO2 and DIC increased but AT was unaffected (Supplementary 
Table S1). Temperature varied over time in all four treatments, but all treatments showed the same temporal 
pattern.

Haemolymph Acid-base Status. To determine the ability of crabs to maintain extracellular acid-base 
homeostasis, we measured haemolymph pH, partial pressure of CO2 (pCO2), and bicarbonate concentration 
([HCO3

−]). In Carcinus maenas, all three acid-base parameters varied with time (Fig. 1a,c,e; Table 1), but were 
unaffected by either salinity or pCO2 (Supplementary Tables S3 and S4). Haemolymph pH remained unchanged 
from one to 6 months, but fell significantly between 6 and 12 months (Fig. 1a). Haemolymph pCO2 and [HCO3

−] 
were significantly higher at 3 and 6 months than at one month, but declined again at 12 months (Fig. 1c,e).

All four explanatory variables (CO2, salinity, time, body size) influenced haemolymph acid-base status in 
Cancer pagurus but in different combinations depending on acid-base parameter. Haemolymph pH varied 
according to salinity and time, but the salinity effect was consistent over the course of the experiment (Fig. 1b; 
Tables 1, S5 and S6). Haemolymph pH was significantly lower in SW vs DW crabs at 7.79 ± 0.02 (n = 63) and 
7.83 ± 0.02 (n = 59), respectively (Supplementary Table S6). Haemolymph pCO2 and [HCO3

−] were higher under 
elevated seawater pCO2, irrespective of the significant effect of time (Tables 1 and S6; Fig. 1d,f), and the small 
but significant increase in both acid-base variables with increase in body size (Supplementary Figs S1 and S2; 
Table S6). For example, mean haemolymph pCO2 in Carcinus maenas at 6 months was 0.36 ± 0.03 µatm in ambi-
ent and 0.50 ± 0.06 µatm in elevated pCO2 (Fig. 1d). In the same month, [HCO3

−] was 8.25 ± 0.43 mmol L−1 in 
ambient but 10.29 ± 0.82 mmol L−1 in elevated pCO2 (Fig. 1f). In all cases n = 16.
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Haemolymph osmolality was determined to assess the ability of the crabs to osmoregulate.
In Carcinus maenas, haemolymph osmolality varied due to salinity and time (Tables 1 and S3), but pCO2 had 

no effect. Haemolymph osmolality was significantly lower in DW vs SW crabs at 839 ± 14 (n = 50) and 944 ± 10 
(n = 51) mosmol kg−1, respectively (Supplementary Table S4). Over time, osmolality fell significantly at 3 months 
(SNK post hoc P < 0.05), but values recovered after 6 and 12 months exposure. Haemolymph osmolality in DW 
crabs remained 103 to 175 mosmol kg−1 above that of external DW, apart from 3 months when haemolymph 
osmolality was only 44 mosmol kg−1 above that of DW.

The main effect on haemolymph osmolality in Cancer pagurus, was salinity, but there were also interactive 
effects of body size with CO2, and with time (Tables 1 and S5). As the effects of CO2 and body size were rela-
tively small (Supplementary Fig. S3), the most important factors were salinity and time. Haemolymph osmolality 

Figure 1. Haemolymph acid-base changes against time in Carcinus maenas: (a) haemolymph pH; (c) partial 
pressure of CO2 (pCO2); (e) bicarbonate concentration ([HCO3

−]). Acid-base changes in Cancer pagurus: 
(b) haemolymph pH according to salinity and time (SW = full strength seawater, closed circles; DW = dilute 
seawater, open circles); (d) haemolymph pCO2 and (f) haemolymph [HCO3

−] according to external pCO2 and 
time (CCO2 = control, closed triangles; HCO2 = elevated pCO2, open triangles). Values given as means ± SEM. 
For all acid-base variables in Carcinus maenas n = 27, 25, 30 and 24 at 1, 3, 6 and 12 months, respectively. For 
haemolymph pH in Cancer pagurus: n = 15 at 1 month and n = 16 at 3, 6 and 12 months in SW and DW, apart 
from 9 months in DW when n = 12. For haemolymph pCO2 and [HCO3

−] in Cancer pagurus: n = 15 at 1, 3 
and 9 months at CCO2 and HCO2, apart from 9 months in HCO2 when n = 13, and n = 16 at 6 months in both 
conditions. Values with different letters show significant differences (SNK post hoc, P < 0.05). In 1a, c and e, both 
SW and DW shown for reference even though salinity had no effect (significant differences related to changes 
over time). All values in control crabs at one month (CCO2, SW) were similar to those measured in baseline 
crabs (closed squares; t-tests, df = 13, P = 0.457 to 0.996).
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was significantly lower in DW vs SW crabs at 757 ± 9 (n = 59) and 947 ± 8 (n = 62) mosmol kg−1, respectively 
(Supplementary Table S5), but remained 22 mosmol kg−1 above that of the dilute seawater in DW crabs.

Branchial NKA activities were examined in posterior gill 8 to determine whether crabs were engaging active, 
energy consuming mechanisms to maintain acid-base status and osmoregulation. Salinity had a highly significant 
effect on NKA activities in Carcinus maenas (Tables 1 and S4) with activities 1.5 fold higher in DW vs SW crabs at 
3.86 ± 0.13 (n = 54) and 2.5 ± 0.08 (n = 51) µmol ADP mg−1 protein h−1, respectively. By contrast, elevated pCO2 
had no effect on NKA activity in Carcinus maenas. NKA activities in the posterior gill 8 of Cancer pagurus were 
unaffected by any of the explanatory variables (Tables 2 and S5), apart from a small increase in NKA activities 
with increase in body size, which was marginally significant (Table S6). Mean NKA activities in Cancer pagurus 
gills were 1.07 ± 0.03 (n = 110) µmol ADP mg−1 protein h−1.

Branchial gene expression. Gene transcription of several ion transporting genes were quantified to exam-
ine the underlying mechanisms responsible for ion and acid-base regulation in the posterior gills of marine crabs. 
We measured the ion transporting enzymes: Na+/K+-ATPase α-subunit, NKAα; cytoplasmic carbonic anhydrase, 
CAc; and gpi-linked carbonic anhydrase, gpi-CA. We also examined the ion exchangers: anion exchanger protein 
(Cl−/HCO3

−), AE; sodium/proton exchanger, NHE; and V-type H+ ATPase B-subunit, VATB. Justification for the 
choice of genes is given in Methods.

Species Physiological parameter

Terms included in best model

Variance 
structure Fixed Effects

Carcinus maenas

Haemolymph pH Sal:pCO2 Time

Haemolymph pCO2 None Time

Haemolymph [HCO3
−] None Time

Osmolality None Sal + Time

Gill NKA activity None Sal

Cancer pagurus

Haemolymph pH Time Sal + Time

Haemolymph pCO2 Sal:Time pCO2 + Time + CW

Haemolymph [HCO3
−] pCO2 pCO2 + Time + CW

Osmolality Sal:Time Additive + pCO2:CW + Time:CW

Gill NKA activity None CW

Table 1. Summary of the models that best explain variation in the physiological parameters for both crab 
species. NKA = Na+/K+ ATPase activities in posterior gill 8. Models represent simplifications of a global model 
including four fully crossed variables (seawater pCO2; salinity (Sal); and time as fixed factors; body size (CW) 
as a covariate). An error variance structure is included crossing pCO2, salinity and time. Models were selected 
using AICc and log-likelihood ratio tests as detailed in Methods, and in Supplementary Tables S3 –S6.

Species Gene
Gene 
category

Terms included in best model:

Variance 
structure Fixed effects

Carcinus maenas

AE Ion and AB Time Time + CW + Time:CW

CAc Ion None Additive + all 2-way 
interactions + pCO2:Time:CW + Sal:Time:CW

gpi-CA Respiration None Sal

NKAα Ion and AB None Sal

NHE Ion and AB None Sal + Time + CW + Sal:CW + Time:CW

VATB Ion and AB None Sal

Cancer
Pagurus

AE Ion and AB None None

CAc Ion None Time

gpi-CA Respiration None None

NKAα Ion and AB None None

NHE Ion and AB na na

VATB Ion and AB None Sal + Time + CW

Table 2. Summary of models that best explain variation in expression of six genes in the posterior gills of 
both crab species. AE = anion exchanger protein, CAc = cytoplasmic carbonic anhydrase, gpi-CA = gpi-linked 
carbonic anhydrase, NKAα = Na+/K+ ATPase alpha subunit, NHE = Na+/H+ exchanger, and VATB = vacuolar 
ATP synthase subunit B. AB = acid base. Models represent simplifications (where possible) of a global model 
including four fully crossed explanatory variables as explained in Table 1 and an error variance structure 
crossing pCO2, salinity and time. Model terms were selected using AICc and log-likelihood ratio tests as detailed 
in Methods and in Supplementary Tables S7 and S8.
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In Carcinus maenas, NKAα expression in gill 8 varied due to a relatively weak 3-way interaction between 
salinity, pCO2 and body size (Supplementary Table S7 and Fig. S4). Further analysis of the simpler models 
demonstrated that salinity had an important effect with significantly higher values in DW crabs (Table 2; Fig. 2). 
Variation in CAc was influenced by 3-way interactions between time and body size, and either salinity or pCO2 
(Supplementary Fig. S5; Tables 2 and S7). Further analysis revealed that there was a clear effect of salinity, regard-
less of time and body size, with higher CAc expression in DW crabs (Fig. 2). In contrast, elevated pCO2 had no 
effect (Fig. 3). Salinity was the only factor to influence gpi-CA and VATB gene expression in Carcinus maenas 
(Tables 2 and S7). Both genes were upregulated in DW but to a lesser extent than CAc (Fig. 2). NHE expression for 
Carcinus maenas varied due to a 3-way interaction between pCO2, time and body size (Supplementary Table S7). 
However, exploration of simpler models revealed an interaction between salinity and body size, as well as time 
and body size (Tables 2 and S7; Fig. S6). At one and 3 months, NHE expression tended to be lower in the smallest 
SW Carcinus maenas (CW < 30 mm at one month and <35 mm at 3 months) (Supplementary Fig. S6). At the 
same sampling intervals, smaller crabs showed an increase in NHE expression in DW. When considered as a main 
effect, salinity significantly affected NHE expression (Fig. 2). AE was unaffected by salinity or pCO2, but instead 
depended on body size and sampling time (Tables 2 and S7). AE expression increased with body size at one and 3 
months, but declined with body size at 6 and 9 months (Supplementary Fig. S7).

In contrast to Carcinus maenas, NKAα, gpi-CA and AE in gill 8 of Cancer pagurus were unaffected by any 
of the main factors (Tables 2 and S8). CAc expression varied with time due to a small down regulation between 
one and 12 months. VATB was the only gene in the gills of Cancer pagurus to vary with salinity, and even though 
VATB expression also varied with time and body size, it was consistently lower in DW crabs (Fig. 2).

Discussion
Here we develop a novel mechanistic understanding of the combined effects of long-term exposure to elevated 
pCO2 and reduced salinity in two marine crab species with contrasting ecophysiological characteristics. We pro-
vide evidence that physiological responses of crab species with differing experiences of salinity change in their 
natural environment, affects their ability to cope with elevations in seawater pCO2. Overall, pH homeostasis in 
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Figure 2. Expression of selected genes as a function of salinity. Gene expression under control (SW, closed circles) 
and dilute seawater (DW, open triangles) salinity across all time points and pCO2 treatments. Gene expression 
values scaled relative to values in the control salinity treatment. Numbers at the top of the plots represent the 
proportional change in expression between control and low salinity. Asterisks represent the significance of these 
difference from t-tests, where P = 0.05–0.01 (*), 0.01–0.001 (**) and <0.001 (***). Shaded areas represent the 
spread (SE) of expression values at the end of acclimation period and prior to the start of the experiment. For 
Carcinus maenas, n = 62 for SW and for DW crabs. For Cancer pagurus, n = 64 for SW, and n = 61 for DW.
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Carcinus maenas, the osmoregulator, which has invaded estuarine and intertidal environments, was unaffected by 
elevated pCO2 or salinity, either alone or in combination. In marked contrast, the edible crab, the osmoconformer, 
was unable to maintain pH homeostasis under similar CO2 and salinity treatments, although there was some 
respite to acid-base disruptions in dilute seawater. All DW crabs at a salinity of 25 experienced higher external pH 
values and lower AT values than their SW counterparts (Supplementary Table S1). Such changes in seawater car-
bonate chemistry result from salinity-induced changes in dissociation constants for carbonic acid and solubility 
coefficients for CO2

36. Physico-chemical changes in seawater can influence haemolymph pCO2 levels in Carcinus 
maenas but are not known to affect the metabolic alkalosis caused by reduced salinity (reviewed in12). With this 
in mind, we discuss below the potential mechanisms underlying the contrasting abilities of these two species to 
compensate for external changes in CO2 and salinity, and consider how this information can generally inform on 
the vulnerability of osmoregulators vs osmoconformers in a changing ocean.

Effects of reduced salinity and elevated CO2 on the osmoregulator. Haemolymph acid-base status 
in Carcinus maenas was unaffected by either a salinity reduction to 25, or an elevation in pCO2 to 1000 µatm, 
or both factors in combination. Minor adjustments in haemolymph [HCO3

−] occurred over time to compen-
sate for small elevations in haemolymph pCO2, and despite a slight fall in haemolymph pH at 12 months, all 3 
acid-base parameters remained well within the normal range of values reported for aquatic crabs37. Carcinus 
maenas was clearly capable of fully compensating for the treatment combinations over 12 months exposure. First, 
because haemolymph pCO2 was unaffected by the near-future increases in seawater pCO2 (~1000 µatm, 0.10 kPa), 
which suggested the maintenance of an outward diffusion gradient for CO2 excretion across the gills11,37. Second, 
because external reductions in salinity had no effect on haemolymph pH, which usually increases in marine 
crabs during short-term salinity transfer through the increased elimination of H+ during enhanced Na+ uptake26. 
Compensation over time is likely to have involved branchial HCO3

− uptake from external seawater, which is the 
principal mechanism for extracellular acid-base regulation in aquatic crabs37.

In Carcinus maenas, salinity was the only factor to affect NKA activity in posterior gill 8. NKA activities 
were significantly higher in DW than SW crabs as previously observed in euryhaline crabs, including Carcinus 
maenas, after transfer to low salinity29,38. This large, trans-membrane transport enzyme is a critical component 

0.883  1.11  0.913  0.854  1.05  0.950  

1.56 . 1.07  1.14  1.04  0.920  

C
arcinus m

aenas
C

ancer pagurus

AE CAc gpi−CA NHE NKA VATB

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Gene

lo
g(

C
N

R
Q

) 
±

 S
E

CCO2

HCO2

Figure 3. Expression of selected genes as a function of pCO2 level. Gene expression under control (closed 
circles) and elevated (open triangles) pCO2 across all time points and salinity treatments. Gene expression 
values scaled relative to values in the control pCO2 treatment. Numbers at the top of the plots represent the 
proportional change in expression between control and elevated pCO2. Explanation for asterisks and shaded 
areas given in Fig. 2. For Carcinus maenas, n = 62 for both CCO2 and HCO2. For Cancer pagurus, n = 64 for 
CCO2, and n = 61 for HCO2.
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of low salinity acclimation in osmoregulating crabs, as it establishes electrochemical gradients across the gill 
and provides the major driving force for the transepithelial movement of ions29,39. During low salinity exposure, 
increased NKA activities in the posterior gills are associated with the active branchial absorption of Na+ and Cl− 
to compensate for the passive, diffusive loss of these ions. The NKA activities obtained in the posterior gills of SW 
crabs in this investigation match those obtained by40. The moderate 2-fold increase in NKA activities observed 
in DW crabs, however, was smaller than that previously reported for Carcinus maenas during shorter term expo-
sures to lower salinities (3 weeks at a salinity of 10)41. The difference here was the maintenance of elevated NKA 
activities in the posterior gills of DW crabs for 12 months, despite the possible energetic repercussions associated 
with NKA activity as a major energy-demanding process42.

The current gene transcription experiment supports an increasing role for ion regulation in Carcinus maenas 
during dilute seawater exposure. Five out of the 6 genes responsible for both ion and acid-base regulation were 
upregulated in response to salinity. For NKAα; gpi-CA and VATB, salinity was the main driver resulting in upreg-
ulation of all 3 genes. Collectively these responses indicate an increasing dependence on ion regulation during 
exposure to dilute seawater to compensate for the high rate of ion loss and increased passive uptake of water43,44. 
More specifically, upregulation of NKAα in combination with increased NKA activities suggests proliferation of 
specialised cells for osmo- and ion exchange in the posterior gills, and an increased ability to drive ion exchange 
across the gill epithelium against a concentration gradient29,45. The salinity-induced increase in VATB expression 
may support the movement of Na+, K+ and Cl− across the apical membrane, and it may also increase the rate at 
which H+ provided by CAc is pumped out of the cytoplasm, assuming the proton pump is located on the apical 
membrane38,46,47. The salinity-induced upregulation of gpi-CA is harder to explain as this enzyme is present on the 
basolateral membrane of gill epithelia and mainly has a respiratory role in enhancing CO2 excretion48. However, 
upregulation of gpi-CA in the posterior gills of Carcinus maenas also occurs in response to short-term, low salin-
ity transfer and may be associated with the combined effects of increased metabolic rate (increased rate of CO2 
excretion) and the proliferation of ion transporting cells in low salinity48.

Reduced salinity also caused the upregulation of 2 further genes: CAc and NHE. Although pCO2 interacted 
with salinity and with body size in the present study, further inspection of the relationships revealed that salinity 
was the main factor responsible for the upregulation of CAc. Increased CAc expression represents a permanent 
transcriptional response to low salinity, and indicates an increase in CAc activity44. CAc plays a central role in 
both ion and acid-base regulation as it catalyses the hydration of CO2 in the cytoplasm of gill epithelia to pro-
vide counter ions (H+ and HCO3

−) for both anion and NHE exchange29,48,49. Previous studies demonstrate that 
CAc is directly involved in osmo- and ion regulation in several euryhaline crabs including Carcinus maenas44,50. 
Our studies further support this view as the CAc gene was the most sensitive to reduced salinity suggesting an 
important involvement in ion regulation as outlined by48. Upregulation of NHE in DW crabs suggests enhanced 
Na+ uptake, as NHE is responsible for exchanging two cations (Na+ and possibly NH4

+) for one proton across 
the apical surface of crab gill epithelia51. Previous studies have failed to show an upregulation in NHE in Carcinus 
maenas gills after 15 days in low salinity49, but the present study demonstrates the importance of NHE in making 
long-term adjustments.

In sharp contrast to salinity, near-future pCO2 had no effect on posterior gill NKA activities, or on the tran-
scription levels of the genes measured here in Carcinus maenas. Similarly, a pCO2 of 4,000 µatm (0.4 kPa) had no 
effect on the genes associated with acid-base regulation in Carcinus maenas gills after acute exposures of 7 days 
and 11 weeks25, although the experimental crabs used by these authors originated in the Baltic living at salinities 
of 14–15, and may already have increased capacities for ion exchange. Collectively, these studies illustrate that the 
capacity to regulate acid-base disturbances under elevated pCO2 in osmoregulators is not reliant on biochemical 
or transcriptional control of ion exchange mechanisms in the posterior gill, although the role of anterior gills 
warrants further study52. Indeed other acute studies have revealed an increase in NKAα expression and mem-
brane bound CA in isolated, perfused gills from Carcinus maenas acclimated to low salinity (S = 10) for 7 days 
and exposed to a pCO2 of 3,243 µatm (0.32 kPa)53, although upregulation of both genes were only observed in the 
anterior but not the posterior gills.

As body size co-varied with time in Carcinus maenas, it was difficult to assess the independent effects of 
either factor. Our study suggests that body size had some effect on the gene expression ratios of CAc, NHE and 
AE in posterior gills (Table 2). It is possible that these size-dependent relationships were due to a decline in 
weight-specific gill surface area with increase in body mass, as observed in the strong osmoregulating crab, 
Callinectes sapidus, and in several freshwater decapod species33,54. The positive relationships between body size 
and gene expression could also be associated with reductions in gill permeability observed with increase in 
body size54. Clearly, the independent effect of body size on gene expression ratios for branchial ion-transporters 
requires further investigation.

Effects of reduced salinity and elevated CO2 on the osmoconformer. Our study demonstrates that 
the edible crab, Cancer pagurus, was unable to increase ion regulatory capacities during exposure to reduced 
salinity even after prolonged exposure for 9 months, as branchial NKA activities and gene expression ratios for 
all genes, apart from VATB, were unaffected by salinity. Moreover, NKA activities in Cancer pagurus gills were the 
same as those determined by40 and lower than those observed in SW Carcinus maenas, further supporting the 
general observation that NKA activities are lower in stenohaline vs euryhaline species29. Nonetheless, the ability 
of Cancer pagurus to maintain haemolymph osmolality just above the values in dilute seawater demonstrates 
some control over extracellular osmolality. Such control is likely to be related to the production and efflux of 
free amino acids from the tissues during low salinity exposure in order to decrease intracellular osmolality and 
protect against cell swelling10,28,52. Previous studies report that Cancer pagurus gills have greater capacities than 
Carcinus maenas gills for dealing with deamination resulting from amino acid mobilisation; for instance, they 
have greater capacities for the active excretion of NH3, and have an increased dependency on the metabolism 
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of amino acids55,56. Moreover, osmoconforming species tend to have higher gill permeabilities to water and to 
ions56,57. For example, transepithelial conductances are 5 times higher in the posterior gills of Cancer pagurus 
compared with Carcinus maenas56. Whilst there is some indication that gill permeabilities do not change in osmo-
conformers after 2 week’s exposure to low salinity29, preliminary results show a thickening of the branchial cuticle 
in Cancer pagurus after 6 months exposure to DW, which may indicate a decrease in gill permeability (R. Poulter, 
B. Ciotti, C. Hauton, unpublished observations).

The general accumulation of haemolymph pCO2 and [HCO3
−] in Cancer pagurus over time suggests impair-

ment of CO2 excretion, especially after 9 months. This response is difficult to explain but may result from a com-
bination of factors, such as increase in body size reducing CO2 excretion rates caused by a fall in weight-specific 
gill surface area, and/or the limited involvement of ion exchange mechanisms and ion transporting cells in CO2 
excretion in Cancer pagurus gills. Regardless of time, we provide evidence that pCO2 and [HCO3

−] were con-
sistently higher in crabs exposed to elevated pCO2 than in controls. Moreover, a key observation in the present 
study was the diminished disturbance to haemolymph pH in Cancer pagurus held in dilute seawater. It is possi-
ble that this response was caused by a metabolic alkalosis resulting from an increase in haemolymph [HCO3

−] 
independently of external changes to offset the increased difference in haemolymph Na+ and Cl− concentrations 
(known as strong ion difference) resulting from exposure to low salinity58. An increased deamination of amino 
acids associated with cell volume control, may also buffer the production of H+ via subsequent binding to NH3 
to give NH4

+ as observed in isolated gill preparations in osmoconforming Carcinus maenas on exposure to ele-
vated pCO2

52. In addition, increased ammonia excretion via NHE exchangers would increase the loss of H+ 
during low salinity exposure. Although the actual mechanisms causing the metabolic alkalosis remain unclear, 
the pH-bicarbonate diagram in Fig. 4 illustrates that SW Cancer pagurus had lower haemolymph pH than DW 
crabs and experienced greater disruptions to acid-base status during elevations in seawater pCO2. Although there 
was some ability to increase haemolymph [HCO3

−], values were considerably lower (<15 mmol l−l) than those 
reported in osmoregulators during hypercapnia12. Moreover, VATB was downregulated in low salinity, which may 
have increased H+ availability in the haemolymph supporting the formation of NH4

+, potentially contributing 
to the metabolic alkalosis. In our study Cancer pagurus survived the treatment combinations for 9 months before 
mortality rates started to increase. Cancer pagurus exposed to 50% seawater (S = 15) survived for 15 days by 
tolerating the salinity-induced changes31. This is unlikely to be the case in the present study, because of the time 
scale involved. Instead, longer-term exposures may allow alterations in the concentration of osmotically active 
solutes and also changes in gill permeability28. The effectiveness of such a strategy, however, was limited ultimately 
demonstrating the sensitivity of Cancer pagurus to combined changes in CO2 and salinity.

Conclusion
Our work emphasises the dominant impact of a relatively understudied climate change variable, salinity, in com-
parison to elevated pCO2, and demonstrates the necessity to study specific salinity/pCO2 combinations. We also 
demonstrate that ion transporting capacities are of key importance in terms of predicting responses of marine 
species to climate change. Mechanisms of active transbranchial ion uptake, which enable euryhaline osmoregulat-
ing crabs to invade and exploit estuarine environments have also improved their tolerances to elevated CO2. The 
sustained, salinity-driven increase in gill NKA activities observed in dilute seawater Carcinus maenas, as well as 
the salinity–induced upregulation of 5 out of the 6 genes of interest suggests permanent adjustments in branchial 

Figure 4. A pH–bicarbonate diagram comparing the main acid-base variables in the haemolymph of Cancer 
pagurus exposed to the 4 treatments: SW = seawater S = 33 (grey symbols); DW = dilute seawater S = 25 (black 
symbols); CCO2 = control pCO2 (closed circles); HCO2 = elevated pCO2 (open circles). Continuous curved lines 
represent pCO2 isopleths for Cancer pagurus haemolymph in SW. The associated dotted lines represent the shift 
in pCO2 isopleths in DW, resulting from salinity-related changes in dissociation constants for carbonic acid. 
The broken line represents the non-bicarbonate buffer line (β = 12 mmol l−1 pH−1) taken from78 adjusted for the 
protein levels measured in Cancer pagurus haemolymph. Values given as means ± SEM (n = 32 in SW + CCO2; 
n = 31 in SW + HCO2; n = 29 in DW + CCO2; n = 27 in DW + HCO2).
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ion exchange to low salinity. Such mechanisms are also sufficient to maintain CO2 excretion across the gills at 
elevated CO2, regardless of salinity. The failure to increase branchial ion transporting capacities in the osmocon-
forming species, Cancer pagurus, even in juveniles occupying the low intertidal, shows greater species sensitivity 
to elevated CO2, although there is some respite in dilute seawater. We conclude that osmoconformers with their 
preferences for stable habitats are poorly equipped for changes in seawater CO2 and salinity via the inability to 
increase ion exchange capacities. Further high resolution studies are urgently required to assess the role of eco-
logical (e.g. behaviour, habitat use etc.) and evolutionary (e.g. genetic diversity) responses in determining whether 
osmoconformers, such as Cancer pagurus, are able to survive a multivariate natural environment. In conclusion, 
our observations argue for the careful identification of species sensitivity to environmental perturbations and cau-
tions against forecasting potential ecosystem futures based on assessments of community structure at relatively 
course taxonomic resolution.

Methods
Animal collection and maintenance. Juvenile Carcinus maenas were collected by hand from low inter-
tidal sites on Anglesey, UK (53°13′48″N, 4°9′W and 53°13′12″N, 4°10′48″W) between March and May 2013 
and returned to the Nuffield Laboratory, School of Ocean Sciences, Bangor University within 2 h of collec-
tion. Carcinus maenas were exposed to treatments starting in June 2013 (body mass = 7.12 ± 0.17 g; carapace 
width = 30.7 ± 0.2 mm; n = 480). Juvenile Cancer pagurus from a single panmictic population were collected by 
hand from Feb to March 2014 at various low intertidal, non-SAC (Special Areas of Conservation) sites from 
Anglesey (53°24′36″N,4°17′24″W) to South Wales (51°34′12″N,3°58′48″W). Crabs were transported back to the 
Nuffield Laboratory and returned to seawater within 5 h. Cancer pagurus were exposed to treatments from June 
2014 (body mass = 21.74 ± 0.74 g; carapace width = 48.3 ± 0.6 mm; n = 472). Both species were collected from 
low intertidal sites characterised by rocky outcrops on generally sheltered shores. Before treatments commenced, 
crabs were held in fully aerated and recirculated (sand filtered and UV sterilised) seawater at ambient condi-
tions of salinity, pCO2 (400 µatm), day length and temperature (Carcinus maenas: 9.0 ± 0.3 °C, salinity 33.9 ± 0.1, 
pHNIST 8.03 ± 0.10; Cancer pagurus: 12.0 ± 1.6 °C, salinity 34.4 ± 0.1, pHNIST 8.01 ± 0.10) for between one and 4 
months. Crabs were fed a food ration of approximately 4% of body mass three times a week; twice on a diet of 
squid (Squid rings, Bradleys, UK) and once a week with a diet of mussels (Mytilus edulis).

Experimental regime. Juvenile Carcinus maenas and Cancer pagurus were exposed on separate occasions 
to elevated pCO2 to match the ‘business as usual’ scenario for 2100 of ~1000 µatm59, and a reduction in salinity to 
25 corresponding to the values just below those responsible for initiating osmoregulation in Carcinus maenas29,48. 
Crabs were exposed to one of 4 treatments in an aquarium system modified from60: ambient pCO2 (~400 µatm)/
seawater (salinity 33); elevated pCO2 (~1000 µatm)/seawater (salinity 33); ambient pCO2 (~400 µatm)/dilute 
seawater (salinity 25); and elevated pCO2 (~1000 µatm)/dilute seawater (salinity 25). Each treatment consisted 
of a mixing tank (350 L), a header tank (100 L) and five holding tanks (48 L). Each mixing tank was supplied 
with natural, filtered (200 µm) and UV sterilized seawater. Seawater dilution was achieved in two of the mix-
ing tanks by adding dechlorinated freshwater vigorously aerated for several hours in an adjoining holding tank 
(510 L). Salinity was controlled at 25 via conductivity sensors (Eutech Instruments COND 560) calibrated with 
certified standards (Cole Palmer) every week. Elevated CO2 levels were delivered to two of the mixing tanks 
by controlling the flow of a gas mixture of air and pure CO2 via gas line restrictors and flow meters according 
to61. The composition of the air/CO2 gas mixture was determined using a Licor LI-840A CO2 analyser. The two 
remaining mixing tanks were fully aerated to represent ambient pCO2 levels (~400 µatm). Seawater supplied to 
each header tank from its corresponding mixing tank was gravity fed to five independent holding tanks at a rate 
of 68 ± 6 L h−1 (mean ± SD) and run to waste. The system was housed within a temperature controlled room set at 
11 °C and held in a light: dark cycle of 12 L:12D. Further control of seawater temperature in each header tank was 
achieved by an inline thermostatic heater (Elecro 900 Evo Titanium Digital aquarium Heater, Electro Engineering 
Ltd., Hertfordshire, UK), offset against a chiller (Aqua Medic TITAN 2000, Aqua Medic Ltd, Coalville, UK). 
Temperatures were maintained at 11–12 °C across all treatments but allowed to rise in the summer months to 
15–16 °C to mimic natural conditions, which is an important consideration during longer-term exposures62.

At the start of the experimental exposures, crabs were allocated at random to each of the 25 holding tanks, 
and progressively exposed to the final treatment combinations over three days. Crabs were held individually in 
perforated cylindrical plastic containers ranging in size from 0.6 to 3 L with no more than 24 crabs per holding 
tank. The high flow rate of seawater through the system ensured that the seawater within each holding tank was 
replaced approximately every 44 min. This minimised any non-treatment effects, such as temperature variation, 
and maintained the seawater carbonate chemistry at the desired levels in both the holding tanks, and in the 
individual perforated containers. The latter were unaffected by the biological captivity of the crabs. As the crabs 
moulted and grew in size, each container was replaced to ensure a constant ratio between crab size and container 
volume. Crabs were fed 3 times a week as described previously, but left for 48 h without food before sampling.

Crabs were sampled before exposure (baseline) and after 1, 3, 6 months, and 12 months in Carcinus maenas, 
and 1, 3, 6 and 9 months in Cancer pagurus (n = 6–8 treatment−1 month−1). Experiments on Cancer pagurus 
were limited to 9 months as mortality rates started to increase and the aim here was to ensure determination of 
physiological responses to sub-lethal effects. Carcinus maenas increased in body mass from 8.63 ± 0.65 (n = 26) to 
44.16 ± 2.34 (n = 24) g, and in CW from 33.1 ± 1.0 (n = 26) and 57.3 ± 1.1 (n = 24) mm between 1 and 12 months. 
Cancer pagurus increased in body mass from 22.00 ± 2.57 (n = 31) to 55.52 ± 5.68 (n = 28) g, and in CW from 
36.1 ± 2.1 (n = 31) to 68.3 ± 1.0 (n = 28) mm between 1 and 9 months. In the majority of cases all crabs were in 
intermoult, but several crabs in the summer sampling months were in early premoult (D0 and D1). The latter were 
determined as crabs in which the lower margin of the carapace and the merus of the cheliped remained firm, but 
the new underlying epidermis was either confluent with the carapace or just beginning to separate at the dorsal 
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anterior edge. No crabs were sampled beyond D1 avoiding the physiological changes that are known to occur at 
D3 and D4 stages of premoult and the large changes in gene expression reported to occur in postmoult63. At each 
sampling interval, haemolymph samples (300–400 µL) were withdrawn from the infrabranchial sinus with the 
minimum of disturbance to the crabs and used immediately to determine haemolymph acid-base status and 
osmolality. Crabs were sacrificed by ablating the thoracic and cerebral ganglia, and gill pair 8 dissected out from 
the branchial chamber, and flash frozen and stored at −80 °C for the determination of NKA activity (right) and 
gene expression (left).

Seawater Chemistry. Daily temperature (°C) and pHNIST were recorded for each treatment using a com-
bined pH electrode and meter (Mettler Toledo SG2 SevenGO, MT Ltd., Leicester, UK), along with daily salinity 
using a conductivity electrode and meter (Mettler Toledo SG3 SevenGO MT Ltd., Leicester, UK). The pH and 
conductivity electrodes were calibrated twice weekly with NIST certified pH buffer solutions and standard solu-
tions, respectively. Seawater samples were removed monthly from holding tanks at random for the measurement 
of Total Alkalinity (AT) and Dissolved Inorganic Carbon (DIC), as well as nutrient concentrations (total nitrate, 
phosphate and silicate). Samples (100 ml) for AT and DIC analysis were taken in triplicate from each of the cylin-
drical mixing tanks, siphoned into glass containers and preserved with 0.02% mercuric chloride. Carbon chem-
istry was analysed by the UKOARP Carbonate System Facility at National Oceanographic Centre Southampton. 
Seawater samples of 60 ml were taken at the same time, filtered (Whatman GFF 0.7 µm), and stored at −20 °C 
in light proof containers for nutrient analysis at the Scottish Association for Marine Sciences using a Lachat 
Quikchem 800 Flow Injection Analyser. Carbonate system variables (pCO2, Ω calcite and Ω aragonite) were cal-
culated with CO2SYS64 with refitted constants65,66 and are presented in Supplementary Table S1.

Haemolymph Acid-Base Status and Osmolality. Haemolymph pH was determined by injecting a small 
subsample (~200 µL) past the face of an E310 glass pH electrode connected to an E351 reference electrode housed 
in a BC202 blood gas cell (Cameron Instrument Company) and supplied with circulating water at the appropriate 
temperature. The electrodes were connected to a pH/blood gas meter (Radiometer PHM73) and calibrated using 
NIST analytical buffers at regular intervals (7.45 and 8.06 at 15 °C, Fluka Analytical). Total CO2 (TCO2) was deter-
mined according to the Cameron technique67. Small subsamples (40 µL) were injected into a 2 mL chamber filled 
with 0.01 N HCl and maintained at 38 °C. A CO2 electrode (Radiometer E5037) in contact with the chamber was 
connected to a pH/blood gas meter (Radiometer PHM73) and calibrated with standard solutions of NaHCO3 (10, 
20 and 40 mmol L−1). A further haemolymph subsample of 15 µL was used to determine osmolality using a freez-
ing point osmometer calibrated with deionised water and a standard solution (Osmomat 030, Gonotec GmbH, 
Berlin, Germany). Partial pressure of CO2 (pCO2) and HCO3

− concentrations were calculated from measured 
values of haemolymph pH and TCO2 using the Henderson-Hasselbach equation. The apparent first dissociation 
constant for carbonic acid (pK’1) and the solubility coefficients for CO2 (αCO2) were adjusted for salinity and 
temperature provided by68.

Branchial Na+/K+-ATPase (NKA) activities. NKA activities were determined in gill 8 homogenates by 
microassay69, in which the hydrolysis of ATP is enzymatically linked to the oxidation of NADH. Protein concen-
trations in the gill homogenates were determined using the micro-modification of the Pierce BCA Protein Assay 
(Thermo Scientific). NKA activity was expressed as µmol ADP produced mg−1 protein h−1.

Gene Expression. The genes of interest were chosen for their role in the exchange of ions and acid-base 
equivalents across the gill epithelia of aquatic crabs. Na+/K+-ATPase on the basolateral membrane drives Na+ 
uptake from the surrounding seawater via an apical Na+/K+/2Cl− symporter and possibly through the apical 
2Na+/H+ antiporter (NHE). Cytoplasmic carbonic anhydrase converts CO2 into the acid-base equivalents 
HCO3

− and H+ for use as counterions for Cl− or Na+ uptake, via anion and NHE exchangers, respectively. A 
basolateral location for NHE suggests a role in the uptake of HCO3

− across the gill epithelia as speculated by52. 
The gpi-linked carbonic anhydrase located on the basolateral membrane dehydrates HCO3

− and H+ into CO2 for 
diffusion across the gill epithelium into seawater. These mechanisms are based on models summarised by10,29,52,70.

Expression of selected gene targets was measured in gill 8 using a relative quantification strategy by real-time 
PCR with SYBR Green I detection chemistry following MIQE guidelines71. Gill tissue (<0.1 g) was homogenized 
in 1 ml TRI reagent (Sigma-Aldrich, Dorset, UK) for 4 min on a TissueLyserII (QIAGEN, Manchester, UK) and 
extracted according to the manufacturer’s protocol to yield high purity, high integrity total RNA, as confirmed 
by NanodropTM (mean A260/280 = 1.9; Thermo Fisher Scientific, Leics, UK), and an ExperionTM RNA StdSens 
Analysis kit (mean RQI > 9.0; Bio-Rad, Herts, UK). Total RNA samples were treated with RQ1 RNase-free DNase 
(Promega, Hants, UK) and reverse-transcribed from poly dT20 primers using SuperscriptIIITM (LifeTechnologies, 
Strathclyde, UK). We used PrecisionPLUS Mastermix (Primer Design, Hampshire, UK) for Carcinus mae-
nas and iQ SYBR® Green Supermix (Bio-Rad, Herts, UK) for Cancer pagurus. Primers were designed using 
PrimerExpressTM (Applied Biosystems®, California, USA) or Beacon DesignerTM (Premier Biosoft, CA, USA) 
against target DNA sequences obtained from GenBank or through degenerate PCR on conserved regions iden-
tified through Clustal Omega protein alignments72. Details of gene targets, primers and assay performance are 
provided in Supplementary Table S2. Technical duplicates were run on a Corbett Rotorgene 3000 (QIAGEN, 
Manchester, UK) with the following reaction conditions: 1 cycle of 95 °C for 10 min (Carcinus maenas) or 3 min 
(Cancer pagurus); 40 cycles of 95 °C for 10 s (Carcinus maenas) or 15 s (Cancer pagurus) and 60 °C for 60 s, 1 cycle 
of 72 °C for 45 s and a final ramp to 95 °C of 1 °C per 5 s. Reaction specificity was confirmed in all reactions by 
inspecting melt curves.

Threshold cycles for all target genes were calibrated across runs using three inter-run calibrators and normal-
ized to the best combination of five candidate reference genes (act, AK, eefl1A, gapdh, tub) using GeNorm™73 and 
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qBase+™ (Biogazelle, Zwijnaarde, Belgium) to establish Calibrated Normalized Relative Quantities (‘CNRQs’)74. 
The logarithm (base 10) of CNRQs were used in statistical analyses because variation in gene expression follows a 
log normal distribution75,76. Differences in log(CNRQ) are equivalent to log fold changes.

Statistical analysis. Means for all seawater parameters were compared among all 4 treatments, after testing 
for normality using the Kolmogorov-Smirnov test and homogeneity of variance using the Levene Statistic. For 
parametric data, we used a one-way ANOVA and a Student-Newman-Keuls (SNK) post hoc test to make pairwise 
comparisons between treatments. For those comparisons that did not meet the assumptions for normality, we 
used a Kruskal-Wallis test, and then Dunn’s post hoc test with Bonferroni correction for pairwise comparisons 
(SPSS version 22, Chicago).

The influence of CO2, salinity, sampling month (all fixed factors) and body size (covariate) on the response 
variables (haemolymph acid-base variables, osmolality, branchial NKA activities and gene expression) were tested 
using a generalised least squares (GLS) approach. In our full model, we fully crossed all explanatory variables and 
allowed heterogeneity in variance among each CO2, salinity and sampling time combination (Tables 1 and 2). 
We then identified the best variance structure by comparing candidate models having reduced variance struc-
tures using the gls function in R (version 3.3.2). The best candidate model was selected as that with the lowest 
Akaike’s Information Criterion with small sample correction (AICc). Once the best variance structure had been 
established, we attempted to remove fixed effects from the global model after refitting with maximum likelihood 
(ML) and the appropriate variance structure. Terms were removed if this did not increase the AICc. In cases 
where dropping a term increased the AICc by less than two, the decision to drop terms was made on the basis of 
log-likelihood ratio tests (α = 0.05) (Supplementary Tables S3–S8). All analyses were performed using the nlme 
package in R (version 3.3.2)77. When response variables were influenced by independent factors, the SNK post 
hoc test was used to determine significant differences among multiple means (SPSS, version 22). To aid interpre-
tation, we report the simpler models for both species in Results, and outline model selection in Supplementary 
Tables S3–S8.

Exposing crabs for many months introduces confounding factors, such as increases in body size, and in this 
study, seasonal changes in temperature. To account for changes in body size, we included carapace width (CW) as 
a covariate in our statistical models. CW was chosen as a proxy for body size to avoid inaccuracies caused by water 
retention in the branchial chambers of the crabs during weighing. Throughout there was some potential level of 
co-variation in time and body size, but not all time intervals were confounded by size differences. Throughout 
exposure, small/damped seasonal changes in temperature occurred, but changes were similar across all treat-
ments and there was no tank effect as variation among tanks was smaller than the variation within tanks.

Data Availability Statement
Data pertaining to the manuscript will be made available via the Research Information Management System 
PURE.
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