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Identification of molecular structural features is a central part of computational chemistry. It would be

beneficial if pattern recognition techniques could be incorporated to facilitate the identification.

Currently, the quantification of the structural dissimilarity is mainly carried out by root-mean-square-

deviation (RMSD) calculations such as in molecular dynamics simulations. However, the RMSD

calculation underperforms for large molecules, showing the so-called “curse of dimensionality” problem.

Also, it requires consistent ordering of atoms in two comparing structures, which needs nontrivial effort

to fulfill. In this work, we propose to take advantage of the point cloud recognition using convex hulls as

the basis to recognize molecular structural features. Two advantages of the method can be highlighted.

First, the dimension of the input data structure is largely reduced from the number of atoms of

molecules to the number of atoms of convex hulls. Therefore, the dimensionality curse problem is

avoided, and the atom ordering process is saved. Second, the construction of convex hulls can be used

to define new molecular descriptors, such as the contact area of molecular interactions. These new

molecular descriptors have different properties from existing ones, therefore they are expected to exhibit

different behaviors for certain machine learning studies. Several illustrative applications have been carried

out, which provide promising results for structure–activity studies.
1 Introduction

Feature recognition of molecular structures is essential in many
elds of chemistry, such as conformer exploration, molecule
assembling, and molecular descriptor denition. In computa-
tional chemistry, the most common scenario is probably to
differentiate molecular structures, such as comparing atomic
coordinates between theoretical and experimental structures.
Such a comparison is oen the starting point for various
sophisticated computational studies.1–7 Besides this funda-
mental application, there are studies combining existing
benchmark sets to generate a more inclusive benchmark set.8

The construction of such a super set therefore needs the
attention of recognizing unique molecules. Another important
application is to construct molecular descriptors by mapping
atomic coordinates into a more suitable representation.9

The molecular descriptor is a central part of the quantitative
structure–activity relationship (QSAR) analysis. Various molec-
ular descriptors have been dened such as structural formula,10

different dimensional QSAR descriptors,11–13 and quantum
chemical descriptors.14 It has been well documented that
descriptors regarding the molecular shape are powerful
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predictors for medicine studies. A notable example relates to
the polar surface area, which has been widely used for estima-
tion of molecular transport properties.15

With the help of machine learning techniques, novel
molecular descriptors have been dened to facilitate QSAR
studies. Most unsupervised learning algorithms need to
distinguish the structural similarities.9 To examine structural
similarities, the root-mean-square-deviation (RMSD) calcula-
tion is the most commonly used method. It calculates the
square sum of distances between corresponding atoms (di) in
the two structures, and takes the division by the total number of
atoms (N), followed by a square root operation.

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

di
2

N

s

However, there are several limitations regarding RMSD
calculations. First, the RMSD calculation suffers the so-called
“curse of dimensionality” problem that it becomes less
capable to distinguish pairwise differences between conforma-
tions with increasing system size.16 A grave consequence of this
problem is that all RMSD-based analysis would be accordingly
impacted. In addition, the RMSD calculation needs consistent
ordering of atoms between two comparing structures. Yet this
alignment step is not easily accomplished, especially for large
molecule.17 Moreover, the construction of atom pairwise corre-
spondence gives rise to combinatorial searches, which is
RSC Adv., 2022, 12, 17559–17569 | 17559
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usually very time-consuming. In addition, the RMSD measure-
ment also suffers other limitations such as being difficult for
interpretation, and lack of normalization.18–20 Some improve-
ments upon RMSD have been proposed to remedy these prob-
lems, such as introducing weighting functions into the
calculation of RMSD,20 or taking advantage of the graph theory21

or symmetry.22 Other alternatives include conguration nger-
print vector,23 global and local descriptors,24 geometric hashing
algorithm,25 blob detection,26 and different score
functions.18,27–32

On another aspect, the iterative closest point (ICP) method
was brought up in recent years and received signicant atten-
tion in the area of pattern recognition.33 One of its many
successful applications is mobile robotics. In such an applica-
tion, the features of an object (such as a vehicle) are represented
as a point cloud, and the object recognition is reduced to tracing
and matching different point clouds.

Following this wisdom, the molecules could be represented
as a point cloud as well. The atoms are naturally the rst choice
as the basis to constitute point clouds. However, this choice
cannot avoid the dimensionality curse problem as mentioned
above. In addition, the ICP iterations may converge to a local
optimal point, which would lead to false positive recognition.
Nonetheless, if ICP can be successfully applied to molecular
systems, then the ordering of atoms in two comparing struc-
tures is no longer necessary. Accordingly, all RMSD-based
analysis can be facilitated by using ICP.

In this work, we propose to take advantage of the ICP algo-
rithm to recognize molecular structural features using convex
hulls as the basis to constitute the point cloud instead of the
whole molecule. The convex hull is the smallest polyhedron
enclosing the molecule. Two features can be highlighted. First,
the size of the input data structure is largely reduced, especially
for large molecules. Therefore, the dimensionality curse
problem is circumvented, and the ordering of atoms in two
comparing molecules is saved. Second, the construction of
convex hulls can be used to dene new molecular descriptors.
By creating the convex hulls, the molecular volume and surface
area are dened. It is therefore potential to combine these new
molecular descriptors with other machine learning techniques.
A few preliminary applications are bought up to exhibit their
potentials, which show promising results.

2 Methods

In this work, chemical bonds are removed from molecular
structure images. Accordingly, the problem of recognizing
molecules is equivalent to extracting the structural features of
a point cloud. Such a treatment implies that all atoms in the
molecule are viewed as massless points. An important feature of
such treatment is that the ordering of atoms in two structures is
no longer necessary. Although different molecules may give
similar point clouds, (i.e., CH4 vs. SiH4), the difference in bond
lengths would lead to different cloud distributions.

As will be discussed later, the iterative closest point algo-
rithm (ICP)33 will be used tomatch two point clouds. In practice,
however, we found that the ICPmethod oen leads the iteration
17560 | RSC Adv., 2022, 12, 17559–17569
process into a local minimum. Consequently, the matching of
two point clouds will be falsely fullled. To avoid such local
minimum trap, a pre-treatment of orientation is found critical.
Specically, the center-of-mass of the molecule is rst trans-
lated to the coordinate origin. And then, the principal axes are
aligned along XYZ axes. Such a pre-treatment is found capable
of providing a good initial guess for the ICP process.

Before conducting ICP iterations, the molecular convex hull
is rst constructed. The convex hull is the smallest polyhedron
that encloses a set of points, where intersections between any
points in the polyhedron are still in the polyhedron. For a given
molecule or a given point cloud, its convex hull is unique.34

Therefore, one can use the convex hull as the basis for point
clouds instead of the whole molecule. As the size of the convex
hull is usually much smaller than the whole molecule, the time
for matching two structures can be signicantly reduced. To
construct the 3-dimensional convex hull for a molecule, the
quick convex hull method is followed.35,36 The core idea of the
method is based on the Beneath–Beyond theorem,37 where the
convex hull is constructed by incrementally adding facets to an
initial simplex. Let P be a set of n point in the 3-dimensional
space, the convex hull ℂℍðPÞ is constructed as follows:

(1) Dene the oriented plane~S consisted by point (pi, pj, pk),
so that

~n~S + d ¼ 0 (1)

where~n is the norm to the plane and d is the distance of~S to the
origin:

~n ¼ (pj � pi) � (pk � pi) (2)

d ¼ �~npi (3)

(2) Dene the signed distance of a point p to the plane~S:

dist(p)¼(~n~S + d)/k~nk (4)

The point p is above, below, or on the plane, if dist(p) > 0,
dist(p) < 0 or dist(p) ¼ 0.

(3) Construct an initial simplex with 4 points, p1, p2, p3 and
p4. Preferably, theses points are the outmost points with either
a maximum or minimum coordinate of either X, Y or Z
coordinate.

(4) For each facet (F) of the tetrahedron, loop over each point
p that does not consist of the initial simplex. If p is above the
plane F, then assign p to the F's outside set. If the point is above
multiple planes, then assign p to an arbitrary facet's outside set.

(5) For each facet F which has a non-empty outside set, nd
the furthest point to F within its outside set, and label the facet
as “visible” to p if p is above the plane. Initialize a visible set V to
store F. The two facets are dened as neighbors if they share
a ridge.

(5.1) Loop over all unvisited neighbors N of facets in V, if p is
above N, then add N to V.

(5.2) Construct a set L which stores all outside sets of facets
in V.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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(5.3) The ridge is dened as boundary if one of the facet is
visible to p while the other facet is invisible. Construct the set R
to store all boundary ridges. Loop over R, create a few facet from
R to p, and update the neighbors for the new facet.

(5.4) For each new facet F0, loop over L. If an unassigned
point q in L is above F0, then add it to the outside set of F0.

(5.5) Delete the facets in V.
By the increment method, the convex hull can be con-

structed. Illustrations of convex hulls for some simple mole-
cules can be found in Fig. 1.

For the matching process, the iterative closest point (ICP)
method is used.33 The core idea of the method is to minimize
the RMSD between two point clouds iteratively by optimizing
the rotation matrix. For two sets of points, M ¼ [m1, m2,.mn]
and N ¼ [n1, n2,.nn], the ICP method optimizes the rotation
matrix R̂ and translation matrix T by minimizing the target
function f, where

f ¼ 1

2

Xn

i¼1

kmi � R̂ni � Tk2 (5)

Dening the center of mass for the two sets as mm and mn, the
target function f is transformed as:

f ¼ 1

2

Xn

i¼1

�
km0

i � R̂n
0
i k

2 þ kmm � R̂mn � Tk2
�

(6)

where

m0
i ¼ ni � mm, n

0
i ¼ ni � mn (7)

The optimization of the translation matrix (T*) is usually
trivial. Thus, the difficulty is to obtain the optimized rotation
matrix R*.
Fig. 1 Examples of convex hulls (dashed lines) constructed for (a) SF6 m

© 2022 The Author(s). Published by the Royal Society of Chemistry
R* ¼ argmin
R

1

2

Xn

i¼1

�
km0

i � R̂n
0
ik

2
�

(8)

Expanding eqn (8) gives

R* ¼ argmin
R

Xn

i¼1

�m0T
i � R̂n

0
i (9)

Let W ¼ Pn
i¼1

�m0T
i � R̂n

0
i . The singular value decomposition

(SVD) of W gives:

W ¼ USVT (10)

When W is of full rank, the optimized rotation matrix and
translation matrix can be obtained as:

R* ¼ UVT (11)

and

T* ¼ mm � R̂mn (12)

In practice, the threshold for iteration convergence is set as
0.001. Since the molecules have been pre-treated for consistent
orientation, the local minimum trap can be effectively
circumvented.

As mentioned, the point cloud is represented by convex hulls
instead of the whole molecule. For large molecules like
proteins, the convex hulls usually just consist of dozens of
atoms. Therefore, the size of the input data structure is largely
reduced. Importantly, the dimensionality problem of RMSD in
calculating large molecules can be avoided. When iteration
olecule; (b) AcOH dimer system; (c) L-lysine.

RSC Adv., 2022, 12, 17559–17569 | 17561
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convergence reaches, the corresponding rotation matrix for
matching two convex hulls can be established. If desired, this
rotation matrix can be operated upon the whole molecule.

To test the proposed method, an arbitrarily chosen protein
(Protein Database code 1AKI) is compared to its randomly dis-
torted counterpart. This distorted protein stands for the struc-
ture obtained by means other than crystallography, such as
protein structure prediction. To generate the distorted protein,
the atoms of the original protein is rst shuffled, so that the
ordering of atoms is completely different. Next, the shuffled
protein is arbitrarily translated and rotated by a certain distance
and angle. Lastly, each atom in the shuffled protein is added
with a uniformly distributed random noise between �0.5 Å
along all XYZ axes. It should be cautious that the convex hulls
may not have the same number of atoms aer introducing
noise. To solve that problem, the common convex hull is con-
structed by the K-nearest neighbor (KNN) algorithm. A weight of
100 : 1 is introduced during the KNN clustering. To exhibit the
potentials of the convex hulls in revealing chemical insights,
a few illustrative studies were carried out. Themolecular density
and molecular specic surface area are rst dened as new
molecular descriptors for different size of fullerenes. The
molecular density was calculated as the molecular mole mass
over the total volume of the convex hull. The molecular surface
area was calculated as the total surface area of all facets of the
convex hull. The specic molecular area was calculated as the
molecular surface area over the molecular mole mass. Next, the
methane dimer and the cubane dimer were calculated with
Fig. 2 (a) Structures of protein (Protein Database code, 1AKI, in orange) a
distorted, shuffled protein (c) the convex hulls after orientation and ICP ite
counterpart. The distorted, shuffled protein geometry is multiplied with
details.

17562 | RSC Adv., 2022, 12, 17559–17569
different conformations. The conformations were generated by
rotating one of the monomer around the symmetry axis. The
contact surface (S) was calculated as:

S ¼ P
(S1 + S2) � cos q/2 (13)

where S1 and S2 are the surface areas for the facets between two
interacting monomers. The angle (q) denes the relative
orientation between S1 and S2, and the summation is over all
facets within the distance threshold (3 Å).
3 Results and discussion
3.1 ICP matching based on the convex hulls

The convex hull is the smallest polyhedron that encloses the
molecule. Fig. 1 shows some examples of molecules with their
convex hulls. The grey dashed lines represent convex hulls,
while the colored dots represent atoms for easier visualization.
For high-symmetry molecules, such as SF6 (Oh point group) in
Fig. 1a, its convex hull is an octahedron. The 6 uorine atoms
are located on the vertices of the octahedron, while the sulfur
atom sits in the center. By denition, all atoms are enclosed in
the octahedron. And the convex hull vertices are overlapped
with the “periphery” atoms. Fig. 1b and c show two other
examples with more complicated geometric features and their
convex hulls. It can be seen that the number of points dening
convex hulls is no larger than the number of atoms in the
molecule. Furthermore, the larger the molecule is, the more
nd distorted, shuffled protein (blue); (b) the convex hulls for protein and
rations; (d) the structure superposition of protein 1AKI and its distorted
the rotation matrix constructed by matching convex hulls. See text for

© 2022 The Author(s). Published by the Royal Society of Chemistry
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savings can be obtained for the size of the input data structure.
More examples of convex hulls of different conformers can be
found in Fig. S1 in the ESI.†

Fig. 2 shows the example of utilizing the proposed method to
compare two structures: an arbitrary protein (Protein Database
code, 1AKI, in orange) and the distorted, shuffled protein
structure (in blue), as shown in Fig. 2a. Fig. 2b shows the atoms
constituting convex hulls of the two structures. It is obvious that
the number of points is largely reduced from the number of the
protein to the number of the convex hull. Fig. 2c shows the
superposition of two convex hulls aer orientation and the ICP
iterations. It can be seen that the method well distinguishes the
convex hulls of protein and its distorted counterpart. In addi-
tion, the method is not inuenced by the shuffle of atoms at all.
Fig. 2d shows the corresponding superposition of the proteins
instead of convex hulls. They are obtained by multiplying the
rotation matrix with the original coordinates. The rotation
matrix was obtained during matching the convex hulls. There-
fore, the size of input data structure is reduced. The difference
between two structures is quantied by calculating the RMSD of
convex hulls. In Fig. 2c, the RMSD is 0.700 Å as the random
noise was generated between �0.5 Å. If the random number
range is set as �1.5 Å, the RMSD then changes to 1.498 Å (as
shown in Fig. S2† in ESI). Overall, the ICP matching based on
the basis of convex hulls can effectively distinguish molecular
structural features. To obtain a statistical evaluation, a total of
1690 entries were obtained from the wwPDB database38–40 from
the folder of “00” to the folder “99” and from the folder “a1” to
the folder “a5”. The comparison is carried out between these
database structures and the distorted structures. The distorted
structures are generated by adding a random number to the X,
Y, Z coordinates of each atom. Four sets of random numbers
(Rand2, Rand5, Rand10, Rand20) are utilized, which are
generated between �0.02 Å, �0.05 Å, �0.1 Å, and �0.2 Å,
respectively. Table 1 shows the averaged RMSD between data-
base structures and distorted structures using the whole
molecule and using the convex hulls respectively at different
levels of distortions.

The RMSD calculated using the proposed method well
reproduces the results by the conventional method. The
required wall time is longer because of the construction of
convex hulls. In addition, the convex hulls for the database
structures and the distorted structures are not necessarily of the
same size, and the order of the vertices, which constitute the
convex hull, are not necessarily the same. Thus the ordering of
convex hull indices is also responsible for the longer wall time.
Table 1 The comparison of averaged RMSD calculated based on
convex hulls and averaged RMSD calculated by the whole molecule

RMSD (whole
molecule, Å)

Wall time
(s)

RMSD (convex
hull, Å)

Wall time
(s)

Rand2 0.025 234 0.024 337
Rand5 0.055 235 0.055 352
Rand10 0.105 236 0.105 349
Rand20 0.205 231 0.204 343

© 2022 The Author(s). Published by the Royal Society of Chemistry
One limitation of the proposed method is that the core
structures of molecules are not considered. For large molecules,
this is less likely a problem since the core structure of complex
molecules should not share the same structures. For simpler
molecules, such as CH4, SiH4 and GeH4, one may concern the
distinguishability of the proposed method. Fig. S3† shows the
tetrahedral convex hulls for these molecules. Since the bond
lengths are different, the tetrahedrons have different sizes. Aer
orientation and ICP iterations, the vertices of the tetrahedron
can be well distinguished, but the center atoms are overlapped.
Another bothering situation is about cage molecules, for
instance, the lanthanide elements in fullerenes, Ln@C60. For
these systems, the convex hulls are identical, but the center
atoms are different. In these cases, if one is interested in the
core structures, one can peel off the atoms constituting the
convex hull, and repeat the whole procedure with the remaining
part of the molecule. One may argue that the inner structures
should not be neglected. But that argument depends on the
research goals. It is well known that the molecule shape is
important in drug designs. Thus at the pre-screen step, one can
focus on the molecular convex hulls instead of the whole
molecules. It is interesting to mention that one can even make
the convex hull evolve to describe the molecular structures,
which would be helpful for the docking studies.41

Overall, the ICP algorithm using convex hulls as the basis is
efficient in distinguishing geometry features and comparing
molecular structures. As the ICP is used for matching two
structures, the ordering of atoms for two molecules is no longer
necessary. As the pre-orientation is applied before ICP iteration,
the local minimum trap can be avoided. As the convex hulls are
used as the basis, the size problem of calculating RMSD for
large molecules is avoided. In addition, the time required for
ICP iteration is reduced.
3.2 Molecular descriptors based on the convex hulls

On another aspect, it is appealing to take further advantage of
the convex hull, especially its property of being the smallest
polyhedron enclosing the molecule. With this thought, the
Fig. 3 The molecular density and convex hulls for different types of
fullerenes.

RSC Adv., 2022, 12, 17559–17569 | 17563



Fig. 4 The molecular specific surface area for different type of
fullerenes.
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molecular density and the specic surface area can be dened
as new molecular descriptors. For molecular density, it is
calculated as the molecular mole mass over the volume of the
convex hull. Although one can also calculate the density by
dividing the mole mass over the volume of a cubic cell, this
cubic cell volume cannot reect the shape of the molecule (cf.
the SF6 molecule). And the volume of the cubic cell would
always be larger than that of the convex hull. Such a difference
may lead to a difference in the data training, and the molecular
density obtained based on convex hulls might be a better
Fig. 5 Illustration of contact area between two methane molecules. (a)
side view of convex hulls for the two methane molecules; (c) the top vie
indicates rotating one convex hull around the C3 axis.

17564 | RSC Adv., 2022, 12, 17559–17569
molecule descriptor. Fig. 3 shows the molecular density and
corresponding convex hulls for different sizes of fullerenes. It is
evident that the molecular density decreases as the sphere size
increases.

The calculation of surface area is another possible applica-
tion regarding convex hulls. The specic surface area is an
important parameter in studying adsorption processes. Fig. 4
shows the specic surface area for different types of fullerenes.
It can be seen that the specic area variates less than the
molecular density. If we approximate that the inner surface is
equal to the outer surface of the polyhedron, the method can be
further used to study the adsorption processes of zeolites or
nanotubes.

Fig. 5 shows two methane molecules and their correspond-
ing convex hulls. For each monomer, the total surface area for
the tetrahedron is 5.48 Å2, thus the averaged surface area for
each triangular facet is 1.37 Å2. The distance between two
hydrogen atoms is measured as 1.78 Å. Applying some geometry
algebra, it is easy to conrm that the area for each facet is 1.37
Å2 as well. The two molecules are oriented so that the overall
symmetry is in the C3v point group. At this initial conformation,
the contact hydrogens form two triangles in an eclipse manner
(Fig. 5c). By rotating one monomer along the C3 symmetry axis,
the effective contact surface is expected to decrease, which then
inuence the interaction energy.

The symmetry adapted perturbation theory (SAPT) analysis42

was carried out to monitor the energy changes during the
rotation. The SAPT0 calculation43 with jun-cc-pvdz basis sets44
The structure of two methane molecule oriented face-to-face; (b) the
w of convex hulls for the two methane molecules. The curved arrow

© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 2 The exchange energy, dispersion energy, contact surface
area of the methane dimer as a function of the rotation angle

0� 15� 30� 45� 60�

Contact surface area (Å2) 1.368 1.322 1.185 0.968 0.684
Exchange (a.u.) 0.582 0.578 0.567 0.555 0.551
Dispersion (a.u.) �0.559 �0.556 �0.549 �0.542 �0.539

Table 3 The exchange energy, dispersion energy, contact surface
area of the cubane dimer as a function of the rotation angle

0� 15� 30� 45�

Contact surface area (Å2) 15.911 15.369 13.779 11.251
Exchange (a.u.) 2.996 2.688 2.101 1.846
Dispersion (a.u.) �4.356 �4.319 �4.197 �4.134

Paper RSC Advances
were carried out for each conformer with the C–C distance
being 3.717 Å. Table 2 shows the exchange energy, dispersion
energy and the contact surface area as a function of the rotation
angle. It can be seen that the contact surface area well correlates
with decomposed energies. As the conformation mutates from
the eclipse conformation to the staggered conformation, the
effective contact surface decreases. Meanwhile, the exchange
energy is also lowered, which can be understood as the relax of
the steric tension. In addition, the dispersion energy is also
lowered, which reveals the fact that the distance between
hydrogens increases.

Fig. 6 shows two cubane molecules and their corresponding
convex hulls. The convex hull consists of the 8 vertical hydrogen
atoms; thus, each face of the cube is a square and each face
consists of two triangular facets. The distance between two
vertical hydrogen atoms is 2.82 Å2. The area of the square is 7.96
Å2. It is worthy to repeat that for each face of the cube there are
two triangular facets (Fig. 6b). The blue facets S8–9–10 and S8–10–
Fig. 6 Illustration of contact area between two cubane molecules. (a) Th
view of convex hulls for the two cubane molecules; (c) the top view of c
rotating one convex hull around the C4 axis.

© 2022 The Author(s). Published by the Royal Society of Chemistry
11 interact with the orange facets S12–13–14 and S12–14–15 (the
subscripts indicates the vertex labels). Thus, the contact surface
should be larger than the area of the square and slightly smaller
than the twice of the square area (S8–9–10 interacts with S12–13–14
and S12–14–15; S8–10–11 interacts with S12–13–14 and S12–14–15).

Table 3 shows the exchange energy, dispersion energy and
the contact surface area as a function of the rotation angle
around the C4 symmetry axis. The contact surface area corre-
lates with decomposed energies as well. At the eclipse confor-
mation, the contact surface area is calculated as 15.91 Å2,
smaller than the twice of the square area.

Fig. 7 shows the bis-chloroethylnitrosourea (BCNU)-C60
complex, temozolomide (TMZ)-C60 complex and the procarba-
zine (PCZ)-C60 complex. Theses C60-loaded drug molecules
were theoretically studied as a brain anticancer drug.45 Visually,
it can be seen that the interaction surface area between drug
molecules and C60 increases from BCNU complex to TMZ
complex to PCZ complex. Table 4 shows the computed
e structure of two cubane molecule oriented face-to-face; (b) the side
onvex hulls for the two cubane molecules. The curved arrow indicates

RSC Adv., 2022, 12, 17559–17569 | 17565



Fig. 7 Illustration of interaction area defined by convex hulls. (a) The chemical structure of BCNU, 3D structure of BCNU loaded on C60, and the
convex hulls of BCNU–C60; (b) the chemical structure of TMZ, 3D structure of TMZ loaded on C60, and the convex hulls of TMZ-C60; (c) the
chemical structure of TMZ, 3D structure of PCZ loaded on C60, and the convex hulls of PCZ-C60.
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adsorption energies and the contact surface area. The contact
surface area indeed increases from BCNU to TMZ to PCZ. In
addition, the interactions between the drug molecule and the
C60 should be governed by non-covalent interactions. Therefore
in principle, the interaction energy should be dependent on the
distance between two interacting fragments, and the contacts
between the two fragments. If we approximate that the
distances for all systems are more or less similar, then the
interaction energy is a function of the contact area. It can be
seen from Table 4 that the contact surface area well correlates
with the previous calculated adsorption energies, in the sense
that as the contact surface area increases, the adsorption energy
increases as well.

Lastly, it is worthy to make comparisons with existing similar
descriptors. The polar surface area has been widely used in
studies of drug transport properties.15 It sums up the molecular
(usually van der Waals) surface area of polar atoms. An
Table 4 The adsorption energies and contact surface area for drug-
C60 composite systems

Contact surface
area (Å2)

Adsorption energya

(kcal mol�1)

BCNU-C60 114.0 �5.61
TMZ-C60 131.5 �9.68
PCZ-C60 173 �10.43

a From ref. 41.

17566 | RSC Adv., 2022, 12, 17559–17569
improvement upon this descriptor is the topological polar
surface area (TPSA), which is based on tabulated surface
contributions of polar atoms.46 These descriptors have shown
tremendous success in medicine studies. Yet in a sharp
contrast, the new descriptors dened in this work is irrelevant
to polar or nonpolar atoms. Hence the new descriptors might be
favored for a different QSAR study, where the nonpolar atoms
are mainly studied. Another widely used method47 to calculate
the contact surface is the supermolecule approach. As to this
method, the area of each monomer is rst calculated, and then
the complex area is calculated. The contact surface is obtained
by the subtraction:

Scontact ¼ Scomplex � (Smonomer1 + Smonomer2)

Obviously, this method depends on the way of the docking of
two monomers. Thus, the new descriptor based on convex hulls
should exhibit different features from existing ones. This
provide an alternative basis for machine learning studies, since
the nature of descriptors largely inuences the prediction
power.

Table 5 shows the comparison of the area and volume of
convex hulls with TPSA, solvent accessible surface area (SASA)
and van der Waals molecule volume for protein pdb211l to
pdb219l from the wwPDB database (Fig. 8). The comparison of
a lager molecule set can be found in Fig. S4 and S5,† and there is
a good correlation between these descriptors. In Fig. 8, the
© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 5 Comparison of the area and volume of convex hulls with TPSA, solvent accessible surface area (SASA) and van der Waals molecule
volume

Convex hull
area (Å2) TPSA (Å2) SASA (Å2)

Convex hull
volume (Å3)

vdW volume
(Å3)

Pdb211l 5094 7837 15 974 30 046 14 418
Pdb212l 5146 8025 16 364 30 511 14 766
Pdb213l 5029 7797 15 744 29 564 14 256
Pdb214l 5437 7796 15 779 32 565 14 266
Pdb215l 5067 7837 15 926 29 828 14 390
Pdb216l 10 836 15 647 31 610 87 781 28 665
Pdb217l 5192 7845 16 056 30 853 14 493
Pdb218l 5457 7793 15 708 32 219 14 244
Pdb219l 5150 7909 16 063 30 449 14 504

Paper RSC Advances
orange dots represent atoms in the protein, while the blue dots
represent the atoms constituting the convex hull. The calculated
area and volume of convex hulls are different from existing
Fig. 8 The convex hulls for protein pdb211l to pdb219l from the wwPD

© 2022 The Author(s). Published by the Royal Society of Chemistry
methods in terms of absolute values and the trend. This is as
expected since their denitions are different. The different
descriptors can be viewed as different basis which spans the
B database.
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feature space. Thus the advantage or disadvantage of the
proposed method over existing ones depends on the specic
situation.
4 Conclusions

In this work, pattern recognition techniques are developed for
molecular structure recognition. The method provides a new
approach to recognize molecular geometrical features, and thus
can be used for structural identications. The new method uses
the point clouds to represent the molecule for structural
comparisons. Therefore, the process of ordering atoms can be
saved. In addition, the recognition of molecules is achieved by
using convex hulls as the basis instead of the whole molecule
for point clouds. As a result, the size problemmet in calculating
RMSD for large molecules can be avoided. While applying ICP
iterations to match two point clouds, it is found that the ICP
process is possible to converge to a local minimum, which leads
to fault positive results. To remedy this, the pre-orientation is
proposed before the ICP iteration to avoid the local minimum
trap. Overall, the proposed method provide a new handy
approach to distinguish molecular structure features.

On another aspect, new molecular descriptors are dened
based on the convex hulls, which provide insights in under-
standing chemical processes, such as the adsorption process. A
unique property of convex hulls is that the convex hulls repre-
sent the smallest polyhedron enclosing the molecule. There-
fore, the new descriptors dened based on convex hulls have
different features from previous ones, and could be more suit-
able for certain applications. A set of new descriptors are
dened, including the molecular density, molecular specic
surface area, and the contact surface between two interacting
species. A modest set of calculations are carried out to exhibit
applications based on these descriptors. These descriptors have
distinct denitions from other descriptors. As the machine
learning algorithms rely on the denition of feature inputs, the
different denitions of descriptors should in principle exhibit
different performance, which may facilitate QSAR studies. The
showcase studies using fullerenes exhibit promising results.
Further study is under development in this lab.
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