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Abstract: Small-scale greenspaces in high-density central urban districts serve as important outdoor
activity spaces for the surrounding residents, especially the elderly. This study selects six small-scale,
popular greenspaces with distinct characteristics that are jointly situated along the same main urban
artery in a high-density central urban district. Field investigations and questionnaires are conducted
and combined with statistical analyses, to explore the spatial-temporal distribution and influencing
factors of PM2.5 concentrations in these greenspaces. The study finds that the air quality conditions
in the sites are non-ideal, and this has potential negative impacts on the health of the elderly
visitors. Moreover, the difference values of PM2.5 concentrations’ spatial-temporal distributions are
significantly affected by vehicle-related emissions, which have significant temporal characteristics.
PM2.5 concentration is strongly correlated with percentage of green coverage (R = 0.82, p < 0.05),
degree of airflow (R = −0.83, p < 0.05), humidity and comfort level (R = 0.54, p < 0.01 and R = −0.40,
p < 0.01 respectively). Meanwhile, the sites’ “sky view factor” is strongly correlated with degree
of airflow (R = 0.82, p < 0.05), and the comfort level plays an indirect role in the process of PM2.5
affecting crowd activities. Based on this analysis, an optimal set of index ranges for greenspace
elements which are correlated with the best reduction in PM2.5 concentrations is derived. As such,
this research reveals the technical methods to best reduce their concentrations and provides a basis
and reference for improving the quality of small-scale greenspaces in high-density urban districts for
the benefit of healthy aging.

Keywords: urban greenspaces; PM2.5; spatial-temporal distribution; influencing factors; the elderly

1. Introduction

Rapid urbanization tends to lead to excessive levels of suspended particulate matter
(PMs) in the urban ambient air, along with frequent smog and haze. Long-term exposure
to air pollution not only poses a great threat to humans’ health but also fauna that occur in
cities, such as birds [1,2]. In addition to observations, an increasing number of state-of-the-
art models are used for the description and evaluation of PMs such as the RAMS-CMAQ
model and the coupling chemistry-meteorological model [3–5].

Urban greenspaces are an integral part of green infrastructure. As a primary function,
they provide residents with spaces for outdoor activities, which is closely associated
with general health and well-being [6,7]. Meanwhile, they also play beneficial roles in
improving urban air quality, alleviating urban heat islands and several other health and
environmental aspects [8–11]. Studies have shown that exposure to greenspaces benefits
a person’s respiratory and mental health [12–16], while air pollution, social interactions,
physical activities and other factors have an indirect role between greenspaces and their
surrounding residents’ health and well-being [17,18]. However, as the greenspaces in
central urban districts tend to border urban arteries and thoroughfares, and the number of
motor vehicles in China grows rapidly, the potential beneficial effects of these spaces may
be diminished. Against this backdrop, it has been noted that the harm caused by exposure
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to air pollution is particularly prominent among developed urban districts that are both
population centers and emission hotspots [19].

Towards urban greenspaces, many researchers have carried out studies using varying
scales to explore the spatial-temporal distributions of particulate matter, their influencing
factors and mechanisms of reduction [20,21]. Compared to macro- (like global, regional,
national, urban scales) and micro-scale (like microstructures of leaves) studies, there ap-
pears to be a lack of small-scale (such as specific urban parks) studies on the influence of
different greenspaces’ composition elements on their pedestrian-level PM concentrations
and spatial-temporal distributions, which in fact are closely associated to the health and
group activities of surrounding residents. Some of these distinguishing factors include
landscape features, geographical location and meteorological factors. Due to dynamic
meteorological conditions and the heterogeneity of different greenspaces’ ground surface
properties, distribution of emission sources, topography and other human activities, PM
concentrations vary greatly in time and space between and within greenspaces [22–24]. The
results are that the reduction effects on PM2.5 concentrations also vary widely at different
greenspace locations [25–27]. One comparison of several small greenspaces in urban parks,
schools and residential areas showed that location and time have an extremely significant
influence on the PM2.5 concentrations [28]. Even within the same park, PM2.5 concentra-
tions in small sites composed of different landscape elements vary significantly while also
varying over time [29]. Other researchers have studied different small-scale sites within a
comprehensive park and found that the spatial distribution of PM2.5 concentrations varied
minimally [30]. Overall, existing research shows that PM2.5 concentrations have notable
seasonal and daily variations, exhibiting significant differences between macro-regions;
meanwhile, the research results of the effect on their spatial-temporal distributions from
small-scale greenspaces which are most closely related to people’s daily lives appears
non-uniform. This study seeks to better explore this non-uniformity to improve the benefits
such greenspaces may provide at reducing PM2.5 concentrations.

The environmental factors affecting PM concentrations at a greenspace site include the
percentage of green coverage, sky view factor (SVF), vegetation quantity, plant community
structure, vegetation density, canopy density, configuration mode, total greenspace area,
canopy volume coverage and plant diversity [31–34]. Urban districts with high levels of
green coverage can help reduce PM concentrations, and have been shown to be typically
negatively correlated with PM concentration levels [35]. Water environments within
greenspaces affect PM2.5 diffusion and deposition as well, which is related to changes in
airflow, temperature and humidity caused by the evaporation and cooling of water [33,36].
In addition, the impact of vegetation on PM concentration also depends on surrounding
traffic density and the relative location of emission sources [37,38].

Meteorological parameters, such as rainfall, snowfall, wind speed and direction,
temperature and humidity, are another important set of factors affecting PM concentration
and exert varying effects on PMs of different sizes [24,39–42]. Within a certain range, PM
concentration is negatively correlated with temperature [43] and positively correlated with
relative humidity [44,45]. Good natural ventilation and airflow can accelerate the local
diffusion of pollutants and dilute their concentration, but high wind speeds can also raise
dust from the ground, causing secondary air pollution, while wind direction may affect the
location and origin of pollutant [46,47]. At the same time, thicker and larger plant canopies
can reduce wind speed, typically resulting in an increase in PM concentration [48]. Finally,
evapotranspiration (the sum of evaporation from the land surface plus transpiration from
plants) can change a site’s temperature and humidity and further affect the related PM
deposition processes.

In summary, several influencing factors of urban greenspaces, including their compo-
sition and meteorological conditions, heavily influence their associated PM concentrations.
These factors also cause certain differences in the spatial-temporal distributions of PM.
Currently, many studies have primarily focused on PM2.5 concentrations by analyzing
macro-scale regional variations or, on the micro-scale, by looking at the effects of indi-
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vidual plants. In contrast, few studies have focused on the linkages among meteorolog-
ical factors, greenspace elements, pollution sources distribution and PM concentrations.
Furthermore, there remains great uncertainty among research conclusions regarding the
detailed influence of meteorological factors and landscape elements on the concentration
of suspended PM.

At present, the global aging problem has drawn great deal of attention in most parts
of the world [18]. In 2020, the total number of elderly people aged 60 and above in China
was 264 million, accounting for 18.7% of the total population. Nanjing had 1.77 million
people aged 60 and above, accounting for 19.0% of the city’s total population [49,50].
China has, accordingly, proposed a national strategy for health aging. Moreover, China’s
urbanization development is inevitably leading to an increasingly serious fragmentation of
urban greenspace [51]. Subsequently, fragmented small-scale greenspaces have become
an important venue for outdoor activities of residents in high-density urban districts.
According to official meteorological data, there are varying degrees of smog and haze
among the greenspaces of Nanjing. Long-term exposure to smog and haze poses especially
severe health risks to the elderly.

In light of the above discussion and literature review, and while urban land becomes
increasingly limited, this paper has chosen to focus on the elderly populations who are the
largest user group of greenspaces in China [52–54]. With a comprehensive consideration
of pollution sources, urban rivers, meteorological conditions and other environmental
factors, in addition to consideration of distinctive greenspace characteristics and distance
from main urban arteries, this study selected several typical small popular greenspaces
dispersed across high-density central urban districts in Nanjing. Sociological research meth-
ods such as evidence-based measurements, questionnaires and interviews were adopted,
while relevant statistical software was used for the corresponding quantitative analysis. In
studying these urban greenspaces, a quantitative and comprehensive analysis was under-
taken on the spatiotemporal distribution patterns of the sites’ PM2.5. In addition, further
analysis was undertaken on the relationships between environmental factors (temperature
and humidity, wind speed and direction), greenspace elements (green coverage, water
coverage, airflow openness, SVF) and PM2.5 concentrations. This study also explores the
relationships between exposure to urban greenspaces and air pollution on the physical
and mental health of the elderly, and thereby hopes to help promote healthy aging and
better understanding of how to create the most suitable landscapes for the elderly, while
also providing reference for the optimizing of greenspace elements.

In particular, this paper aims to study the following questions:

1. What are the spatial-temporal distributions characteristics of PM2.5 concentrations in
small-scale urban greenspaces in high-density central urban districts?

2. What are the influencing factors and mechanisms of PM2.5 concentrations in small-
scale greenspaces?

3. How does information on the smog and haze in urban greenspaces affect the decisions
of the elderly on going out and visiting such spaces?

4. What are the relevant implications of this study for urban planning and design?

2. Methodology

This research focuses on the greenspaces dispersed across high-density central urban
districts to explore the spatial-temporal distribution of PM2.5 and the corresponding
influencing factors. Various research methods were used including evidence-based research,
structured questionnaires and interviews, whose results were then combined with relevant
statistical analyses (Figure S1).

2.1. Research Sites

Nanjing is a central city of the Yangtze River Delta region in eastern China (31◦14′~32◦37′N,
118◦22′~119◦14′ E). It has a subtropical humid climate. Known as the “Mother River of
Nanjing”, the Qinhuai River flows through the central urban districts of the city and is
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the largest regional river in Nanjing. There are a large number of old residential areas
along the Qinhuai River and this study’s preliminary survey found that the elderly have
become the main users of the greenspaces along the Qinhuai River. Therefore, based
on the above literature review and survey, this study focuses on the health and well-
being of the elderly population. It should be pointed out that in China, officially, seniors
are people aged 60 years or more [49]. However, female workers generally retire at
the age of 50 and also become the main users of parks and urban greenspaces [54]. As
such, the elderly in this study and the targeted interviewees are people aged 50 and
above. In order to avoid researching a single type of greenspace which potentially has no
obvious differences in PM2.5 concentration trends, this study has attempted to select a
diverse set of greenspace sites by comprehensively considering differences in their physical
environments, environmental preferences of the elderly and their perpendicular distance
from the same shared urban artery. Subsequently, four typical urban greenspaces located
between the same urban artery and the Qinhuai River were selected as research sites,
including a large city square adjacent to the city street (Site A), a small-scale greenspace
located between the city street and the river (Site B), an urban riverfront greenspace (Site
C) and an urban park on the riverfront of the Qinhuai River (Site D). According to different
distances to adjacent urban roads, Sites A1 and A2 were then selected from within Site A.
Based on the linear characteristics of its riverfront park and contrasting landscapes, sites D1
and D2 were selected from within Site D. Site D1 features a hard-surface public square (D1)
while Site D2 is located between the riverfront and a hill landscape of approximately 35 m
in height. The six sites share the characteristic of being the sight for a highly dense and
diverse set of activities which serve as popular gathering areas for the surrounding elderly
communities. At the same, the sites are distinguished by differences in their greenspace
elements and distance to primary pollution sources (Figures 1 and 2).

Int. J. Environ. Res. Public Health 2021, 18, x  4 of 20 
 

 

search, structured questionnaires and interviews, whose results were then combined 
with relevant statistical analyses (Figure S1). 

2.1. Research Sites 
Nanjing is a central city of the Yangtze River Delta region in eastern China 

(31°14′~32°37′ N, 118°22′~119°14′ E). It has a subtropical humid climate. Known as the 
“Mother River of Nanjing”, the Qinhuai River flows through the central urban districts of 
the city and is the largest regional river in Nanjing. There are a large number of old res-
idential areas along the Qinhuai River and this study’s preliminary survey found that the 
elderly have become the main users of the greenspaces along the Qinhuai River. There-
fore, based on the above literature review and survey, this study focuses on the health 
and well-being of the elderly population. It should be pointed out that in China, offi-
cially, seniors are people aged 60 years or more [49]. However, female workers generally 
retire at the age of 50 and also become the main users of parks and urban greenspaces 
[54]. As such, the elderly in this study and the targeted interviewees are people aged 50 
and above. In order to avoid researching a single type of greenspace which potentially 
has no obvious differences in PM2.5 concentration trends, this study has attempted to 
select a diverse set of greenspace sites by comprehensively considering differences in 
their physical environments, environmental preferences of the elderly and their perpen-
dicular distance from the same shared urban artery. Subsequently, four typical urban 
greenspaces located between the same urban artery and the Qinhuai River were selected 
as research sites, including a large city square adjacent to the city street (Site A), a 
small-scale greenspace located between the city street and the river (Site B), an urban 
riverfront greenspace (Site C) and an urban park on the riverfront of the Qinhuai River 
(Site D). According to different distances to adjacent urban roads, Sites A1 and A2 were 
then selected from within Site A. Based on the linear characteristics of its riverfront park 
and contrasting landscapes, sites D1 and D2 were selected from within Site D. Site D1 
features a hard-surface public square (D1) while Site D2 is located between the riverfront 
and a hill landscape of approximately 35 m in height. The six sites share the characteristic 
of being the sight for a highly dense and diverse set of activities which serve as popular 
gathering areas for the surrounding elderly communities. At the same, the sites are dis-
tinguished by differences in their greenspace elements and distance to primary pollution 
sources (Figures 1 and 2). 

 
Figure 1. Locations of surveyed Nanjing greenspaces. Figure 1. Locations of surveyed Nanjing greenspaces.

Corresponding to the dual dimensions of physical and mental health, this study
divides observed elderly activities within the sites into two types, physical activities (PA)
and social activities (SA), although it is noted that the two categories can often overlap.
Field observations of visitor activities (Table 1, Figure S2): in Sites A1 and A2, the elderly
mainly engaged in social activities such as playing chess and cards, chatting and sitting idly.
In Sites B and C, elderly visitors (This paper will use the term elderly visitors and visitors



Int. J. Environ. Res. Public Health 2021, 18, 9705 5 of 20

interchangeably, with the understanding that the greenspace site visitors are predominantly
elderly visitors in China) mainly engaged in physical activities, such as playing ball games
and using fitness equipment. In D1 and D2, the proportions of social and physical activities
among the elderly were both high.
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Table 1. Research site data and observed activities.

Greenspace Code Name of Greenspace Location Characteristics Distance from Urban Artery

A

Hanzhongmen City Square Adjacent to street 125 m

Site Code Description Activity Types Proportion Observed Activities

A1
Shady greenway on north side of

the square, 86 m away from
urban artery

social 97.5% Playing chess and cards, chatting
and sitting idly, etc.

physical 2.7% Speed walking, exercising, etc.

A2 Center of Hanzhongmen Square,
125 m away from urban artery

social 82.4% Dancing, taking children on
walks, etc.

physical 39.2% Playing ball games, speed
walking, etc.

B

Zhengdayuan Small-scale Greenspace Adjacent to street and riverfront 46 m

B Equipped with fitness facilities
social 82.4% Dancing, taking children on

walks, etc.

physical 39.2% Playing ball games, speed
walking, etc.

C

Qinhuai Riverfront Greenspace Riverfront 118 m

C An open platform in the middle,
118 m away from urban artery

social 21.1% Chatting and sitting idly, etc.

physical 83.1% Speed walking, running, walking
the dog, etc.

D

Stone City Park Riverfront 330 m

D1
Stone City Square, 316 m away

from urban artery
social 86.7% Singing, dancing, playing

instruments, etc.
physical 77.8% Visiting, photographing, etc.

D2
“Ghost Face” scenic spot between

the hill and river, 460 m away
from urban artery

social 75.5% Chatting, playing instruments,
flying kites, etc.

physical 60.7% Visiting, jogging, etc.

2.2. Survey Period and Times

According to the air monitoring data of the Nanjing Meteorological Bureau over the
past five years (2015–2019), of the city’s four seasonal periods, Nanjing’s winter season has
had the most severe smog and haze. Based on this, surveying of the sites was decided to be
conducted from December 2020 to January 2021, covering both weekdays and weekends,
and in consideration of including different weather conditions (sunny, cloudy, rainy and
post-snow). A total of 138 datasets were collected from 23 days over this period. Based on
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targeting the sites’ peak periods of elderly visitors, the specific surveying period for the
sites was set at 8:00–11:30 a.m. and 13:30–16:30 p.m. In order to help ensure PM2.5 values
were relatively stable and consistent, the physical environment data of the six observation
sites was collected in a continuous fashion within sequential half-hour periods during the
surveying periods.

2.3. Data Collection
2.3.1. Physical Environment Data Collection

A handheld aerosol monitor (TSI-8534 DUSTTRAK DRX, Shoreview, MT, USA) was
used to monitor the concentration of inhalable particles at the different sites. The instrument
can simultaneously measure the mass concentration of different particle sizes, including
PM1, PM2.5, PM10. A handheld anemometer (16025) was used measure the average wind
speed and direction. A temperature and humidity data recorder (TESTO 175H1, Lenzkirch,
Germany) was used to record the temperature and humidity in real time. Finally, a GoPro
Max camera (GoPro, San Mateo, CA, USA) was used to take 360◦ panoramic photos at a
vertical distance of 1.5 m. The shadowing contour of the picture is processed on a circular
plane, which can then be used to calculate a sky-view factor (SVF) which represents the
degree to which trees and buildings do not obstruct direct viewing of the sky from a
centralized point within the site.

2.3.2. Visitor Data Collection

While collecting the sites’ environmental data, the number of visitors and types of
activity at the site were observed and recorded with the time, location and other data.
In addition, structured questionnaires and interviews were carried out to quantitatively
explore the awareness of elderly visitors towards smog and haze, with all interviews saved
as audio recordings.

2.4. Basic Methodology of Data Analysis

After the basic statistics of the sites’ physical environment data and visitor data
were collected and organized, this study adopted statistical software SPSS (v.25) to carry
out several statistical analyses on portions of the dataset, including one-way ANOVA,
correlation analysis and mediating effect analysis.

3. Results

The study was able to obtain cumulative data of the six sites over 23 days, including
138 datasets on visitor activities and local atmospheric conditions. Then a questionnaire was
issued to the elderly while measuring environmental data. Based on the air quality of the
day, the distribution was selected when the haze was severe, and 200 valid questionnaires
were finally screened.

3.1. Spatial-Temporal Distribution Characteristics of PM2.5 Concentrations

Air pollution exposure and corresponding health effects are usually assessed by using
air pollution data from fixed-location urban monitoring stations. However, a large number
of studies have suggested that the pollution exposure of the local populations is often
significantly underestimated by such monitoring stations [55,56]. This is because the
sampling of these monitoring stations by the Meteorological Bureau is typically carried out
at a high altitude and at an always fixed location, and thus its measured data are likely to
contrast with those of a handheld aerosol monitor held at an adult human breathing height
(1.5 m). Such directly measured data are usually higher than the official meteorological data,
and the difference is even greater when air quality is relatively poor. This is why sometimes
people feel that “there is a difference between the actual air quality and the weather report”
in daily life. Considering the actual respiratory exposure of an active crowd of outdoor
visitors, it seems necessary to measure the actual spatial-temporal changes in pollutant
concentrations and exposure levels.
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3.1.1. General Trends of PM2.5 Concentrations

According to the Technical Regulation on Ambient Air Quality Index (HJ633-2012)
issued by China’s Ministry of Ecology and Environment [57], this study’s 138 datasets show
that in more than 70% of the survey periods, the air quality of the six sites was moderately
polluted or above (PM2.5 ≥ 115 µg/m3), suggesting that the air quality of the sites in
this study is worrying and exposes visitors to serious health risks (Text S1). By averaging
the PM2.5 data of the six sites, it was found that the average PM2.5 concentration of two
waterfront sites (D1 and D2) in Stone City Park (the largest greenspace included in this
research) ranked the highest, and that of the center of Hanzhongmen Square (A2) showed
the lowest (Table 2). Interesting, this conflicts starkly with the common sense notion that
“there is less smog and haze along the riverside due to its strong winds”. The difference
here may be in fact caused by temperature and humidity, which will be further discussed
in Section 3.2.2.

Table 2. PM2.5 concentrations across research sites.

Sites A1 A2 B C D1 D2

Average PM2.5 Concentration (µg/m3) 187.5 185.0 188.9 185.6 192.7 190.3
Optimal (≤35 µg/m3) * & Good (35 < PM2.5 ≤ 75 µg/m3)

* Percentage
8.7% 13.0% 8.7% 13.0% 13.0% 13.0%

Lightly Polluted (75 < PM2.5 ≤ 115 µg/m3) * Percentage 17.4% 13.0% 17.4% 13.0% 8.7% 8.7%
Moderately Polluted and above (>115 µg/m3) * Percentage 73.9% 74.0% 73.9% 74.0% 78.3% 78.3%

* For the specific indicators, please refer to Text S1.

According to the 23 days of measured data, the highest PM2.5 concentration occurred
on Day 9, a cloudy day with no wind and high humidity (61.8%), while the lowest value
occurred on Day 10, just one day after Day 10 and also after Nanjing just experienced
heavy snowfall. As Day 10 was the first day after the snowfall, the air quality remained
relatively good for three to four days after Day 9. This is assumed due to the dust falling
and depositing into the ground due to rain and snow. In addition, PM2.5 concentrations
levels continuously fluctuated at the different research sites during the same measurement
period. The PM2.5 concentration of D1 and D2 on Day 4 is notably higher than that of other
sites in the same period, which is believed to be related to a significant difference in site
temperature and humidity at that time, namely, the humidity of the two sites is relatively
high while the wind speed is relatively low. The second time there was a big difference in
PM2.5 concentrations between the sites was on Day 22, with D1 and D2 still ranking the
highest, and the difference was assumed to be related partly to the different humidity and
wind speeds at that time (Figure S3).

In addition, by comparing the difference values of PM2.5 concentration of the 23 days
across the six sites, it was found that when the PM2.5 concentration >150 µg/m3, that
is, the average air quality reaches heavily polluted or above, the differences in PM2.5
concentration between the six sites increased significantly (Figure 3). Thus, it can be inferred
that when the PM2.5 concentration is ≤150 µg/m3, the differences in the sites’ spatial
layouts and environmental factors likely have little impact on their PM2.5 concentrations.
The difference value within groups is calculated by the following formula, that is, the
difference value between each datum in a group and the minimum value of the group:

F(C) = Creal − Cmin (1)

3.1.2. Spatial Distribution Characteristics of PM2.5 Concentrations

The six greenspace sites were grouped into two spatial location categories based on
whether they were close to the urban artery or not. The results of a one-way ANOVA
on these two groups and their directly monitored PM2.5 concentrations show that PM2.5
concentrations were not significantly affected by their spatial location in relation to the
urban artery, regardless as to whether it was a certain period of the day or the whole day



Int. J. Environ. Res. Public Health 2021, 18, 9705 8 of 20

data, with differences between sites ranging from 0.53% to 2.31%. The sites were further
grouped into three spatial location groups based on their shortest perpendicular distance to
the urban artery, namely Group 1 (<100 m), Group 2 (100 m~150 m) and Group 3 (>300 m).
The one-way ANOVA on these groups and their difference values of PM2.5 concentrations
showed that there were significant differences between Group 1 and Group 2 (p < 0.05)
when comparing their whole day data. It also showed that during the morning period,
there were significant differences between Group 1 and Group 2, and between Group 1 and
Group 3 (p < 0.05) (Figure 4).
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Overall and from a macro perspective, due to the relatively close locations between the
six sites (the furthest straight-line distance between the two sites is approximately 2 km),
there appeared to be no great difference in PM2.5 concentrations during the same periods
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of time at different spatial locations. However, in terms of their difference values, the sites’
spatial locations did appear to have a significant impact on the PM2.5 concentration in
greenspaces, and this was assumed to be greatly influenced by traffic pollution sources on
the surrounding city roads.

As shown in Figure 5, during the morning period, Site B’s PM2.5 concentration levels
are the highest because it is situated near the main urban artery and thereby is greatly
influenced by rush hour traffic when large numbers of vehicles and pedestrians raise
emission and dust levels. In contrast, Site D2 has the lowest PM2.5 concentration levels
during this period. It can be inferred that this site is least affected by the urban traffic and
pedestrian activities because it is the site furthest from the urban artery and its environment
includes a hill which may further block traffic pollutants. Notably during the non-rush
hour times in the afternoon period, it can be seen that PM2.5 concentrations in Sites D1
and D2 are relatively high compared with those in other sites. It is speculated that during
non-peak times, Sites D1 and D2′s peak-time advantage of being relatively far from the
urban artery becomes insignificant while other factors play a correspondingly larger role
towards PM2.5 concentrations.
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3.1.3. Temporal Distribution of PM2.5 Concentration

A one-way ANOVA was also conducted on the PM2.5 concentration data of the
six sites in different time periods, and the results show that except for Sites D1 and D2
in Stone City Park, the PM2.5 concentration levels of the other four sites experienced
significant differences during different time periods (p < 0.05). Comparing all sites shows
that PM2.5 concentrations varied during different time periods (p < 0.001) and that PM2.5
concentrations in the morning are notably higher than that in the afternoon at all sites.
This goes against the commonly held belief that the healthiest time to go out is around 9
or 10 am. Corresponding to this, the statistical results of Sites B and D’s spatial-temporal
distribution of visitor activity shows the number of people in activities in the morning is
greater than that in the afternoon, which indicates that there may be health risks for the
elderly who are currently choosing to go out to these activities (Figure 6).

Overall, the impact of traffic pollution sources on PM2.5 concentration levels was
notable. As the closest site to the urban artery, Site B had the largest difference in PM2.5
concentrations between the morning and afternoon. As explained above, this was assumed
to be caused by an increased influence of traffic pollution during the morning rush hour.
Conversely, Site D2’s PM2.5 concentration difference value between the morning and the
afternoon was the lowest as it was the furthest site from the urban artery and had the
highest proportion of water coverage. Site D2’s relatively stable PM2.5 concentration was
likely largely attributable to the regulation function of its water bodies. Moreover, due to
its relatively long distance from roads and relatively large proportion of water bodies, Site
D2′s PM2.5 concentration in the morning was the lowest compared with all other sites,
with the low impact of traffic pollution sources being particularly eye-catching.
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3.2. Analysis of PM2.5 Concentrations Influencing Factors
3.2.1. Analysis of Greenspace Elements

Small-scale greenspaces in high-density urban centers are the most frequently visited
and popular sites of their surrounding residents. According to China’s Urban Greenspace
Classification Standards (CJJ/T85-2017) [58] as well as the conforming to the findings of
this study’s onsite field surveys, small-scale greenspaces are generally less than 1 hectare
in area. In consideration of this definition and the physical characteristics of pollution
sources, this study used the center points of its six dispersed research sites to delineate
circular observation areas of 1 hectare within each site. Relevant indicators of greenspace
elements were then observed, measured and calculated for each site based on these equally
sized observation areas. Since vegetation and spatial layout are the two most important
aspects affecting greenspaces, this study attempted to capture key features of these aspects
by measuring and comparing the following indices across the six research sites: green
coverage, water coverage, airflow and sky view factor (SVF). The collective results from
the six greenspace sites show that westward and northwest winds are the dominant wind
direction during the observed winter period. Additionally, considering the wind resistance
characteristics of buildings and trees, as well as the semi-ventilating effects of trees, the
sites’ airflow conditions were categorized into two general conditions: fully open [(S site
area–Sa building area)/S site area] and semi-openness [(S site area–Sa building area–Sb
tree canopy plane area)/S site area]. The 360◦ panorama photos were processed via Raman
Pro 3.1 to calculate the SVF (Table 3).

Correlation analyses were conducted on the sites’ PM2.5 concentrations and each
greenspace elements (Table 4). Irrespective of weather conditions, from the overall mea-
surements of the 138 datasets there was a significant negative correlation found between
PM2.5 concentration and degree of airflow (R = −0.830, p < 0.05). If weather conditions are
controlled to be the same, that is, sunny or cloudy days are selected as the majority, and ac-
cording to Beaufort Scale and on-site measurement, times where the wind speeds are greater
than 0.3 m/s are further selected, the sites’ PM2.5 concentrations are significantly corre-
lated with the percentage of green coverage and the degree of semi-open airflow (p < 0.05).
Specifically, the higher the percentage of green coverage rate (R = 0.819), the higher the
PM2.5 concentration, and the higher the degree of semi-open airflow (R = −8.887), the
lower the PM2.5 concentration. In comparison, when the wind speeds are greater than
1.5 m/s, there was a significant negative correlation between PM2.5 concentrations and
semi-open airflow (R = −0.833, p < 0.05). It is thus speculated that the effect of green
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coverage on PM2.5 concentrations is weakened when wind speeds exceed 1.5 m/s. A
further correlation analysis of the sites’ greenspace elements revealed a positive correlation
between SVF and degree of fully open airflow (R = 0.821, p < 0.05). This implies that higher
SVF’s are associated with a higher degree of fully open airflow, thereby indirectly affecting
PM2.5 concentrations of the site. Furthermore, there is a negative correlation between
green coverage and semi-open airflow (R = −0.833, p < 0.05), while semi-open airflow is
significantly positively correlated with the fully open airflow (R = 0.886, p < 0.05) (Table S1).

Table 3. Physical factor index of research sites.

Site Factor Indicator Schematic Diagram SVF

A1

Green Coverage 37.61%
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Table 4. Correlation of PM2.5 concentration and greenspace elements.

Correlation Analysis Green
Coverage

Water
Coverage

Semi-Open
Airflow

Fully Open
Airflow SVF

Total PM2.5
R 0.628 0.691 −0.830 * −0.838 * −0.506
S 0.182 0.129 0.041 0.037 0.306

Sunny, Cloudy Days,
Wind Speed > 0.3 m/s PM2.5

R 0.819 * −0.720 −0.887 * −0.689 −0.397
S 0.046 0.170 0.018 0.130 0.436

Sunny, Cloudy Days,
Wind Speed > 1.5 m/s PM2.5

R 0.786 0.508 −0.833 * −0.601 −0.520
S 0.064 0.304 0.040 0.208 0.290

Note: * p < 0.05.

3.2.2. Analysis of Meteorological Factors

A correlation analysis was conducted on the six sites’ PM2.5 concentrations, humidity,
temperature, wind speeds and comfort levels (Table 5). Based on conventional meteoro-
logical data, from the perspective of easy accessibility and convenience of parameters, the
calculation was carried out by using the Lu Dinghuang comfort formula. The formula
is highly comprehensive and widely used in the field of landscape architecture, and can
better reflect the comfort of the research sites [59–61]. The comfort level was calculated by
the following formula, where S refers to the comfort level, T the temperature (◦C), RH the
relative humidity (%), and V the wind speed (m/s).

S = 0.6 (|T − 24|) + 0.07 (|RH − 70|) + 0.5 (|V − 2|) (2)

Table 5. Correlation table of PM2.5 concentration and meteorological factors.

Pearson Correlation Analysis Temperature Humidity Wind Speed Wind Direction Comfort Level

PM2.5
R 0.174 * 0.541 ** −0.103 0.037 −0.400 **
S 0.041 0.000 0.230 0.668 0.000

Note: ** p < 0.01; * p < 0.05.

The results show that there is a strong positive correlation between PM2.5 concentra-
tions and humidity (R = 0.541, p < 0.01). This implies the higher the humidity, the higher
the PM2.5 concentration tend to be, matching the results of other researchers, such as Tian
(2014) [45] and Qiu (2018) [28]. A moderately negative correlation between PM2.5 con-
centrations and comfort level was found (R = −0.400, p < 0.01), suggesting the higher the
comfort value of a site, the lower the PM2.5 value is. In contrast, the study’s analysis found
PM2.5 concentrations had a weak positive correlation with temperature and no significant
correlation with wind speed. The lack of a correlation with wind speed may lie in the fact
that selected sites’ wind speeds remain relatively low, with an average wind speed of less
than 3.3 m/s, and thus the wind would not have a significant impact on the diffusion of
PM. This result is in line with the research of Beckett (2000) [62] and Freer-Smith (2005) [63],
namely that wind speed significantly affects the migration and diffusion rate of PM only
within a certain range.

On the basis of the above correlation analyses, greenspace element factors affecting the
sites’ humidity were further analyzed. A one-way ANOVA was performed successively for
sites’ humidity and green coverage, water coverage, semi-open airflow, fully open airflow,
and SVF. The results show that the humidity is significantly correlated with the degree of
green coverage and airflow openness (p < 0.05) but is not significantly affected by water
coverage or SVF (Figure 7).
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3.3. Correlations between Visitor Activities, PM2.5 Concentrations and Greenspace Elements
3.3.1. Correlation between Visitor Activities, Meteorological Factors and
PM2.5 Concentrations

A correlation analysis was undertaken on the sites’ visitor activities, PM2.5 concentra-
tions and meteorological factors (Table S2). Importantly, it found that there is no obvious
correlation between visitor activity type and PM2.5 concentration. Meanwhile, the number
of visitors showed a significant positive correlation with temperature (R = 0.223, p < 0.01),
and a significant negative correlation with humidity (R = −0.252, p < 0.01). These results
suggest that higher site temperatures represent warmer winter weather, which could lead to
larger numbers of visitors participating in outdoor activities. In contrast, higher humidity
indicates wetter and colder winter weather which leads to lower numbers of such visitors.
These findings can also be interpreted as representing elderly visitors’ contrastingly high
sensitivity towards temperature changes and weak sensitivity towards smog and haze as
they make decisions whether to participate in outdoor activities.

Combined with the results in Section 3.2.2 which showed PM2.5 concentrations to
be closely associated with meteorological factors, this study subsequently adopted the
mediating effect analysis to further explore the role of the sites’ meteorological factors
(played as mediating variable M) in the process of PM2.5 concentrations affecting visitor
activities. Meanwhile, the bootstrap method was used to test the mediating effect and it
directly compared the coefficient ab (indirect effect), c’ (direct effect) and c (total effect). This
method is widely used and has been proved to have a higher statistical power compared
with other mediating effect testing methods [64,65]. The results show that at the 95%
confidence interval (CI), the ab product term does not contain zero, indicating that as a
mediating variable, comfort level exerts a significant indirect effect on the relationship
between a sties’ number of visitors and PM2.5 concentration. In addition, ab values and c’
values are plus-minus, meaning that both direct and indirect effects are significant, and the
comfort level serves as a partial mediating variable. The total effect of PM2.5 concentrations
on the number of visitors equals the direct effect –0.033 plus the indirect effect 0.015, namely
–0.018, and the indirect effect accounts for 83.3% (Table 6, Figure 8).
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Table 6. Mediating effect testing results.

Item c-Total
Effect a b

a × b
Indirect
Effect

a × b (95% CI) c’-Direct
Effect Conclusion

Effect
Proportion

Formula

Effect
Proportion

PM2.5 ≥ Comfort
Level ≥ Number

of Visitors
−0.018 −0.008 ** −1.875 * 0.015 0.019~0.157 −0.033 * partial mediating

variable |a × b/c| 83.3%

Note: ** p < 0.01; * p < 0.05.

3.3.2. Correlation between Visitor Activities and Greenspace Elements

A correlation analysis of visitor activities and greenspace elements shows that physical
activities have no obvious correlation with greenspace elements. For social activities
however, there was a strong negative correlation with the sites’ water coverage (R =−0.845,
p < 0.05). In other words, the higher proportion a site’s area is covered in water features,
the lower the proportion of social activities visitors will be engaged in such as chatting and
meeting friends. Overall, there is no significant linear correlation between visitor activities
and greenspace elements (Table S3).

Tallying the number of visitors in the six sites showed that Site A1 was the most
popular, with a green coverage rate of 37.61%, a fully open airflow of 74.5%, a semi-open
airflow of 55.82%, a SVF of 0.543 and no water features. Being close to the urban artery, the
least popular site was Site B, with a green coverage rate of 23.9%, a fully open airflow of
83.76%, semi-open airflow of 66.68%, and a SVF 0.65. Site B also had no water features and
had high noise levels.

4. Discussion
4.1. The Greater Impact of Time on PM2.5 Concentrations Compared to Space

This paper found that more than 70% of the selected greenspaces during the observed
times had PM2.5 concentrations at moderate to severe levels, and that overall air quality
was poor. Among the six sites, the average PM2.5 concentrations of Sites D1 and D2,
which are both adjacent to the riverfront, ranked the highest, yet due to the water-loving
nature of people, these sites also attracted more visitors who tended to participate in
riverside activities. This highlights the conflict between people’s outdoor preferences and
behaviors with the potential health risks caused by air quality in greenspaces. From a
macro perspective, the differences in directly monitored PM2.5 concentrations across the
six sites ranged a limited amount from 0.53% to 2.31%. However, from a micro perspective,
this study’s further analysis on the difference values shows that PM2.5 concentrations are
significantly correlated with the sites’ spatial location. Although this study’s six sites are
dispersed and not located in the same urban park, they all are located near Nanjing’s city
center and along the same urban artery. As such, they also are all similarly affected by
the influence of traffic pollution. The sites’ diverse landscape features, and the varying
behavioral preferences of visitors lead to different visitor densities at the sites, while
residents’ activities, such as dancing, jogging and smoking, may cause secondary particular
matter. The result is a complex set of dynamic impacts on the PM concentrations among
different spaces.

In terms of the temporality trends, the directly measured PM2.5 concentrations of
the six sites collectively fluctuated as a whole across the survey’s 23 observed days, and
this is assumed to be related to the specific weather conditions and meteorological factors
affecting all the sites similarly on any given day. However, according to the temporal
distributions of PM2.5 concentrations across different time periods within individual days,
concentrations in the greenspaces were found to be greatly affected by road traffic pollution
sources, with concentrations in the afternoon being lower than the morning presumably
due to the heavier vehicle emissions of the morning rush hour. It is thus recommended that
residents of the surrounding areas should avoid going out and visiting the greenspaces
during the morning peak hours when PM concentrations are higher, and rather go at
13:30–16:30 when the concentrations are lower. During the morning, Site D2′s 35-m hill
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appears to provide a shielding effect from the traffic pollution, and thus has lower PM2.5
concentrations compared to the other sites. As an example, this suggests that outdoor
morning activities should be carried out in greenspaces that are far from urban arteries,
blocked by hills and with relatively large rates of water coverage. In contrast, the PM2.5
concentrations in the afternoon at Sites D1 and D2 are relatively high compared to the other
sites, while Site A2 in the center of Hanzhongmen Square had the lowest. Therefore, this
suggests that afternoon activities should be carried out in greenspaces in higher degrees of
airflow and SVF.

4.2. Smog and Haze Reduction Strategies Based on Optimized Greenspace Elements

This study has found that PM2.5 concentrations of its six research sites were closely
correlated with their degree of green coverage, airflow openness and meteorological factors.
According to the analysis on meteorological factors in Section 3.2.2, PM2.5 concentrations
had a very significant positive correlation with the sites’ humidity which, in turn, is signifi-
cantly affected by the sites’ degree of green coverage and the airflow openness. Meanwhile,
the analysis of greenspace elements in Section 3.2.1 showed that PM2.5 concentrations
were significantly negatively correlated with airflow openness and positively correlated
with green coverage. These findings are consistent with those of Yin (2007) [66] and Yang
(2017) [67]. However, as described in this study’s introduction, the impacts of green cover-
age and plant community structure on PM2.5 concentrations remain multifaceted and can
even have opposing effects depending on other variables and conditions. The multi-layered
composite structures of vegetation including trees, shrubs and grass with a high canopy
densities and plant coverage may have higher PM concentrations than more singular-type
lawn, shrub and grass environments [68,69]. Excessive plant density and canopy density
can hinder the dilution and diffusion of PMs and thereby increase their concentrations [48].
This is because high plant densities and green coverage tend to lead to higher humidity,
and relatively poor airflow, impeding the diffusion of PM2.5 and other particles. Moreover,
within a certain range of wind speeds, air channels provide the necessary space for air flow,
allowing for the significant migration and diffusion of PM and its concentration within a
site. However, this study found that there was no significant linear correlation between
SVF and PM2.5 concentrations, although SVF was significantly positively correlated with
the fully open airflow, thus SVF did appear to indirectly affect PM2.5 concentrations at
the sites. This study also found that the sites’ water coverage has little effect on their
PM2.5 concentration and humidity, conforming to existing research findings. In China,
the main factors of the naturally measured water consumption of urban development
land are the evaporation and transpiration of vegetation within greenspaces, known as
evapotranspiration [70]. In summer and autumn, the changes in river evapotranspiration
trends are very noticeable while the variations in spring and winter are basically flat [71].
Considering this and this study’s limited research period during the winter, it is expected
that the influence of water coverage on the sites’ humidity is not as great as that of green
coverage, and its effect on PM2.5 concentration is also correspondingly weak.

In general, the degree of the sites’ green coverage and airflow openness were the two
most important factors affecting greenspace air quality, as well as the two major factors
affecting the spatial pattern of the greenspace elements. Based on this, the 23 days of
PM2.5 concentration data were ordered from the best to worst according to their air quality,
and each site’s average PM2.5 concentration levels for corresponding air quality intervals
were calculated. Then, the optimal intervals of green coverage and airflow openness were
deduced from the two sites with the lowest average value (Figure S4, Table S4).

The mode of air pollution of each greenspace site was then calculated by analyzing the
PM2.5 concentration data of the study period. According to the degree of green coverage
and airflow openness with the best performance in the above air quality intervals, the
following improvement measures are proposed for the current greenspace elements of the
six sites:
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1. Adjust airflow. For example, in Site A2, the degree of fully open airflow can be
reduced to between 71–77% by adding small landscape buildings, while semi-open
airflow can be decreased to between 45–60% by planting tall trees.

2. Adjust green coverage. For example, in Site B, the degree of green coverage can be
increased to between 37% and 47% by planting more vegetation, while airflow can be
maintained at its current status.

3. Jointly adjust airflow openness and green coverage. For example, in Site C, the fully
open airflow can be lowered to 71–77% by adding small landscape buildings, and the
semi-open airflow can be reduced to 45–60% by planting tall trees. Meanwhile, the
degree of green coverage can be increased to 37–47%.

Similar suggestions can be made for the other sites based on this analysis. Furthermore,
other measures can be taken at all sites to improve the thermal and humidity environments
by adjusting the types of underlying surfaces that form the site and improving the spatial
pattern of vegetation, so as to indirectly help reduce the PM concentrations and improve
air quality.

4.3. Elderly Visitor’s Weak Sensitivity to Smog and Haze in Urban Greenspaces and
Corresponding Potential Risks to Their Physical and Mental Heath

This study has found that elderly visitors of the research sites are not sensitive to
the smog and haze in such greenspaces. Due to the decline in physical function among
elderly populations, exposure to PM2.5 can cause greater and more severe harm to their
physical and mental health (Text S1). In addition, towards their decisions regarding
outdoor activities, this study found the elderly are relatively sensitive to changes in climate
compared to smog and haze, while the comfort index appears to play an intermediary role
in the process of smog and haze affecting crowd activities.

Using questionnaires and interviews, this study explored the overall perception of the
elderly population towards smog and haze and their decision process towards going out
to visit a greenspace. Questions included whether they had a sense of the current day’s
air pollution levels and what they felt about the actual PM2.5 concentrations levels, and
whether there is certain PM2.5 concentration level that they considered a special concern.
Among 200 interviewees, six stated that they felt sensitive or physically unwell due to
smog and haze from a recent day, and six others expressed quantitative knowledge of
smog and haze. This paper focuses on the answers of these 12 respondents to explain
a typical type of elderly visitor of the greenspaces. As shown in Table S5, among these
12 elderly persons, the ratio of male to female was 1:5, suggesting that women may be
more sensitive to air quality and may tend to pay more attention to health problems related
to smog and haze than men. For most of the set of elderly interviewees with quantitative
knowledge of smog and haze, they stated their maximum acceptable value for PM2.5
concentrations when going out was 150 µg/m3, which is considered moderately polluted.
A few stated they would go to the park only when the air was good quality or lightly
polluted at 100 µg/m3 or less, and they may relax their standards if it is a sunny day. The
other six interviewees were able to describe the exact dates on which they felt sensitive
or uncomfortable due to smog and haze. The measured concentrations on these dates
were all verified as being above 250 µg/m3, but they still insisted in going out to visit the
greenspaces. This example shows how in their healthy pursuit of exposure to greenspaces,
the elderly can also inadvertently expose themselves to unhealthy air pollution.

5. Conclusions

This study found that the air quality of small greenspaces dispersed within high-
density central urban districts of Nanjing is non-ideal and poses a threat to human health.
In terms of spatial and temporal distribution, overall, there is no significant difference
in PM2.5 concentrations between different greenspaces. However, when it comes to the
difference values, the distance from a shared urban artery has a notable influence on air
quality between the different sites. In addition, the PM2.5 concentrations of different
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greenspaces show significant variations in their temporal distributions. Due to the traf-
fic pollution caused mainly by vehicle emissions during the morning rush hour period,
the PM2.5 concentrations in the morning are higher than in the afternoon. In terms of
physical factors, greenspace elements such as green coverage and airflow openness show
remarkably positive and negative correlations with PM2.5 concentrations respectively.
SVF presents a significantly positive correlation with the degree of fully open airflow,
which indirectly affects the PM2.5 concentration at the sites. Meteorological factors such
as temperature and humidity are very significantly positively correlated with PM2.5 con-
centrations, while comfort level has a significantly negative correlation. Furthermore,
humidity is also significantly influenced by green coverage and airflow openness. Based
on the above findings, the optimal green coverage and airflow openness for different air
quality intervals were calculated and were used to formulate optimized smog and haze
reduction strategies. According to the mode of air quality in the six greenspaces during
the study period, corresponding improvement measures were then proposed based on the
aforementioned strategies.

The elderly are the main users of greenspaces yet this study’s questionnaire and
interview findings showed they tend to be insensitive to smog and haze when deciding
whether to visit a greenspace for physical and social activities. Instead, they are more
likely to be relatively sensitive to changes in the local climate. The comfort level exerts a
notable mediating effect in the process of PM2.5 concentration affecting greenspace visitor
activities. Currently, the well-being of the elderly has drawn global attention and this
study provides relevant insights regarding the spatial and temporal distribution of PM2.5
concentrations in China’s greenspaces where the surrounding elderly communities tend
to carry out many of their daily activities. With these insights, this paper intends to spark
discussion for improving greenspace quality and overall livable conditions of high-density
central urban districts in the hope of providing a theoretical support and reference for
elderly-oriented greenspace construction and indicators in the future.
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