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Abstract

Background: Thanks to the recent advancements in next-generation sequencing (NGS) technologies, large amount
of genomic data, which are short DNA sequences known as reads, has been accumulating. Diverse assemblers have
been developed to generate high quality de novo assemblies using the NGS reads, but their output is very different
because of algorithmic differences. However, there are not properly structured measures to show the similarity or
difference in assemblies.

Results: We developed a new measure, called the GMASS score, for comparing two genome assemblies in terms
of their structure. The GMASS score was developed based on the distribution pattern of the number and coverage
of similar regions between a pair of assemblies. The new measure was able to show structural similarity between
assemblies when evaluated by simulated assembly datasets. The application of the GMASS score to compare
assemblies in recently published benchmark datasets showed the divergent performance of current assemblers as
well as its ability to compare assemblies.

Conclusion: The GMASS score is a novel measure for representing structural similarity between two assemblies. It will
contribute to the understanding of assembly output and developing de novo assemblers.
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Background
Recent advances in next-generation sequencing (NGS)
technologies have facilitated a rapid production of large
amounts of short sequencing data from genomes, known
as reads, at a low cost [1–3]. The length of reads is up to
several hundred base pairs in the case of short read se-
quencing technologies such as Illumina, and up to sev-
eral hundred kilo base pairs in the case of long read
sequencing technologies such as Oxford Nanopore.
Since the NGS reads are still much shorter than chro-
mosomes lengthwise, a de novo assembly process is ne-
cessary to reconstruct the whole chromosome sequences
[4]. The de novo assembly begins with finding and con-
necting overlapping NGS reads, which leads to the gen-
eration of longer sequences, known as contigs. Contigs
are then ordered and oriented to construct much longer
sequences, known as scaffolds, using paired-end or
mate-pair reads generated from long DNA fragments.

Several algorithms have been developed to generate
high-quality de novo assemblies. They are mainly classi-
fied into three categories: the greedy graph based algo-
rithm, the Overlap-Layout-Consensus based algorithm,
and the de Bruijn graph based algorithm [4]. The greedy
graph based algorithm, such as SSAKE [5], VCAKE [6]
and SHARCGS [7], incrementally connects a read to an-
other read or contig with the highest overlap score until
there is no more overlapping. The overlap scores are
calculated using the number of matching bases in the
overlap. Both the Overlap-Layout-Consensus based algo-
rithm and de Brujin graph-based algorithm rely on a
graph structure constructed from the NGS reads. They
first construct an overlap graph using overlap informa-
tion obtained from the NGS reads, and then the de novo
assembly is constructed by the traversing the graph.
However, the Overlap-Layout-Consensus based algo-
rithm, such as CABOG [8], Newbler [9] and Celera as-
semblers [10], constructs an overlap graph using the
direct overlap among the NGS reads, whereas the de
Bruijn graph based algorithm, such as ABySS [11],
SOAPdenovo [12], ALLPATHS-LG [13] and Velvet [14],
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is based on the overlap of all possible subsequences of
length k, known as k-mer, extracted from the NGS reads.
The performance of assemblers is quite different due

to algorithmic differences, which results in difficulty in
choosing the most appropriate assembler for different
NGS data [15–17]. Many benchmarking studies, such as
Genome Assembly Gold-standard Evaluations (GAGE)
[18], the GAGE for bacterial organisms (GAGE-B) [19],
and Assemblathon 1 and 2 [20, 21], have been per-
formed using synthetic and real NGS read datasets with
attempts to overcome this problem. In these studies,
N50 is the most widely used measure to assess the level
of assembly contiguity. N50 is a length-weighted median
of ordered scaffolds based on their lengths. Here, the
weight of a scaffold is defined as the length of the scaf-
fold divided by the total length of an assembly. NG50
was introduced in the Assemblathon project to consider
the genome size. NG50 is similar to N50 except for the
fact that in NG50, the weight of a scaffold is not calcu-
lated using the length of an assembly but the known or
estimated length of a genome. Also, for more compre-
hensive evaluation of assemblies, Feature-Response
Curve was introduced and compared with the standard
metrics, such as N50, coverage and contig sizes [22].
The accuracy of an assembly was measured by determin-
ing genomic dissimilarity by comparing it to the true as-
sembly and by checking the presence of core eukaryotic
genes [23] or single-copy orthologs [24] in the assembly.
The mapping pattern of reads was also used for detect-
ing mis-assemblies and measuring accuracy of assembly
[25]. By comparing assemblies with these measures, sev-
eral benchmarking studies have identified that the per-
formance of assemblers varies considerably [18–22].
Even though these measures are good for evaluating

the quality of a single assembly, they do not directly
compare two different assemblies. For example, when
two assemblies are compared using N50, researchers can
identify how dissimilar they are in terms of the level of
assembly fragmentation but cannot measure the fraction
of highly similar assembly regions between them. This
kind of comparison is especially useful when a de novo
assembly of a certain species needs to be compared to a
reference species, or when multiple assemblies of the
same species generated by different assembly programs
need to be compared to check how similar or different
they are. Comparison of assemblies typically begins with
their alignment. If there are large-scale assembly rear-
rangements, a large number of alignment fragments are
normally obtained. Using alignment results, several mea-
sures including the number of alignment fragments, and
alignment coverage have been separately used to meas-
ure assembly similarity. In general, the more similar two
assemblies are, it is expected that the smaller number of
alignment fragments are constructed between them and

alignment coverage of assemblies are higher. However,
the number of alignment fragments can also be reduced
by generating low coverage alignments, and the alignment
coverage can also be increased by generating large number
of small alignment fragments. Therefore, a single quantita-
tive measure combining those two is necessary. In
addition, the alignment fragments from assemblies are
generated based on a resolution parameter, which deter-
mines the minimum length of the alignment, and the
choice of the resolution parameter is arbitrary.
In this perspective, a new measure, called GMASS,

was developed for comparing the structures of two gen-
ome assemblies. The GMASS score was defined based
on the distribution pattern of the number and coverage
of similar regions between a pair of assemblies. Specific-
ally, the alignments of two assemblies are first generated,
and then the number of alignment fragments and their
coverage are obtained. This process is repeated using a
certain range of resolutions, and those two values from
different resolutions are combined to generate a single
quantitative score. The GMASS score was related to the
structural similarity between assemblies when it was
evaluated using simulated assembly datasets. The
GMASS score was also applied to compare pairs of as-
semblies obtained from previous benchmarking studies
[18, 20], and the results showed that the current assem-
blers generate very different assemblies even though the
same sequencing read datasets are used.

Methods
The GMASS score
The GMASS score represents the structural similarity of a
pair of genome assemblies based on the length and number
of similar genomic regions defined as consensus segment
blocks (CSBs) in the assemblies. The CSBs are aligned as-
sembly regions between two assemblies which can contain
small number of substitutions and small gaps shorter than
a chosen resolution (Fig. 1a). The way of constructing CSBs
is described in the following subsection. The GMASS score
is defined as Eq. 1 based on the assumption that the num-
ber and length of CSBs between two assemblies is equiva-
lent to the number and length of sequence fragments
(scaffolds or chromosomes) of the two assemblies as the
two assemblies become more similar.

GMASS ¼
PR

i¼rSi
n

¼
PR

i¼r Li A1;A2ð Þ � Ci A1;A2ð Þf g
n

ð1Þ

The GMASS score is the average of structural similar-
ity scores (Si) between two assemblies A1 and A2 across
a certain range of CSB resolutions. In Eq. 1, Si denotes
the structural similarity score at the CSB resolution i be-
longing to a set of n different resolutions with a mini-
mum value r and a maximum value R. Si is calculated by
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the product of two terms related to the total length
of the CSBs (Li(A1, A2)) and the number of CSBs
(Ci(A1, A2)).
Li(A1, A2) is the fraction of the total length of the CSBs

against the total length of assemblies used to construct
the CSBs with the CSB resolution i defined as Eq. 2. In
Eq. 2, l(Ax) is the total length of sequence fragments lar-
ger than resolution i in the assembly Ax, and l(CSBsx) is
the total length of blocks in the CSBs belonging to Ax

defined as CSBsx.

Li A1;A2ð Þ ¼ l CSBs1Þ þ lðCSBs2ð Þ
l A1ð Þ þ l A2ð Þ ð2Þ

For example, suppose CSBs are constructed for the
two scaffold assemblies A1 and A2 using 10 Kbp reso-
lution. If total 2 Mbp and 2.5 Mbp scaffold sequences of
A1 and A2 respectively are used in this construction, and
total 1.8 Mbp and 2.2 Mbp scaffold sequences of A1 and
A2 respectively are actually included in the CSBs, then
l(A1)= 2 Mbp, l(A2)= 2.5 Mbp, l(CSBs1)= 1.8 Mbp, and
l(CSBs2)= 2.2 Mbp. Therefore, L10Kbp(A1, A2) = (1.8 +
2.2)/(2 + 2.5) = 0.89.
Ci(A1, A2) denotes the similarity between two assem-

blies in terms of the total number of CSBs constructed
with the CSB resolution i defined as Eq. 3.

Ci A1;A2ð Þ ¼
c CSBS1ð Þ þ c CSBS2ð Þ

c A1ð Þ þ c A2ð Þ ; if c A1ð Þ þ c A2ð Þ ≥ c CSBS1ð Þþ c CSBS2ð Þ
1�

c CSBS1ð Þ þ c CSBS2ð Þ − c A1ð Þ − c A2ð Þ
maxc A1ð Þ þ maxc A2ð Þ − c A1ð Þ − c A2ð Þ; otherwise

8<
:

ð3Þ
Here c(X) is the number of sequence fragments larger

than given resolution i (if X is an assembly) or the num-
ber of blocks constructed using the CSB resolution i (if
X are CSBs). We note that if X are CSBs, then c(CSBs1)

and c(CSBs2) are the same because of the definition of a
CSB. maxc(X) is the maximum number of CSBs that can
be constructed from an assembly X using the CSB reso-
lution i. If the sum of the number of CSBs from two as-
semblies is less than or equal to the sum of sequence
fragments larger than resolution i in the two assemblies,
Ci(A1, A2) is defined as the fraction obtained from those
two numbers (the upper part of Eq. 3). Otherwise, the
positive difference between those two numbers is calcu-
lated, and its fraction against a similar difference using
the sum of the maximum number of CSBs that can be
constructed using the two assemblies is obtained. The
result is subtracted from 1 to make a positive correlation
between Ci(A1, A2) and assembly similarity (the lower
part of Eq. 3). The maximum number of CSBs maxc(Ax)
of an assembly Ax is calculated by Eq. 4.

maxcðAxÞ ¼ lðAxÞ
i

ð4Þ

Here i is the resolution used to construct CSBs. Eq. 4
implies that the minimum length of a CSB is i, and
therefore at most l(Ax)/i CSBs can be constructed. This
was empirically validated using the GAGE and Assem-
blathon 1 dataset.
For example, suppose again that CSBs are constructed

for the two scaffold assemblies A1 and A2 with l(A1)= 2
Mbp and l(A2)= 2.5 Mbp using 10 Kbp resolution. If total
20 and 24 scaffolds of A1 and A2 respectively are used in
this construction, and total 20 CSBs are constructed, then
c(A1)= 20, c(A2)= 24, and cðCSBS1Þ ¼ cðCSBS2Þ = 20. In
this case, c(A1) + c(A2) ≥ c(CSBs1) + c(CSBs2) holds, and
therefore, C10Kbp(A1, A2)= (20 + 20)/(20 + 24) = 0.91 by the
upper part of Eq. 3. On the other hand, if cðCSBS1Þ ¼ cð
CSBS2Þ = 25, the upper part of Eq. 3 cannot be used be-
cause C10Kbp(A1, A2)= (25 + 25)/(20 + 24) > 1 based on the

a

b c

Fig. 1 Examples of consensus segment blocks (CSBs). a CSBs are defined as aligned assembly regions between two assemblies. Sequences in CSBs
can contain substitutions (red bases in CSB1) and indels (insertions and deletions; red parts in CSB3). The size of gaps between two CSBs is smaller
than a chosen resolution (the minimum length of a CSB). b When two scaffolds from different assemblies are highly similar, a CSB constructed from
them covers scaffolds almost entirely. c If the scaffolds from different assemblies are highly rearranged against to each other, a large number of CSBs
with short length are constructed. In this case, their total size is almost equal to the total size of the scaffolds
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upper part of Eq. 3 and the Ci(A1, A2) score between 0
and 1 is needed. In this case, Ci(A1, A2) is calculated by
the lower part of Eq. 3 using c(A1)= 20, c(A2)= 24, c
ðCSBS1Þ ¼ cðCSBS2Þ = 25, maxc(A1)= 2000/10 = 200,
and maxc(A2)= 2500/10 = 250. Therefore, C10Kbp(A1, A2)=
1 – (25 + 25–20 – 24)/(200 + 250–20 – 24) = 0.99.

Calculation of the GMASS score for simulated and benchmark
datasets
In this study, CSBs were constructed from three data-
sets: simulated genome assemblies, GAGE [18], and
Assemblathon 1 [20]. In the case of the simulated gen-
ome assemblies, the pairwise alignments of simulated
genome assemblies (reference against 11 other assem-
blies with different divergence to the reference) were ob-
tained from previous study [26]. This dataset simulated
the evolution of two human chromosomes 21 and 22
from a common ancestor of 12 species with varying di-
vergences. The synteny block generation program in
inferCars [27] was then used to construct CSBs between
each pair of assemblies with a given resolution.
In the case of the other two datasets, assembly se-

quences as a form of scaffolds were downloaded from a
website with their datasets. Then repeats in the assem-
blies were first masked using RepeatMasker (version
4.0.5) [28], and pairwise alignments between two differ-
ent assemblies were generated using LASTZ (version
1.02) [29] with parameters “-E=150 -H=2000 -K=4300
-L=2200 -M=254 -O=600 -T=2 -Y=15000”. In evaluation
of the GMASS score, self-alignments of each assembly
were also constructed using LASTZ parameters “-O=400
-E=30 -X=910 -Y=9400 -K=3000 -L=3000 -H=2000
-T=1 -Z=1”. These parameter values were based on the
recommendation found in the UCSC genome browser
[30]. Once pairwise alignments of genome assemblies
were prepared, the synteny block generation program in
inferCars [27] was used to construct CSBs between a
pair of assemblies with a given resolution.
In the process of the CSB generation between two as-

semblies, one of the assemblies needs to be a reference.
In the case of the simulated assembly dataset, a refer-
ence assembly specified in that study was also used as
the reference in this study. Therefore, the CSBs of total
11 pairs (reference against 11 other assemblies) were
constructed. In the GAGE and Assemblathon 1 dataset,
a total of eight assemblies by eight assembly programs
(ABySS2 [31], ALLPATHS-LG [13], Bambus2 [32],
CABOG [8], SGA [33], SOAPdenovo [12], MSR-CA [34]
and Velvet [14]) and five assemblies by five assembly pro-
grams (ABySS [11], ALLPATHS-LG [13], Celera [10], Mer-
aculous [35] and SOAPdenovo [12]) exist respectively, and
CSBs of all possible assembly pairs were constructed by
using one assembly with a higher N50 as the reference. In

terms of the resolution, five different resolutions (100, 200,
300, 400, and 500 Kbp) were used for the simulated assem-
bly dataset. In the case of the GAGE and Assemblathon 1
dataset, N50, N60, N70, N80, and N90 values of a
non-reference assembly were used as resolutions.
To assess the relationship between the GMASS score

and structural similarity of assembly pairs, the Pearson’s
correlation coefficient test was conducted between struc-
tural similarities and the GMASS scores calculated using
CSBs between simulation datasets. The correlation ana-
lyses were also conducted for Li(A1, A2), Ci(A1, A2) and
Si scores in a given resolution i. The evolutionary
distances which were used for constructing simulated as-
semblies were treated as indicators of sequence similar-
ity between two assemblies. Information about the
evolutionary distance, including phylogenetic tree top-
ology and evolutionary distances between a reference as-
sembly and the simulated assemblies were obtained
from [26].

Results
Evaluating the GMASS score with simulation data
In this study, it was assumed that if two assemblies are
similar, the number and length of CSBs are closer to the
number and length of sequence fragments in the assem-
blies. As shown in Fig. 1b, when two sequences are
highly similar, CSBs cover almost the entire sequences,
and the total size of CSBs is similar to the one of a
smaller sequence (more examples in Additional file 1:
Figure S1 and S2). However, CSBs almost covering the
entire sequences do not always mean that two assem-
blies are more similar. If each small region of an assem-
bly is even nearly identical to the counterpart of the
other assembly but they are highly rearranged, a large
number of small CSBs covering almost the whole of the
assemblies can be constructed (Fig. 1c, more examples
in Additional file 1: Figure S1 and S2). The GMASS
score was developed to provide a single quantitative
score measuring the structural similarity of two assem-
blies by resolving aforementioned issues (Methods).
The GMASS score was first evaluated using simulated

genome assembly dataset (Methods). Starting from an
ancestral form of an assembly, descendent assemblies in
the dataset were simulated with different evolutionary
divergence (substitution rate) which determined the
amount of perturbation in the assembly simulation
process. Therefore, in this study, the evolutionary diver-
gence was treated as the surrogate of structural differ-
ence of two assemblies. As shown in Fig. 2, both Li(A1,
A2) and Ci(A1, A2), which represent total length and
number of CSBs respectively, showed strong negative
correlation with the evolutionary distances in all five res-
olutions. The Pearson’s correlation coefficients between
Li(A1, A2) and evolutionary distances were − 0.925 for
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100Kbp resolution (p-value 4.52E-5), − 0.883 for 200Kbp
resolution (p-value 3.18E-4), − 0.955 for 300Kbp reso-
lution (p-value 4.75E-6), − 0.910 for 400Kbp resolution
(p-value 9.96E-5), and − 0.949 for 500Kbp resolution
(p-value 8.67E-6). Similar strong negative correlation
was observed in the case of Ci(A1, A2): − 0.962 for
100Kbp resolution (p-value 2.30E-6), − 0.952 for 200Kbp
resolution (p-value 6.54E-6), − 0.924 for 300Kbp reso-
lution (p-value 4.89E-5), − 0.861 for 400Kbp resolution
(p-value 6.60E-4), and − 0.889 for 500Kbp resolution
(p-value 2.49E-4). However, as evolutionary distances be-
tween assemblies increased, the variance of the scores
among different resolutions also increased. Therefore,
the decreased pattern of scores were varied by given
resolutions.
Next, the Si score combining Li(A1, A2) and Ci(A1, A2)

(Methods) was examined at each different resolution. As
shown in Fig. 3a, strong negative correlation was observed
from all the five resolutions: Pearson’s correlation coeffi-
cient − 0.970 for 100Kbp resolution (p-value 7.40E-7), −
0.969 for 200Kbp resolution (p-value 9.65E-7), − 0.951 for
300Kbp resolution (p-value 7.23E-6), − 0.891 for 400Kbp
resolution (p-value 2.30E-4), and − 0.924 for 500Kbp reso-
lution (p-value 4.71E-5). However, slightly different pat-
terns were observed from different resolutions. To deeply
understand the effect of the resolution, the Si scores calcu-
lated from 11 different assemblies were drawn as a func-
tion of resolutions (Fig. 3b). More obvious variations of
scores among different resolutions were found especially
in the case where the evolutionary distance became larger.
Finally, the GMASS scores were calculated by aver-

aging the Si scores from all five resolutions, and com-
parison made in terms of evolutionary divergences

(Fig. 4). Strong negative correlation between the GMASS
score and evolutionary distance was observed (Pearson’s
correlation coefficient − 0.962, p-value 2.15E-6). There
was one exception of the score of D7 which was lower
than the ones of D8 and D9, despite being more diver-
gent than D7. This was because larger number of CSBs
were constructed from D7 than D8 and D9, although
the coverages of CSBs were similar in all three assem-
blies (Additional file 2: Table S1).

Application of the GMASS score to assembly benchmark
data
The GMASS score was used to compare each pair of as-
semblies constructed in the GAGE [18] and Assembla-
thon 1 [20] dataset (Methods). The statistics of the
assemblies were quite varied even though they were con-
structed using the same sequencing datasets (Additional
file 2: Table S2).
In the case of the GAGE dataset, the GMASS score

between the same assembly was approximately 1, and
the average of the GMASS scores between different as-
semblies was 0.537 with standard deviation 0.188
(Table 1). The resolution specific score Si of resolution i
calculated from two different assemblies was also vary-
ing (Additional file 1: Figure S3, Additional file 2: Table
S3). For example, the GMASS score was 0.087 between
the MSR-CA assembly and Velvet assembly. The max-
imum Si score between them was 0.4126 when N90 of a
non-reference assembly was used as a resolution. How-
ever, the minimum score was only 0.0003 when N50 of a
non-reference assembly was used as a resolution (see
Methods for the selection of resolutions). In the case of
the N90 resolution, 253 CSBs were constructed, and

a b

Fig. 2 Relationship between evolutionary distance and the similarity of reference against 11 other assemblies obtained from simulation of dataset
in terms of the total length of CSBs (Li(A1, A2)) (a), and the total number of CSBs (Ci(A1, A2)) (b) in several resolutions. The dark gray line represents
the linear regression line
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their coverages of compared scaffolds greater than the
resolutions of the MSR-CA assembly and Velvet assem-
bly were 0.5023 and 0.4188, respectively (Additional
file 2: Table S4). When syntenic relationship was ana-
lyzed using the Circos plots drawn by mySyntenyPor-
tal [36], several short CSBs were constructed between
one scaffold of one assembly, especially large one,
and multiple scaffolds of the other assembly (Additional
file 1: Figure S4). However, in the case of the N50 reso-
lution, although 29 scaffolds of the MSR-CA assembly and
51 scaffolds of the Velvet assembly were used to make
CSBs, only one CSB was constructed between them. Its

coverage of scaffolds used for comparison was 0.0249 for
the MSR-CA assembly and 0.0037 for the Velvet
assembly.
In the case of Assemblathon 1 dataset, the average

GMASS score was lower than the score from the GAGE
dataset (Table 2, average = 0.47, standard deviation =
0.158). The minimum GMASS score of 0.274 was ob-
tained between assemblies from WTSI-S and CSHL. The
highest GMASS score was only 0.647 obtained between
assemblies from WTSI-S and Broad. The features of
constructed CSBs, C(A1, A2), L(A1, A2) and Si scores
were also different when difference resolutions were
used (Additional file 1: Figure S5, Additional file 2:
Table S5 and S6). The GMASS scores calculated using
the self-alignments of assemblies showed almost 1 in both
cases of GAGE and Assemblathon 1.

Discussion
The GMASS score was designed to represent the degree
of structural similarity between a pair of assemblies. This
new measure was developed based on the distribution
pattern of CSBs between a pair of assemblies, which
were identified by applying the concept of synteny block
in comparative genomics. With pairwise alignment re-
sults, CSBs are constructed with algorithms for con-
structing synteny blocks, the GMASS scores are then
calculated by considering both the length and number
of CSBs.
Based on evaluation with simulated dataset, we found

that the GMASS score was highly related to the struc-
tural similarity. However, the GMASS score of the D7
assembly in the dataset was lower than the scores of the
D8 and D9 assembly, which were more divergent than
D7 from a reference assembly. In this case, larger num-
bers of CSBs were constructed from the D7 assembly
than the D8 and D9 assembly, but the CSB coverage of

Fig. 3 Patterns of the structural similarity score (Si) in terms of evolutionary distance (a) and resolution (b) using simulated assembly dataset

Fig. 4 Relationship between evolutionary distance and the GMASS
score using simulated assembly dataset. The dark gray line represents
the linear regression line
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D7 was higher than D8 and D9. It was as a result of the
high rearrangement of small regions in the D7 assembly
which are nearly identical to the counterpart of the ref-
erence assembly. This kind of rearrangements in small
regions were mostly observed in D7 than D8 and D9
(Additional file 1: Figure S6). The CSBs pattern in other
resolutions can be identified from our supplementary
website (http://bioinfo.konkuk.ac.kr/GMASS/).
From the GMASS scores calculated using the assembly

benchmark datasets (GAGE and Assemblathon 1), we
found that the current assembly tools generated different
assemblies even though the same sequencing read data-
sets are used. For example, the GMASS score between
Velvet and ALLPATHS-LG assembly in the GAGE data-
set, which were both developed based on the de Bruijn
graph, was very low. This may indicate that the quality
of assembly is not only affected by the graph and
traversal algorithm, but also by additional pre- and
post-processing algorithms and parameters used in the
assembler. In the case of the GAGE dataset, the GMASS
scores calculated using the self-alignments of the
ABySS2, SGA and SOAPdenovo assembly were not 1
(Table 1). The reason is that there were short scaffolds
with high fraction of repetitive sequences, which were
masked out in a repeat masking step, and eventually
ignored during sequence alignment for the CSB
construction.
The GMASS scores can be used in structural-level

similarity analysis between diverse assemblies as well as
genomes of multiple species or individuals. Especially,
because the score was significantly related to the

evolutionary distance, it can be also used as alternative
evolutionary distances among species or individuals by
complementing traditional nucleotide-level similarity
measures, such as ANI [37] and GBDP [38]. This meas-
ure can also be used to infer the accuracy of a novel as-
sembly by calculating the score between the assembly
and true assembly for target species. In addition, the
relative improvement of a new assembler against existing
assemblers can be approximately inferred by comparing
the GMASS scores which are calculated from true as-
sembly against assemblies created by the new assembler
and existing assemblers.
The CSBs of different assemblers can be used to im-

prove or develop the assemblers. For example, re-
searchers can identify regions with structural differences,
which are not covered by CSBs among assemblies built
by different assemblers. These regions might be too
complicated to assemble using existing assemblers or as-
sembly algorithms, therefore new assemblers need to be
developed to assembly such regions more accurately.
Resolution is a critical factor to consider when calcu-

lating the GMASS score. The resolution makes it diffi-
cult to compare scaffolds shorter than a given resolution
by ignoring them in the construction of CSBs. In
addition, the contiguity of an assembly was quite vari-
able according to the result displayed by GAGE and
Assemblathon datasets, it is not possible to use a fixed
set of resolutions. Therefore, we used a dynamic set of
resolutions for different assembly pairs based on the sta-
tistics of scaffold lengths (N50, N60, N70, N80, and
N90) of a non-reference assembly for the GAGE and

Table 1 The GMASS scores of assembly pairs obtained from the GAGE dataset

ABySS2 0.992

ALLPATHS-LG 0.671 1.000

Bambus2 0.660 0.523 1.000

CABOG 0.689 0.620 0.446 1.000

MSR-CA 0.662 0.447 0.376 0.419 1.000

SGA 0.687 0.706 0.740 0.759 0.701 0.984

SOAPdenovo 0.665 0.731 0.542 0.595 0.589 0.734 0.993

Velvet 0.457 0.134 0.250 0.259 0.087 0.499 0.384 1.000

ABySS2 ALLPATHS-LG Bambus2 CABOG MSR-CA SGA SOAPdenovo Velvet

Table 2 The GMASS scores of assembly pairs obtained from the Assemblathon 1 dataset. The teams’ names constructed each assembly
are written in parentheses

ALLPATHS-LG (Broad) 1.000

ABySS (BGI) 0.642 1.000

SOAPdenovo (DOEJGI) 0.370 0.632 1.000

Meraculous (WTSI-S) 0.647 0.607 0.557 1.000

Celera (CSHL) 0.333 0.313 0.327 0.274 1.000

ALLPATHS-LG (Broad) ABySS (BGI) SOAPdenovo (DOEJGI) Meraculous (WTSI-S) Celera (CSHL)
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Assemblathon 1 datasets. However, a large fraction of
sequences is ignored if a large value is used as a reso-
lution. Further studies to define appropriate resolutions
are required.

Conclusions
The GMASS score is a novel measure for representing
structural similarity between two assemblies. The usabil-
ity of the GMASS score was successfully evaluated using
various assembly datasets. The novel measure will con-
tribute to the understanding of assembly output and de-
veloping de novo assemblers.

Additional files

Additional file 1: Figure S1. Examples of different patterns of CSBs
constructed among human (GRCh38/hg38 assembly) and chimpanzee
(Pan_tro 3.0/panTro5 assembly) chromosomes. Linear plots were drawn
by mySyntenyPortal (https://github.com/jkimlab/mySyntenyPortal/).
Figure S2. Examples of different patterns of CSBs constructed among
human (GRCh38/hg38 assembly) and mouse (GRCm38/mm10 assembly)
chromosomes. Linear plots were drawn by mySyntenyPortal (https://
github.com/jkimlab/mySyntenyPortal/). Figure S3. Patterns of Li(A1, A2),
Ci(A1, A2) and Si scores of assembly pairs obtained from the GAGE dataset
in different resolutions. Figure S4. Circos plots representing CSBs constructed
between the MSR-CA and Velvet assembly in five different resolutions. N50
(843,765 bp), N60 (669,249 bp), N70 (484,156 bp), N80 (298,277 bp), and N90
values (89,649 bp) of a more fragmented Velvet assembly are used as the
resolution. Colored and white boxes represent the scaffolds of the MSR-CA
and Velvet assembly respectively. Figure S5. Patterns of Li(A1, A2), Ci(A1, A2) and
Si scores of assembly pairs obtained from the Assemblathon 1 dataset in
different resolutions. Figure S6. Linear plots representing CSBs between a
reference assembly (R_seq) and simulated assemblies (D7_seq, D8_seq and
D9_seq) in 300 K resolution. (DOCX 4759 kb)

Additional file 2: Table S1. Statistics of a reference assembly and 11
descendant assemblies, as well as CSBs constructed between them. AS
denotes the scaffolds contained each assembly, and SF represents the
CSBs constructed between each assembly and the reference assembly.
Table S2. Statistics of analyzed assemblies and reference sequences. In
the case of the GAGE dataset, the statistics of the reference sequences
were calculated using the human chromosome 14 (HG38/GRCh38
assembly) downloaded from the UCSC genome browser [30]. In the case
of the Assemblathon 1 dataset, the teams’ names constructed each
assembly are written in parentheses, and the statistics of reference are
the averages of statistics of two haplotypes used in the study. Table S3.
Li(A1, A2), Ci(A1, A2) and Si scores of assembly pairs obtained from the
GAGE dataset in different resolutions. In the “Combination” column, the
name of an assembly used as reference appears first. Table S4. Statistics
of each assembly and CSBs of assembly pairs obtained from the GAGE
dataset. AS denotes the scaffolds in each assembly, and SF represents the
CSBs constructed between each assembly pair. In combination column,
front assembly is used as reference assembly and rear assembly is used
as target assembly. Table S5. Li(A1, A2), Ci(A1, A2) and Si scores of assembly
pairs obtained from the Assemblathon 1 dataset in different resolutions.
In the “Combination” column, the name of an assembly used as reference
appears first. Table S6. Statistics of each assembly and CSBs of assembly
pairs obtained from the Assemblathon1 dataset. AS denotes the scaffolds
in each assembly, and SF represents the CSBs constructed between each
assembly pair. In combination column, front assembly is used as reference
assembly and rear assembly is used as target assembly. Used assemblers are
omitted. (XLSX 84 kb)
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