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Abstract

In recent years, there has been significant criticism of functional magnetic resonance imaging 

(fMRI) studies with small sample sizes. The argument is that such studies have low statistical 

power, as well as reduced likelihood for statistically significant results to be true effects. The 

prevalence of these studies has led to a situation where a large number of published results are not 

replicable and likely false. Despite this growing body of evidence, small sample fMRI studies 

continue to be regularly performed; likely due to the high cost of scanning. In this report we 

investigate the use of a moderated t-statistic for performing group-level fMRI analysis to help 

alleviate problems related to small sample sizes. The proposed approach, implemented in the 

popular R-package LIMMA (linear models for microarray data), has found wide usage in the 

genomics literature for dealing with similar issues. Utilizing task-based fMRI data from the 

Human Connectome Project (HCP), we compare the performance of the moderated t-statistic with 

the standard t-statistic, as well as the pseudo t-statistic commonly used in non-parametric fMRI 

analysis. We find that the moderated t-test significantly outperforms both alternative approaches 

for studies with sample sizes less than 40 subjects. Further, we find that the results were consistent 

both when using voxel-based and cluster-based thresholding. We also introduce an R-package, 

LIMMI (linear models for medical images), that provides a quick and convenient way to apply the 

method to fMRI data.
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1. Introduction

In the past decade, there has been a great deal of discussion regarding how studies with 

small sample sizes undermine the reliability of neuroscience research (Button et al., 2013; 

Munafò et al., 2014). The argument is that small-sample studies both have low statistical 

power to detect true effects and a reduced likelihood for statistically significant results to be 
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true effects. Despite this growing body of evidence, most functional magnetic resonance 

imaging (fMRI) studies continue to be small, with the majority consisting of less than 30 

subjects (Poldrack et al., 2017).1 This is problematic, as a large number of published results 

are likely not replicable and perhaps even false. As the prohibitive costs of performing an 

fMRI study make it difficult for many labs to conduct larger studies, it makes sense to 

evaluate whether there exist analytic techniques that can help mitigate some of the problems 

associated with small sample sizes. Here we propose one such technique in the context of 

the analysis of multi-subject task fMRI.

Most task-based group fMRI analyses are concerned with determining whether there exists a 

significant population-wide ‘activation’ in a comparison between two or more conditions. 

This is typically assessed by testing the average value of a contrast of parameter estimates 

(COPEs) against zero in a general linear model (GLM) analysis. Standard group analyses 

typically involve fitting two separate models. A first-level GLM analysis is performed on 

each subject’s data, providing within-subject COPEs (e.g., activity magnitude estimates for 

[visual stimulation vs. rest]). A second-level analysis provides population inference on 

whether COPEs are significantly different from zero and assesses the effects of second-level 

predictors (e.g., group status, behavioral performance) (Lindquist et al., 2012). Researchers 

typically perform this analysis using an un-weighted, ordinary least squares (OLS) analysis 

(Mumford and Nichols, 2009). This is generally equivalent to performing a t-test across 

subjects at each voxel of the brain.

This approach can be problematic in the small sample setting as errors in estimation of the 

voxel-wise variance may lead to noisy t-statistic images, which in turn can lead to decreased 

power to detect effects (Nichols and Holmes, 2002). In the context of non-parametric 

testing, Nichols and Holmes (2002) addressed this issue by proposing the use of a pseudo t-
statistic formed by smoothing the variance across adjacent voxels prior to computing the t-
statistic. They explicitly mention that since there is no closed form solution to the 

distribution of the statistic, it can only be used in a non-parametric analysis. In the genomics 

literature, where similar sample size issues are common, a moderated t-statistic has been 

utilized to address the same issue. This approach, implemented in the popular R-package 

LIMMA (linear models for microarray data) (Ritchie et al., 2015; Smyth, 2005), has been 

accepted as the standard method for the assessment of differential expression in microarray 

data. The LIMMA package is available on Bioconductor (Gentleman et al., 2004), which is a 

collaborative project for the creation of software for computational biology and 

bioinformatics. The key idea is to construct a t-statistic that has a similar interpretation as the 

standard t-statistic, but with standard errors moderated using empirical Bayes methods 

(Efron and Morris, 1975; James and Stein, 1961). This is equivalent to shrinkage of the 

estimated sample variances towards a pooled estimate, resulting in stable inference even 

when the sample size is small. Importantly, this moderated t-statistic is shown to follow a t-
distribution with augmented degrees of freedom, allowing for straightforward inference.

To evaluate the performance of the method in the context of multi-subject task fMRI data, 

and to contrast it with the pseudo t-test and the standard t-test, we utilize data from the 500-

1The median estimated sample size for a group fMRI study in 2015 was 28.5.
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subject release from the NIH-sponsored Human Connectome Project (HCP) (Van Essen et 

al., 2013). In particular, we focus our attention on data collected during four experimental 

tasks: emotion, gambling, motor, and working memory. We treat the complete collection of 

subjects as our population of interest, and perform single-subject analysis on each subject in 

the population. To evaluate the properties of the different methods in small sample fMRI 

studies, we draw multiple samples from the population of sizes ranging from 10 to 100. This 

allows us to mimic the sample sizes typically used in studies performed by individual labs, 

and compare the different analytic approaches. In addition, to establish the empirical error 

control of the methods we are evaluating, we created null data by applying the processing 

pipeline from the working memory study to resting-state fMRI data in an analogous manner 

as described in Eklund et al. (2016). Finally, we evaluate the performance of the methods 

using both voxel-based and cluster-based thresholding.

This report is organized as follows. Section 2 provides an overview of the standard t-
statistic, the pseudo t-statistic, and two variants of the moderated t-statistic, followed by a 

discussion of the data set that will be analyzed and the manner in which the methods will be 

compared. In addition, we introduce an R-package, LIMMI (linear models for medical 

images), that provides a quick and convenient way to apply the moderated t-statistic to fMRI 

data. Section 3 shows the results of the comparison between the methods. The paper 

concludes with a discussion in Section 4.

2. Methods

2.1. Models

Multi-subject fMRI data is hierarchical in nature, with lower-level observations nested 

within higher levels (for example, subjects nested within groups). Taking the multi-level 

nature of the data into consideration can provide the means to generate population level 

statistics. This is typically done using a two-level hierarchical model (Lindquist et al., 2012). 

In the first level, we analyze within-subject effects for each participant in the study. In the 

second level, we perform analyses across subjects or between groups. Researchers can do 

this either in stages or combined into a single integrated model. Here we focus on the former 

approach. We discuss a number of different techniques for performing second-level analysis 

in this manner, including the standard t-statistic (i.e., the OLS approach), the pseudo t-
statistic used in non-parametric analysis, and two variants of the moderated t-statistic.

2.1.1. OLS approach—The most popular group analysis is the one sample t-test on 

differences between two conditions (e.g., Task A–Task B) at each voxel. This analysis, 

referred to as the ordinary least-squares (OLS) approach (also known as the summary 

statistics or “random effects” approach in the fMRI literature), tests whether the difference is 

non-zero on average for the sampled population and provides a starting point for our 

discussion on population inference.

To illustrate group analysis using the OLS approach (e.g., Holmes and Friston (1998); 

Mumford and Nichols (2009)), let us denote the COPE for subject i ∈ {1, …, n} and voxel v 
∈ {1, …, V} by β i, v. For each fixed voxel, we assume that β i, v are drawn from the same 
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population distribution N βv, σv2 . To test the null hypothesis that βv = 0 one can compute the 

t statistic:

Tv = βv
sv/ n , (1)

where βv = ∑i = 1
n βv, i/n and sv = ∑i = 1

n βv, i − βv
2/(n − 1),, which follows a t-distribution 

with n − 1 degrees of freedom. This result can be used to compute a p-value and assess 

significance at every voxel of the brain.

2.1.2. Pseudo t-statistic—The t-statistic described in Eq. (1) can be problematic in the 

small sample setting, as noisy estimates of the variance term can inflate its values. This, in 

turn, can lead to an increase in the number of false positives. Nichols and Holmes (2002) 

offered a non-parametric improvement for the t-statistic, which they refer to as the pseudo t-
statistic, that pools the variance estimate at each voxel with those of its neighbors. This is 

performed by spatially smoothing the variance estimates, and thereby stabilizing its 

variability. Using the notation from the previous section, the pseudo t-statistic can be 

formulated as follows:

T v
p = βv

sv
(s)/ n

, (2)

where the sv
(s) is the smoothed estimates of the standard deviation. A variety of smoothing 

techniques can potentially be applied here. Here we use a 4 mm FWHM spherical Gaussian 

smoothing kernel to smooth the variance images.

It should be noted that the pseudo t-statistic was proposed in the context of non-parametric 

testing. A shortcoming of the approach that there is no closed form solution to the 

distribution of the statistic that can be used to compute p-values and assess significance. This 

limits its use to non-parametric group analysis where a closed form solution is not needed, 

as one instead creates a permutation distribution to test the null. If one does not want to use a 

non-parametric approach, there is no straightforward way of using the pseudo t-statistic.

To create a permutation distribution to test the null hypothesis of no effect we proceed as 

follows. For each of 1000 permutations each participant’s data is randomly ‘sign-flipped’ 

(i.e., multiplied by either 1 or −1). For each permutation, the pseudo t-statistic is calculated 

at each voxel and its maximum value across the brain recorded. This allows for the 

derivation of the permutation distribution of the maximal voxel-wise pseudo t-statistic over 

the entire brain. This distribution is used to test significance for the participant’s actual data. 

Importantly, this approach provides control over the family-wise error rate (FWER).

2.1.3. Moderated t-statistic—In the genomics literature, issues related to small sample 

sizes are similarly common. In this setting, a moderated t-statistic has been proposed to 

improve inference. Here the estimated sample variances are shrunk towards a pooled 

estimate, which results in stable inference even when the sample size is small. This 
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approach, implemented in the R-package LIMMA (Smyth, 2005), has found wide usage for 

the assessment of differential expression in microarray data. Though the approach shares 

some similarity with the pseudo t-statistic, in that the estimated sample variances are 

stabilized by borrowing strength across voxels, the manner in which this is done for the 

moderated t-statistic allows one to specify a parametric form for the null distribution.

We begin by providing the technical details for the use of the moderated t-statistic in the 

context of fMRI data. Let βv, i be the COPE for subject i ∈ {1, …, n} and voxel v ∈ {1, …, 

V}. As before we assume that β i, v are drawn from the same population distribution 

N βv, σv2 . The distributional assumptions for βv, i and the sample variance sv2 for voxel v can 

be summarized as follows:

βv, i |βv, σv2 N βv, σv2 , (3)

and

sv2 |σv2
σv2

dv
χdv

2 , (4)

where χdv
2  represents a chi-square distribution with dv = n − 1 degrees of freedom.

Rather than smoothing over neighbouring voxels as in the pseudo t-statistic, here one uses an 

empirical Bayes approach. A scaled inverse chi-square prior is assigned to σv2, i.e.

1
σv2

1
d0s0

2χd0
2 , (5)

where the hyperparameters d0 and s0
2 represent the prior degrees of freedom and location of 

the distribution, respectively. In a fully Bayesian approach one would choose these 

parameters. Here we instead take an empirical Bayes approach and estimate these 

parameters from the data. This approach provides consistent, closed form estimators of the 

hyperparameters d0 and s0 using information from other voxels.

We summarize the approach described by Smyth (2004) in the following. The marginal 

distribution of sv2 can be shown to follow a scaled F-distribution with degrees of freedom d0 

and dv, i.e., sv2 s0
2Fd0, dv. The distribution of log sv2 is distributed as a constant plus Fisher’s z 

distribution (Johnson and Kotz, 1970), which is roughly normal with the first two moments 

expressed as follows:

E log sv2 = log s0
2 + ψ dv/2 − ψ d0/2 + log d0/dv , (6)

var log sv2 = ψ′ dv/2 + ψ′ d0/2 , (7)

where ψ(·) and ψ′(·) are the digamma and trigamma functions, respectively.
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Let ev be the adjusted logarithm of sample variance of voxel v,

ev = log sv2 − ψ dv/2 + log dv/2 . (8)

It has expected value,

E ev = log s0
2 − ψ d0/2 + log d0/2 , (9)

and variance

var ev = ψ′ dv/2 + ψ′ d0/2 . (10)

The method of moment estimator for d0 can be obtained by solving

ψ′ d0/2 = 1
V ∑

v = 1

V
ev − e 2 − ψ′ dv/2 (11)

for d0 using Newton’s method. s0
2 can subsequently be estimated by

s0
2 = exp e + ψ d0 − log d0/2 . (12)

Under this model, the posterior mean of σv2 given sv2 is expressed as follows:

s v
2 =

d0s0
2 + dvsv2

d0 + dv
. (13)

Importantly, the term s0 is estimated using information from other voxels in the analysis. 

Hence, s v
2 is the weighted average of the estimated variance from voxel v with the estimated 

variance obtained using information from the other voxels. Using this estimate allows us to 

construct the moderated t-statistic,

T v = βv
s v/ n . (14)

Under the null hypothesis H0 : βv = 0, the moderated t-statistic can be shown to follow a t-
distribution with degrees of freedom dv + d0. Here the added degrees of freedom compared 

to the standard t-statistic reflects the extra information borrowed from the other voxels.

2.1.4. Locally moderated t-statistic—As described above, the moderated t-statistic 

borrows strength from voxels across the whole brain. However, we also recognize the 

sample variance sv2 is shrunk towards the pooled variance s0
2, which would be misspecified 

when the variance varies across brain voxels. The performance is expected to improve when 

applied to a local neighborhood, or alternately a functional parcellation of the brain. Inspired 

by the pseudo t-statistics approach where the variance estimates are smoothed over a local 
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neighborhood, we also apply the moderated t-statistic in a search-light manner, where we 

only allow strength to be borrowed from voxels in a neighborhood Nv = {v′ | ∥xv – xv′∥ ≤ r}. 

The posterior mean of σv2 given sv2 shown in Eq. (13) is now estimated based on voxels 

within a neighborhood Nv. We refer to this option as locally moderated t-statistic to 

differentiate it from the version that uses whole-brain data.

The locally moderated t-statistic allows the estimates of hyperparameters of the prior 

distribution (5) to vary across voxels. The hyperparameters are denoted by d0v and s0v
2 , 

where the subscript v indicates the voxel, and are estimated with respect to the local 

neighborhood. The estimator of d0v can be derived by solving

ψ′ d0v/2 = 1
|Nv| ∑

v′ ∈ Nv
ev − ev

2 − ψ′ dv/2 , (15)

where |·| is the cardinality, ev = 1
|Nv| ∑v′ ∈ Nvev′. The estimator of s0v

2  is

s0v
2 = exp ev + ψ d0v − log d0v/2 . (16)

We recommend that the size of the neighborhood should be chosen to be relatively large. 

Estimators of d0v and s0v
2  obtained using small neighborhoods will suffer from the lack of 

efficiency and precision of the moment estimator. This, in turn, will lead to an excess of 

false positive rate, as shown in the results.

2.1.5. Cluster-based inference—Statistical maps can be thresholded using either a 

voxel-based or cluster-based approach. In this section we illustrate how the standard and 

moderated t-statistics can be used in the context of nonparametric cluster-based inference. In 

particular, we focus on the cluster-extent (Friston et al., 1996; 1994) and threshold-free 

cluster enhancement (TFCE) approaches (Smith and Nichols, 2009). Both approaches first 

compute a voxel-based statistic across the brain (in our application using either the standard 

or moderated t-statistic) to create a statistical map. The two approaches differ in how they 

utilize this map. The cluster extent approach thresholds the resulting statistical map using a 

cluster-defining threshold (p = 0.001 in our application). The thresholded image consists of 

clusters of contiguous voxels, the size of which are used to compute cluster-extent statistics. 

The TFCE statistic instead uses the un-thresholded statistical map, and is defined at a given 

voxel v as follows:

T F C E(v) = ∫ℎ0

ℎv
e(ℎ)EℎHdℎ . (17)

Here hv is the statistic value at voxel v, h is a cluster-forming threshold, and e(h) is the 

cluster extent at voxel v with cluster-forming threshold h. It is standard practice to set h0 = 0, 

E = 0.5 and H = 2 (Smith and Nichols, 2009).
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For both approaches, we use a nonparametric procedure to create a permutation distribution 

under the null hypothesis of no effect. We use a similar procedure outlined in Nichols and 

Holmes (2002) and Noble et al. (2020). For a given permutation, each subject’s data is 

randomly ‘sign-flipped’. Using the sign-flipped data, voxel-based statistical maps are 

calculated using both the standard t-statistic and the moderated t-statistic, and the maximum 

cluster extent and maximum TFCE statistics are computed. This procedure is repeated for 

1000 permutations, and the recorded statistics are used to form the null distribution and 

determine a threshold that allows for nonparametric cluster-based inference with appropriate 

FWER control.

Note that when performing cluster-based inference we do not evaluate the local moderated t-
statistic due to the substantial computational burden involved. On a computation node with 

40 cores, it takes about 10 h to complete a computation of 1000 permutations with the 

locally moderated t-statistics on the neighborhood sized r = 5. This makes it im-practical to 

use in practice, and we therefore do not consider it further in this context.

2.2. Data sets

The Human Connectome Project 500 subject release (HCP 500) consists of both structural 

and functional data from approximately 500 subjects. While the functional data include both 

resting state (rfMRI) and task-related (tfMRI) images of multiple tasks, in this report we 

focus on the tfMRI GLM contrast images provided by the HCP. All data were acquired on a 

Siemens Skyra 3T scanner at Washington University in St. Louis. For each task, two runs 

were acquired, one with a right-to-left and the other with a left-to-right phase encoding. 

Whole-brain EPI acquisitions were acquired with a 32 channel head coil with TR = 720 ms, 

TE = 33.1 ms, flip angle = 52 deg, BW = 2290 Hz/Px, in-plane FOV = 208 × 180 mm, 72 

slices, 2.0 mm isotropic voxels, with a multi-band acceleration factor of 8. For a complete 

description of the data acquisition procedure see Van Essen et al. (2012).

Data was preprocessed according to the HCP ‘fMRIVolume’ pipeline (Glasser et al., 2013), 

which includes gradient unwarping, motion correction, fieldmap-based EPI distortion 

correction, brain-boundary-based registration of EPI to structural T1-weighted scan, non-

linear registration into MNI152 space, grand-mean intensity normalization, and spatial 

smoothing using a Gaussian kernel with a FWHM of 4 mm.

Data analysis was performed using a general linear model (GLM). For each task, predictors 

(described below for each task) were convolved with a canonical hemodynamic response 

function to generate regressors. To compensate for slice-timing differences and variability in 

the HRF delay across regions, temporal derivatives were included and treated as variable of 

no interest. Both the data and the design matrix were temporally filtered with a linear high-

pass filter (cutoff 200 s). Finally, the time series was pre-whitened to correct for 

autocorrelation in the fMRI data.

The primary datasets used in this paper are described in greater detail in Barch et al. (2013). 

Below follows a brief description. In addition, we created a fake dataset to evaluate the 

empirical false positive rate based on applying the working memory design matrix to 

resting-state data from the same subjects.
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2.2.1. Working memory—Participants (n = 494) completed a version of the N-back 

task used to assess working memory. Within each run, four different stimuli types (faces, 

places, tools and body parts) are presented in separate blocks. Half of the blocks use a 2-

back task and the other half a 0-back task. A short 2.5 s cue indicates the task type at the 

start of the block. Each of the two runs contains 8 blocks of 10 trials (2 s stimulus 

presentation, 500 ms ITI) and 4 fixation blocks (15 s each). Each block contains 2 targets, 

and 2–3 non-target lures. Eight predictors were included in the design matrix, one for each 

stimulus type in each of the N-back conditions. Each covered the period from the onset of 

the cue to the offset of the final trial. A linear COPE comparing 2-back vs. 0-back was used 

for further analysis.

2.2.2. Motor—Participants (n = 492) were presented with visual cues that ask them to tap 

their left or right fingers, squeeze their left or right toes, or move their tongue. Each block 

corresponds to one of the five movements and lasted 12 s, and is preceded by a 3 s cue. In 

each of the two runs, there are 13 blocks, with 2 tongue movements, 2 of each hand 

movement, 2 of each foot movement, and three 15 s fixation blocks. Five predictors were 

included in the design matrix for each movement, each covering the duration of the 10 

movements trials (12 s), and the cue was modeled separately. A linear COPE comparing 

finger-tapping vs. baseline was used for further analysis.

2.2.3. Emotion processing—Participants (n = 483) were presented with blocks of 

trials that either asked them to decide which of two faces shown at the bottom of the screen 

matched the face at the top, or which of two shapes presented at the bottom matched the 

shape at the top. The faces had either angry or fearful expressions. Trials are presented in 

blocks of 6 trials (2 s stimulus presentation, 1 s ITI) of the same task (face or shape). Each 

block was preceded by a 3 s task cue (‘shape’ or ‘face’). Each of the two runs includes 3 

face blocks and 3 shape blocks. Two different predictors were included in the design matrix, 

one corresponding to emotional faces and the other to the shape control condition. Each 

predictor covered a 21 s duration composed of a cue and six trials. A linear COPE 

comparing emotional faces vs. control was used for further analysis.

2.2.4. Gambling—Participants (n = 492) were asked to guess the number on a mystery 

card in order to either win or lose money. They are told that the number ranged from 1 to 9, 

and to guess whether the number on the mystery card number is greater or less than 5 by 

pressing one of two buttons. Feedback is the number on the card and either a green up arrow 

with $1 for reward trials; a red down arrow with $0.50 for loss trials; or the number 5 and a 

gray double headed arrow for neutral trials. The task is presented in blocks of 8 trials with 

mostly reward (6 reward trials |interleaved with either 1 neutral and 1 loss trial, 2 neutral 

trials, or 2 loss trials) or mostly loss (6 loss trials interleaved with either 1 neutral and 1 

reward trial, 2 neutral trials, or 2 reward trials). In each of the two runs, there are 2 mostly 

reward and 2 mostly loss blocks, interleaved with 4 fixation blocks (15 s each). Two 

predictors were included in the design matrix to model mostly reward and mostly 

punishment or loss blocks, each covering the duration of 8 trials (28 s). A linear COPE 

comparing reward vs. punishment for gambling was used for further analysis.
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2.2.5. Fake ‘working memory’—To establish the empirical error control of the 

methods we are evaluating, we also created null data in a manner similar to that described in 

Eklund et al. (2016). For each participant (n = 465) we re-ran the first level GLM analysis 

using the design matrix from the working memory task (see Section 2.2.1 for details) 

applied to the same subjects resting-state fMRI data (truncated to have the same length as 

the working memory data). As in Section 2.2.1 the linear COPE corresponding to the 

comparison “2-back vs. 0-back” was used for further analysis. However, in this case we 

don’t anticipate significant activation as the data and model are not linked.

2.3. Model evaluation

Throughout we assume that the population of interest consists of the full collection of 

roughly 500 subjects. For each task this allows us to compute population effect sizes at each 

voxel, based on all of the subjects in the population. This provides us with a benchmark that 

can subsequently be used for direct comparison with results obtained using data from a 

smaller subset of the population.

It is important to note that the t-statistic is sample size dependent, and relates to the presence 

of an effect (i.e., statistical significance), not its magnitude. Effect size, by contrast, is a unit-

free description of the strength of an effect, independent of sample size (Chen et al., 2016; 

Reddan et al., 2017). It describes a findings practical significance, which in turn helps 

determine its clinical impact. This distinction is important because small effects can reach 

statistical significance given a large enough sample, even if they are unlikely to be of 

practical importance or replicable across diverse samples. There are multiple ways to 

compute effect size. Here we use a variant of Cohen’s d that can be computed at voxel v as 

the mean COPE (across subjects) divided by the standard deviation. Using our notation the 

effect size can be computed as follows:

θv = Tv/ N . (18)

Using these values, we group voxels into four different effect size categories (Geuter et al., 

2018). Voxels are≤ placed in the ‘low’ group if 0.2 ≤ |θv| < 0.5, the ‘medium’ group if 0.5 ≤ |

θv| < 0.8, and the ‘high’ group if 0.8 ≤ |θv|. These groupings are based on guidelines from 

Cohen (1988). All remaining voxels are placed in a ‘no effect’ group.

In the continuation, we consider the population-level results as our ‘gold standard’, and use 

these results as a stand in for the ground truth effect size at different voxels for the various 

tasks. To evaluate the reproducibility of small sample fMRI studies, we draw K = 100 

different samples from the population at each of the following sample sizes: N = 10, 20, 40, 

60, 80 and 100. This allows us to mimic the typical sample sizes used in studies performed 

by individual labs. Note that throughout we are sampling without replacement to enable an 

appropriate comparison with the non-parametric pseudo t-statistic. For each sample we 

perform a group analysis using the standard t-test, the pseudo t-test, the moderated t-statistic, 

and the locally moderated t-statistic. A series of different thresholds are applied to the 

resulting t-maps to assess significance: a voxel-wise threshold of p < 0.001 uncorrected; a 

voxel-based FWER corrected threshold at the p < 0.05 level; and two cluster-based FWER 

corrected thresholds at the p < 0.05 level. For the standard t-test, the moderated t-statistic, 
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and the locally moderated t-statistic voxel-based FWER corrected p-values were obtained 

with a Bonferroni correction for the number of voxels. For the pseudo t-statistic, voxel-based 

FWER corrected p-values were calculated as the proportion of the max statistic null 

distribution that were as large or larger than the given statistic value. For the standard t-test 

and the moderated t-statistic, cluster-based FWER corrected p-values were obtained using 

both the cluster extent and TFCE approaches.

When computing the locally moderated t-statistic we use neighborhoods with radius r = 1, 3, 

5, 7, 9. We begin by evaluating the false positive rate, power, and empirical FWER for each 

radius in order to determine which value to use in our analysis. For each sample size and 

method we study how a voxels effect size corresponds to its likelihood to be deemed active. 

Using the population effect size groups defined above, we measured the proportion of voxels 

that were deemed significant, as well as the proportion of voxels in each group that were 

active in more than 80% of samples. This allowed us to assess the false negative rate (under 

the assumption that voxels with this effect size should be deemed active) associated with 

each sample size and effect size, as well as the power to detect activation of a certain effect 

size. Further, using the ‘fake data’ described in Section 2.2.5 we evaluated the empirical 

false positive rate for each of the sample sizes and methods. Similar to Eklund et al. (2012, 

2016), the FWER were estimated by determining the proportion of the K = 100 samples 

with any significant group activation. Under the assumption that the estimated FWER 

follows a binomial distribution, approximate 95% confidence intervals can be computed. 

This is given by e ± 1.96 × e(1 − e)/K, and for a FWER of e = 0.05 this corresponds to 

(0.73% 9.26%).

2.4. Implementation in R

We implemented both the moderated and locally moderated t-statistic in the R (R Core 

Team, 2019) software environment. The LIMMI R-package provides a set of functions for 

running linear models for medical images, adapting the framework of LIMMA to NIfTI 

images. The package has been developed so that users will have a quick and convenient way 

to apply the moderated t-statistic to fMRI data. Similar to the LIMMA package, there are 

specific functions for performing linear fitting and empirical Bayes fitting on both a global 

and local scale. Our package also allows users to compute in parallel by simply specifying 

the number of computing threads. It is freely available at https://github.com/muschellij2/

limmi. Sample code is provided in the Appendix. Note installation of the LIMMI package 

from Github requires the package SummarizedExperiment, which is available on 

Bioconductor (Gentleman et al., 2004).

3. Results

Table 1 shows the number of voxels in each effect-size category for each task. The 

equivalent percentages are listed in parentheses. There is a clear discrepancy between tasks 

with regards to the proportion of voxels in each group. In the working memory, emotion, and 

gambling tasks, the majority of voxels (over 90%) have medium or lower effect sizes (|θv| < 
0.8), whereas the motor task has a larger number of voxels (roughly 25%) with large effect 
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sizes. Interestingly, for the gambling task less than 1% of all voxels are in the medium and 

large effect size groups.

We begin by evaluating the optimal neighborhood size to use for the pseudo t-statistic and 

locally moderated t-statistic. Supplementary Figures S1 and S2 show results obtained using 

the locally moderated t-statistics approach with different neighborhoods and an uncorrected 

p-value thresholding at 0.001. The neighborhood size of r = 1 achieved the best performance 

in terms of false positive rate and power. Similar conclusions can be drawn from 

Supplementary Figures S1 and S2, which show equivalent results obtained using voxel-

based FWER-correction at the 0.05 level. However, even though the smaller neighborhoods 

appear to outperform the larger ones, results shown in Supplementary Figure S5 indicate that 

the FWER control for small neighborhoods exceeds the nominal 5%, whereas the inference 

made using locally moderated t-tests with larger neighborhoods were conservative but 

controlled at the 5% level. Together, these results suggest using a neighborhood of r = 5, 

which we use as the default when presenting results below.

The top panel of Fig. 1 shows the estimated false negative rates for each task when using 

voxel-based FWER correction. The rate is higher when estimated with smaller samples 

across each task and effect size category. We note that the vast majority of voxels are not 

significant with N = 10 under FWER correction in each of the effect size groups across 

tasks. The locally moderated t-statistic approach yields the least number of false negative 

rates in all effect size categories except for the emotion processing task with N = 20, where 

the moderated t-statistic performs slightly better. The non-parametric pseudo t-statistic 

approach performed better than the standard t-statistic for small sample sizes (N = 20), but 

not for larger sample sizes.

To aid in the visualization of differences between methods, the bottom panel of Fig. 1 

highlights the differences in the estimated false negative rates between the moderated and 

standard t-statistics. Here the false negative rates for the standard t-statistic is subtracted 

from that of the moderated and locally moderated t-statistic. Thus, negative values indicate 

improved performance using the moderated approaches, and values close to zero indicate 

minimal difference. The locally moderated t-statistic significantly outperformed the standard 

t-statistic in all tasks and effect size categories, while the moderated t-statistic also generally 

performed better than the standard t-statistic, with the exception of the gambling task at N = 

40. However, note that this task has an unusually small amount of voxels in the large effect 

size group. In certain situations, the difference between methods is substantial. For example, 

the false negative rate obtained using the locally moderated approach is roughly 15% less 

than the standard t-statistic approach for several of the tasks in the large effect size group for 

sample sizes between 20 and 40. In addition, the locally moderated t-statistic consistently 

outperforms the standard moderated t-statistic.

The top panel of Fig. 2 shows the proportion of voxels that are deemed significant with 

voxel-based FWER correction in at least 80% of samples, in other words, achieved 80% 

empirical power. We find that the vast majority of voxels are not consistently significant for 

N = 10 in each of the effect size groups across tasks, and hence the differences between 

methods are by default negligible. For larger sample sizes, the moderated and locally 
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moderated t-statistic approach tend to outperform both the standard t-statistic and the pseudo 

t-statistic.

The bottom panel of Fig. 2 highlights the differences in the estimated proportion of voxels 

that are deemed significant between the moderated methods and the standard t-statistic. Here 

the proportion for the standard t-statistic is subtracted from that of the moderated t-statistic 

and locally moderated t-statistic. Thus, positive values indicate improved performance by 

the moderated methods, and values close to zero minimal difference. Once again, the 

difference can be substantial. For example, for the motor task and large effect sizes locally 

moderated t-statistic outperforms the standard t-statistic by roughly 15% when N = 60. 

However, in rare cases, for example, the gambling task and large effect size group at N = 60, 

the moderated t-statistic approach is outperformed by the standard t-statistic (with the caveat 

that this task has an small amount of voxels with large effect sizes). In addition, the locally 

moderated t-statistic consistently outperforms the standard moderated t-statistic.

Fig. 3 shows a comparison of the empirical FWER estimated using the fake ‘working 

memory’ data. The standard t-test, moderated and locally moderated t-tests are valid at the 

nominal 5% level. The non-parametric pseudo t-statistic approach consistently has larger 

FWER than the other three parametric approaches, and exceeds the 5% level at large sample 

sizes (though still within the 95% confidence interval). This indicates that the moderated t-
test approach helps address problems with power rather than lack of control for type-1 

errors.

Figs. 4 –6 show equivalent results as described above when using cluster-based thresholding 

instead of voxel-based thresholding. Here we evaluate the cluster extent approach using 

either the standard or moderated t-statistic to create the initial voxel-based statistic map, and 

the TFCE approach using either the standard or moderated t-statistic. In contrast to voxel-

based inference, cluster-based inference shows lower false negative rate and higher 

proportion of active voxels across the board for all tasks, effect size groups, and sample 

sizes. In addition, the TFCE approach consistently outperforms the cluster extent approach. 

This result is consistent with those found in Noble et al. (2020).

Figure 4 shows the estimated false negative rates for each task when using cluster-based 

FWER correction. As expected, the rate is higher when estimated with smaller samples 

across each task and effect size category. The bottom panel highlights the difference in the 

estimated false negative rates between cluster extent (TFCE) using the moderated t-statistic 

and cluster extent (TFCE) using the standard t-statistic. In general, we find that combining 

cluster extent (TFCE) with the moderated t-statistic performs better than when combining it 

with the standard t-statistic. This is particularly true in the large effect-size group for small 

sample sizes (N < 40). For medium and small effect size groups the difference between 

methods is more negligible, with slight improvements using the moderated t-statistic when 

N = 10 for several tasks.

Fig. 5 shows the proportion of voxels that are deemed significant with cluster-based FWER 

correction in at least 80% of samples. The bottom panel highlights the difference in 

proportion between cluster extent (TFCE) using the moderated t-statistic and cluster extent 
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(TFCE) using the standard t-statistic. In general, combining cluster-based procedures with 

the moderated t-statistic performs better compared to when using the standard t-statistic. For 

the large effect size group this improvement is particularly strong for small sample sizes (N 
< 40). For the medium effect size group improvement is smaller and more apparent at 

moderate sample sizes (N = 60). We find that for the working memory and gambling tasks, 

the vast majority of voxels are not consistently significant for N = 10 in each of the effect 

size groups across tasks, and hence the difference between methods are by default 

negligible.

Fig. 6 shows a comparison of the empirical FWER estimated using the fake ‘working 

memory’ data. While all rates are within the 95% confidence interval, it should be noted that 

they are consistently higher than those observed for their voxel-based equivalents.

Finally for completeness, Figures S6 and S7 show similar results when thresholding at p < 
0.001 uncorrected. Here the results point to a greater difference between the moderated and 

standard t-statistics at small sample size (i.e., N = 10) for the large effect size group. This is 

no doubt due to the increased number of significant results obtained in this setting.

4. Discussion

When working with data from studies with small sample sizes, directly using the standard t-
statistic can be problematic, as difficulties obtaining an accurate estimate of the variance can 

lead to noisy t-statistic images and decreased power to detect effects (Nichols and Holmes, 

2002). An early solution to this problem, proposed by Nichols and Holmes (2002), is the so-

called pseudo t-statistic that spatially smooths the sample variances across voxels, thereby 

stabilizing their variability. However, the approach lacks a closed-form distribution to access 

significance and can therefore only be applied in non-parametric analysis.

In this paper we have introduced a moderated t-statistic to the neuroimaging community that 

has previously found wide usage in the genomics literature for dealing with problems related 

to small sample sizes. It was popularized through its inclusion in the R-package LIMMA 

(Ritchie et al., 2015), which is commonly used to analyze gene expression data arising from 

microarray or RNA-seq technologies. Here we investigated its performance using task-based 

fMRI data from the Human Connectome Project. Our results show that the moderated t-
statistic outperforms both the standard t-statistic and the pseudo t-statistic in terms of both 

false negative rate and power for small sample sizes.

While both the moderated t-statistic and the pseudo t-statistic stabilize estimates by 

borrowing strength from neighboring voxels, they do this in different ways. While the 

pseudo t-statistic uses standard spatial smoothing, the moderated t-statistic uses empirical 

Bayes (or shrinkage) methods to borrow strength from other voxels to obtain a less noisy 

estimate of the sample variance. Importantly, in contrast to the pseudo t-statistic, under the 

null hypothesis, the moderated t-statistic can be shown to follow a t-distribution with 

augmented degrees of freedom, facilitating its use in a broader context than the pseudo t-
statistic.
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While empirical Bayes methods have found usage in the neuroimaging community (Chen et 

al., 2015; Mejia et al., 2015; Shou et al., 2014), the only paper we are aware of that has 

performed shrinkage on variance components is Su et al. (2008). A major difference 

between that work and ours, is that they do not shrink voxels within spatial neighborhoods, 

instead opting to shrink over all voxels in the brain. This highlights an important point when 

using either the moderated or pseudo t-statistics, namely determining the appropriate 

neighborhood size to use when borrowing strength. Our findings show (see Supplementary 

Figure S5) that the size of the neighborhood should be chosen to be relatively large. This is 

due to difficulties in estimating the hyperparameters for small neighborhoods, which leads to 

an increased false positive rate.

When performing multi-subject analysis using fMRI data it is common to use a two-level 

model where the first level deals with individual subjects and the second level deals with 

groups of subjects. The two-level model can be combined into a mixed-effects model, or 

alternatively be evaluated using a two-stage group analysis (Mumford and Nichols, 2009) 

where first level COPEs are modeled at the second level using an un-weighted, ordinary 

least squares (OLS) approach. While we note that the state-of-the-art solutions for group 

analysis in fMRI are based on mixed-effects models (see, for example, Chen et al., 2013; 

Lindquist et al., 2012; Woolrich et al., 2004), the focus of this paper is on second-level 

analysis within a two-stage group analysis as this is the approach most practitioners use. 

That said, we note that mixed-effects implementations exist for popular fMRI software 

packages, and these methods can improve estimation accuracy and increase power in some 

cases, particularly with dramatically unbalanced designs and/or heterogeneous variances 

across subjects (Mumford and Nichols, 2009).

We evaluated the performance of the moderated t-statistic both in the context of using voxel-

based and cluster-based thresholding. In general, for each task and sample size, cluster-based 

thresholding had lower false negative rates and a higher proportion of active voxels 

compared to voxel-based thresholding. In particular, it is interesting to note that when using 

voxel-wise thresholding roughly 10–50% of large effect size voxels have 80% power with a 

relatively moderate sample size (n = 40). In contrast, the same power is attained for the large 

effect size voxels with a small sample size (n = 20). In addition, results were improved when 

using TFCE relative to cluster extent, which is consistent with findings in Smith and Nichols 

(2009) and Noble et al. (2020). Finally, central to you goals of this paper, we showed that 

using the moderated t-statistic instead of the standard t-statistic provided further 

improvement for the large effect size group at small sample sizes and for the medium effect 

size group at moderate sample sizes.

To facilitate easy application of our proposed approach to neuroimaging data, we provide an 

implementation in the R software language (R Core Team, 2019). Our package provides a 

set of functions for running linear models on NIfTI images. Thus, it provides an extension of 

the LIMMA package to medical images, providing users with a way to apply the moderated 

t-statistic to fMRI data.

While the presented approach has been proven to be useful in the small sample setting, we 

maintain that, if possible, researchers should ideally perform studies with larger sample 
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sizes. However, we are cognizant that due to costs and resources this is often not a feasible 

solution. Thus, if one is faced with analyzing data from a study with small sample size (i.e., 

less than 40 subjects) then the use of the moderated t-statistic is an attractive option.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
False negative rates for each task using voxel-based FWER-correction at the 0.05 level. 

(Top) Rates are shown for four different methods: standard t statistics, moderated t-statistics, 

locally moderated t-statistics with r = 5, and non-parametric pseudo t-statistics. Rates are 

stratified according to effect size group. (Bottom) The difference in false negative rate 

between moderated/locally moderated t-statistics and the standard t-statistic is shown for 

each task and effect size group. The results highlight the differences in results for small 

sample sizes. The results illustrate that locally moderated t-statistics performs significantly 

better than the other methods for small sample sizes. Note if two lines overlap their colors 

are mixed.
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Fig. 2. 
Proportion of active voxels in each task using voxel-based FWER-correction at the 0.05 

level. (Top) Proportions are shown for four different methods: standard t-statistics, 

moderated t-statistics, locally moderated t-statistics with r = 5, and non-parametric pseudo t-
statistics. Proportions are stratified according to effect size group. (Bottom) The difference 

in proportions between moderated/locally moderated t-statistics and the standard t-statistic is 

shown for each task and effect size group. The results show the proportion is always larger 

for locally moderated t-statistics, particularly for small sample sizes. Note if two lines 

overlap their colors are mixed.
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Fig. 3. 
The empirical family-wise error rate control for each method estimated using the fake 

‘working memory’ data. The FWER is controlled at the 5% level using voxel-based 

methods, indicated by the solid black horizonal line. Inference based on the standard t-
statistic, moderated t-statistic, and locally moderated t-statistic with r = 5 are valid but 

conservative, whereas the non-parametric pseudo t-statistic increased FWER at large sample 

size. Note if two lines overlap their colors are mixed.
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Fig. 4. 
False negative rates for each task using cluster-based FWER-correction at the 0.05 level. We 

contrast two approaches, cluster extent with a cluster-defining threshold of p = 0.001 and 

TFCE. Further, standard and moderated t-statistics are combined with each of the cluster-

wise methods giving rise to four combinations. (Top) Rates are shown for the four different 

combinations of methods. Rates are stratified according to effect size group. (Bottom) The 

difference in false negative rate between cluster extent/TFCE using the moderated t-statistic 

and cluster extent/TFCE using the standard t-statistic is shown for each task and effect size 

group. The results illustrate that moderated t-statistics improves the performance of cluster-

based methods compared to when using standard t-statistics for small sample sizes, 

especially in the large effect-size group. Note if two lines overlap their colors are mixed.
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Fig. 5. 
Proportion of active voxels in each task using cluster-based FWER-correction methods. We 

contrast two approaches, cluster extent with a cluster-defining threshold of p = 0.001 and 

TFCE. Further, standard and moderated t-statistics are combined with each of the cluster-

wise methods giving rise to four combinations. (Top) Proportions are shown for the four 

different combinations of methods. Proportions are stratified according to effect size group. 

(Bottom) The difference in proportions between cluster extent/TFCE using the moderated t-
statistic and cluster extent/TFCE using the standard t-statistic for each task and effect size 

group. The results show the proportion is larger when using the moderated t-statistic, 

particularly for small sample sizes in the large effect-size group. Note if two lines overlap 

their colors are mixed.
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Fig. 6. 
The empirical family-wise error rate control for each method estimated using the fake 

‘working memory’ data. The FWER is controlled at the 5% level using cluster-based 

methods, indicated by the solid black horizontal line. The 95% confidence intervals are 

included as reference. Note if two lines overlap their colors are mixed.
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