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Humans can distinguish visual stimuli that differ by features the size of only a few photoreceptors. This is possible
despite the incessant image motion due to fixational eye movements, which can be many times larger than the
features to be distinguished. To perform well, the brain must identify the retinal firing patterns induced by the
stimulus while discounting similar patterns caused by spontaneous retinal activity. This is a challenge since the
trajectory of the eye movements, and consequently, the stimulus position, are unknown. We derive a decision rule for
using retinal spike trains to discriminate between two stimuli, given that their retinal image moves with an unknown
random walk trajectory. This algorithm dynamically estimates the probability of the stimulus at different retinal
locations, and uses this to modulate the influence of retinal spikes acquired later. Applied to a simple orientation-
discrimination task, the algorithm performance is consistent with human acuity, whereas naive strategies that neglect
eye movements perform much worse. We then show how a simple, biologically plausible neural network could
implement this algorithm using a local, activity-dependent gain and lateral interactions approximately matched to the
statistics of eye movements. Finally, we discuss evidence that such a network could be operating in the primary visual
cortex.
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Introduction

People with normal visual acuity are able to resolve visual
features that subtend a single arc minute of visual angle. For
the letters ‘‘F’’ and ‘‘P’’ on a Snellen eye chart, this
corresponds to a difference of just a few photoreceptors
(Figure 1). As we try to resolve these tiny features, fixational
eye movements jitter them across the retina over distances
substantially greater than the features themselves (Figure 1).
How can we have such fine acuity when our eyes are moving
so much?

If the brain knew the complex eye movement trajectory,
then it could realign the retinal responses before processing
them further. However, central visual circuits probably do
not have access to the eye movement trajectory at a
sufficiently fine scale. Fixational eye movements arise from
imperfect compensation for head and body movements [1,2]
and motor noise [3], so it is unlikely that the visual system has
a reliable estimate of the resultant image motion. Although
there are both efference copies of eye movement signals and
proprioceptive feedback, they have a limited accuracy of
several degrees [4,5], which is inadequate for tracking the
much smaller movements during fixation. Thus, any estimate
the brain makes about fine fixational eye movements is
probably driven by visual input alone [6,7].

Unfortunately, visual processing in the retina introduces
noise, leaving the brain with uncertainty both about the
stimulus shape itself and about the precise trajectory the
stimulus traces on the retina. The retina’s output neurons—
the retinal ganglion cells—are not perfectly reliable in their
response to stimulation, and even without stimulation, they
fire action potentials at a substantial rate. For brief, small
stimuli on a featureless background, the total stimulated

retinal response may consist of just a few tens of spikes. The
brain must distinguish these spikes from the many hundreds
of spontaneous spikes that reflect only noise. The usual
remedy would be to accumulate many spikes over time until
the signal emerges from the noise; but this is difficult because
the fixational eye movements scatter the desired responses
across space.
Thus we recognize a challenge for visual acuity in the

presence of eye movements: To identify the stimulus, the
brain needs to know the precise stimulus trajectory; yet to
track the stimulus trajectory, the brain needs to identify
which neural spikes are stimulated and which are only noise.
Presented with this challenge, what strategy could the brain

use to achieve the visual acuity that humans exhibit? We will
show that naive decodings of retinal spike trains that neglect
the eye movements perform poorly at discriminating fine
visual features. We derive a significantly better strategy that
exploits the fact that eye movements are continuous to
estimate the stimulus position on the retina and give greater
weight to retinal spikes originating near this position.
Surprisingly, we found that this strategy is attainable by a
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simple neural network whose properties are consistent with
functional and anatomical features of primary visual cortex.

Results

Psychophysics
For concreteness, we choose a simple task to analyze: An

observer is asked to discriminate between two tiny oriented
bars that span 1 or 2 arcmin of visual angle. In the retina’s
fovea, this stimulus affects just a few cone photoreceptors,
each collecting light from a region about 0.5 arcmin in
diameter. Each cone drives approximately one On-type and
one Off-type ganglion cell, and conversely, each ganglion cell
receives its input from just one cone [8]. This means that at
any given instant, the brain receives information about the
stimulus from spiking in a small cluster of retinal ganglion
cells, but the identity of those cells changes continually as the
stimulus jitters across the retina. We tested human subjects
on this discrimination task and found that despite these
challenges, many human subjects can actually perform well
above chance (Figure 2, see also [9,10]).

It is plausible that the finest human acuity might be limited
primarily by the information available in the retina rather
than by later constraints or losses. For example, our ability to
detect dim lights in absolute darkness is ultimately limited by
photon shot noise at the rod photoreceptor. In bright light—
the condition considered here—noise introduced by retinal
processing greatly exceeds photon shot noise [11–13].
Correspondingly, human thresholds on fine acuity tasks are
worse by a factor of ten than expected from ideal processing
of photon counts [9,10]. Instead, human performance on
simple visual tasks is more compatible with the limitations
from noisy retinal ganglion cell spikes [14,15]. If acuity is in
fact limited by the retinal spike trains, then the brain must
make efficient use of these spikes to extract the relevant
information.

Markov Decoder Model
We now present a strategy for accumulating information

about position and orientation of the small stimulus bar on
the retina. This strategy decodes the observed spike trains
from retinal ganglion cells using prior knowledge about the
statistics of those spikes and the statistics of eye movements.
The output of the decoder is a moment-to-moment estimate
of the bar’s orientation.

The decoder assumes a model of retinal ganglion cell spike
generation, shown in Figure 3A, which includes random eye
movements, optical blur, spatial receptive fields, temporal
filtering, rectification, and probabilistic spiking. Each stim-
ulus is a small, dark, oriented rectangle that jitters across the
retina. The eye’s optics introduce a spatial blur, implemented
by a Gaussian filter with a 0.5 arcmin diameter. We assume
this image is sensed by photoreceptors arranged on a square
lattice, each activating one Off-type ganglion cell. We neglect
the On-type cells because they will generate only a weak
response to the small, dark stimulus (see Discussion). For the
same reason, we neglect the broad, but shallow, surrounds of
Off-cells, which are usually approximately 50 times weaker
than the receptive field center [16]. Furthermore, we first
assume for simplicity that ganglion cells report on the
instantaneous light intensity in their receptive field center;
later, we will consider implications of including a temporal
filter like that in Figure 3D. Under these assumptions, when a
stimulus with orientation S is at position x, a model retinal
ganglion cell at position y fires action potentials with Poisson
statistics at the instantaneous time-dependent rate rS(y � x)
depicted in Figure 3B, ranging from a peak value rmax at
positions near the stimulus to the background firing rate r0 at
large distances. In bright conditions, retinal ganglion cells
respond to a contrast of 100% (black on white) with a spike
rate of rmax ; 100 Hz [17]. Far from the stimulus, we assume
neurons fire spontaneously with rates on the order of r0 ; 10
Hz [18,19].
In weighting the retinal responses properly, the decoder

takes into account the statistics of the trajectories that are
traced by the fixed stimulus on the moving retina. Fixational
eye movements are classified into three types of motion:
microsaccades, drift, and tremor [20]. Microsaccades are not
thought to play a role in fine visual tasks [21–23], though they

Figure 1. The Neighboring Letters ‘‘F’’ and ‘‘P’’ on the 20/20 Line of the

Snellen Eye Chart, Blurred by a Gaussian of Diameter 0.5 arcmin and

Projected onto an Image of the Foveal Cone Mosaic (Photoreceptor

Image Modified from [92])

The 1-arcmin features that distinguish the letters extend over only a few
photoreceptors. Also shown is a sample fixational eye movement
trajectory for a standing subject (courtesy of [25]), sampled every 2 ms
for a duration of 500 ms and then smoothed with a 4-ms boxcar filter.
doi:10.1371/journal.pbio.0050331.g001
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Author Summary

Like a camera, the eye projects an image of the world onto our
retina. But unlike a camera, the eye continues to execute small,
random movements, even when we fix our gaze. Consequently, the
projected image jitters over the retina. In a camera, such jitter leads
to a blurred image on the film. Interestingly, our visual acuity is
many times sharper than expected from the motion blur.
Apparently, the brain uses an active process to track the image
through its jittering motion across the retina. Here, we propose an
algorithm for how this can be accomplished. The algorithm uses
realistic spike responses of optic nerve fibers to reconstruct the
visual image, and requires no knowledge of the eye movement
trajectory. Its performance can account for human visual acuity.
Furthermore, we show that this algorithm could be implemented
biologically by the neural circuits of primary visual cortex.



may contribute to peripheral vision [24]. Tremor has very low
amplitude, less than a photoreceptor diameter. We therefore
concentrate on the drift component, which has the properties
of a random walk [3], with modest deviations on short and
long timescales [25]. For simplicity, we assume that the
fixational eye movements are described by a spatially discrete
random walk across the photoreceptor lattice with an
effective diffusion constant of D ; 100 arcmin2/s (see
Materials and Methods).

For a random walk trajectory, the probability of the
current position depends only on its most recent previous
position. This attribute, in combination with the assumption
that retinal responses are memoryless, allows us to write a
differential equation for the probability distribution PðS; x; tÞ
of the stimulus orientation S and current location x, given all
the spikes observed before time t:

@

@t
PðS; x; tÞ ¼

X
y

kyðtÞfSðy� xÞPðS; x; tÞ � rtotS ðxÞPðS; x; tÞ

þDr2PðS; x; tÞ ð1Þ

(see Protocol S1 for a derivation). In this equation,
kyðtÞ ¼

P
ty dðt� tyÞ stands for the observed spike train

of the retinal neuron y at time t; fSðy� xÞ ¼ lnðrSðy� xÞ=r0Þ
reflects the expected firing-rate profile generated
by the stimulus; rtotS ðxÞ ¼

P
y rSðy� xÞ denotes the total

expected firing rate of the retinal ganglion cell array; and
r2 represents a discrete version of a second-order spatial
derivative operator. On a square lattice, r2PðS; x; tÞ ¼
1
a2 ð
P

Dx PðS; xþ Dx; tÞ � 4PðS; x; tÞÞ, where x þ Dx ranges over
the four nearest neighbors of x on the lattice (Figure 3C), and
a is the distance between lattice points.

Equation 1, also known as a Fokker-Planck equation,
describes a reaction-diffusion system [26]. There are three
sources of changes in the stimulus posterior probabilities
PðS; x; tÞ. The first term,

X
y

kyðtÞfSðy� xÞPðS; x; tÞ; ð2Þ

implies that each spike of a retinal neuron y results in a

multiplicative update of the stimulus posterior probabilities
PðS; x; tÞ by a factor rSðy� xÞ=r0 (as shown in Materials and
Methods), thus increasing the likelihoods of stimulus posi-
tions x near the firing retinal neuron, where rSðy� xÞ=r0 is
large. The second term,

�rtotS ðxÞPðS; x; tÞ; ð3Þ

represents the ‘‘negative’’ evidence accumulating during
quiescent periods. In between retinal spikes, PðS; x; tÞ decays
exponentially with a decay rate that equals the total expected
firing rate of the retinal array with the stimulus S at position
x. In the present case, in which the total activation of the
retina is the same regardless of the orientation and position
of the stimulus, we ignore this term since it does not affect
the relative values of the posterior distribution for different
orientations S or positions x. These first two terms represent
the local ‘‘reaction’’ terms. The last term,

Dr2PðS; x; tÞ; ð4Þ

is the ‘‘diffusion’’ term; it describes the lateral spread of the
posterior probability across the retina during the time
between retinal spikes. This spread accounts for the expected
stimulus movements due to the fixational eye movements.
The rate of spread is given by D, the diffusion constant of the
fixational eye movements. The initial condition for solving
Equation 1 is specified by PðS; x; 0Þ, which is the initial
probability distribution of the stimulus orientation and
position prior to observing any spikes. We will assume that
it is uniform over the entire range of positions and
orientations. Finally, we note that Equation 1 technically
yields the posterior probability only up to an overall
normalization factor (see Protocol S1 for a strictly normal-
ized version). This is unimportant for discrimination, since
only the relative values of P for different orientations matter.
However, in numerical work, one must supplement Equation
1 by a divisive normalization, periodically dividing all
components of P by the sum

P
S;x PðS; x; tÞ over space and

orientation (see Materials and Methods).
This decoder of retinal spike trains can be applied to a

Figure 2. The Discrimination Task

(A) Tiny horizontal and vertical stimuli, sized to subtend 0.5 3 1, 0.75 3 1.5, and 1 3 2 arcmin2 when viewed at a distance of 88 cm.
(B) Performance of nine human participants on this task, measured by the fraction of correct guesses out of 32 trials. Error bars represent the 68%
confidence interval.
doi:10.1371/journal.pbio.0050331.g002
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variety of tasks. For instance, in a localization task with
a stimulus of known orientation, S, the estimate of the
stimulus position x is given by xestimate ¼ arg m

x
ax PðS; x; tÞ. In

a discrimination task in which only the orientation needs to
be determined, a sum over the irrelevant position variable
yields Sestimate ¼ arg m

S
ax
P

x PðS; x; tÞ.
The first-order differential equation (Equation 1) implies

that the posterior probability can be updated in a way that
depends only on the current posterior probability and the
current evidence from spikes. This is possible because the
assumed process of generating spikes depends only on the
current stimulus location. This is an example of what is
known as a Markov process, more specifically, a hidden
Markov process because the location variable is not observed
directly. We will call this decoder of the spike trains the
‘‘Markov decoder.’’ It will yield optimal decisions if the
Markov assumptions accurately describe the spike generation
process.

Visualizing the Markov Decoder Algorithm
We illustrate the performance of the decoder in Figure 4A–

4E, using spike trains from a one-dimensional model retina.
In the first task (Figure 4A–4C), the stimulus shape is known,
so the only uncertainty is its location. The stimulus follows a
random walk trajectory, generating the instantaneous firing-
rate pattern (Figure 4A), and eliciting extra spikes for
neurons along its path while other neurons produce sponta-
neous spikes at a lower rate (Figure 4B). The Markov decoder
collects all the retinal spikes and solves Equation 1 to estimate
the posterior probability distribution over positions (see
Materials and Methods for numerical details). The result is
displayed in Figure 4C.

In the particular trial depicted, the task of localizing the
stimulus appears quite difficult, even with only one spatial
dimension: In any given time slice, the evidence provided by
retinal spikes is rather weak. Nonetheless, the accumulated

evidence over time provides a good estimate of the stimulus
trajectory. As evidence from the spiking neurons accumu-
lates, the decoder locks onto and tracks the true stimulus
location.
In a second task, the decoder must discriminate between

two possible stimulus shapes moving on a one-dimensional
retina (Figure 4D and 4E). Because one dimension does not
allow for horizontal and vertical bars, we take the shape
variable S to refer to two stimuli related by reflection (Figure
4D, inset). Again, these probabilities evolve according to the
reaction-diffusion dynamics of Equation 1, where incoming
spikes lead the probability distributions to track the stimulus,
but now there is a competition for probability between two
stimulus shapes. The Markov decoder may make errors in
position, stimulus identity, or both, depending on the
particular spike trains it observed, but on average, it
discriminates between the two stimulus shapes with an
accuracy well above chance.

Non-Markovian Spike Generation with Temporal Filtering
So far, we have assumed that the retinal ganglion cells

report on the instantaneous light intensity, but this is not
realistic. Primate photoreceptors react slowly, with integra-
tion times on the order of 25 ms [27], yet the eye movements’
diffusion constant of 100 arcmin2/s implies that the stimulus
typically moves one photoreceptor diameter in under a
millisecond. Therefore, the firing of retinal ganglion cells
cannot track the light intensity as it fluctuates on this rapid
timescale. More realistically, the ganglion cells respond to the
light intensity in their receptive field averaged by a biphasic
temporal filter like that shown in Figure 3D [28].
This temporal filtering has an important implication: Since

the spiking probability depends on an extended history of
stimulus positions, the spikes cannot be interpreted optimally
by the Markov decoder. One can generalize Equation 1 to
derive the optimal decoder in this situation. The posterior

Figure 3. Models of Spike Generation and Decoding

(A) A block diagram of the features in the model visual system; see text for details.
(B) Firing-rate profiles rS(y) induced by horizontal and vertical stimuli on the model foveal lattice. Left: 0.5 3 1 arcmin2. Right: 1 3 2 arcmin2.
(C) A graphical representation of the discrete second-derivative operator used to calculate diffusion rates.
(D) The temporal filters that model retinal ganglion cells use to convert the time-varying light intensity into the instantaneous firing rate.
doi:10.1371/journal.pbio.0050331.g003
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probability distribution now extends over all possible random
walk trajectories within the temporal range of the filter.
There are approximately 108 such trajectories leading up to
each stimulus location, and propagating their probability
distribution is numerically unwieldy. It also seems improb-
able that the brain takes such an approach. These arguments
apply strictly to the optimal decoder, but there may exist
useful and efficient nonoptimal decoders. In fact, we found
that the simple Markov decoder still performs well at the
discrimination task, despite the mismatch between the
encoding process and the decoder’s assumptions.
To explore this, we generated retinal ganglion cell spikes

(Figure 4F and 4G) with a model that includes a biphasic
temporal filter (Figure 3D). The filtering adds a motion smear
to the stimulus, which renders the output spike trains more
ambiguous. Despite its ignorance of the temporal filtering,
the decoder can still track the stimulus location, with a small
delay due to the filter (Figure 4H). Furthermore, the decoder
successfully accumulates information about the stimulus
shape (Figure 4I and 4J).

Performance of the Markov Decoder
We now evaluate the Markov decoder’s performance on the

original visual task: to discriminate whether a small jittering
bar is oriented horizontally or vertically. Here, we modeled
the retina and the decoder using two spatial dimensions and
simulated many trials of the discrimination task. For every
trial, we selected a random stimulus orientation and
trajectory, filtered the instantaneous light intensity with a
biphasic temporal filter, rectified the result to calculate the
expected firing rates for all retinal neurons over time, and
generated Poisson spike trains with these firing rates (Figure
3). We then applied the decoder algorithm to these spike
trains by numerically solving Equation 1 and selecting the
orientation estimated to be more probable. Performance was
quantified as the fraction of trials in which the decoder
guessed correctly.
The results of these simulations show that the Markov

Figure 4. Simulations of the Markov Decoder (Equation 1) for a Small

Stimulus Moving on a One-Dimensional Model Retina

(A–E) Spike generation by a Markov process.
(F–J) Spike generation by a non-Markov process that includes the
biphasic temporal filter from Figure 3D.
(A and F) Firing rate induced by a stimulus moving on the retina with a
random walk diffusion constant of 100 arcmin2/s. The stimulus shape
activates three neurons in the pattern shown in the inset. The
background rate is 10 Hz, and the peak stimulated rate is 100 Hz.
(B and G) Poisson retinal spike trains drawn from this instantaneous firing
rate. Each row corresponds to a neuron, spaced every 0.5 arcmin.
(C and H) Evolution of the location probability Pðx; tÞ for a known
stimulus shape S (inset in [A]), but an unknown location x, derived from
the spike trains shown in the previous panel.
(D and I) Decoder behavior when the stimulus can instead take one of
two possible shapes, but the true shape is unknown. The two stimuli
each activate three retinal neurons, in mirror-image patterns (inset). The
spike trains now induce two spatial distributions of the posterior
probability PðS; x; tÞ, plotted in shades of red and blue.
(E and J) Shape probability PðS; tÞ ¼

P
x PðS; x; tÞ, colored red for the

correct stimulus identity and blue for the incorrect one. In these trials, we
see that once the decoder coalesces around the stimulus location, it first
attributes a greater probability to the wrong stimulus (leftmost arrow in
[D] and [I]) before accumulating enough evidence for the correct
stimulus (middle arrow). The decoder can lose track of the stimulus
briefly (e.g., at rightmost arrow) but continues to favor the correct
stimulus until the end of the trial. Note that (E) reflects the true posterior
probabilities, whereas in (J), the Markov decoder can only estimate them
because the spike generation process includes temporal filtering that the
decoder neglects.
doi:10.1371/journal.pbio.0050331.g004
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decoder’s performance is generally compatible with human
performance. The decoder is able to reliably discriminate
horizontal from vertical within a few hundred milliseconds
(Figure 5A) using spikes generated at biologically realistic
rates around 100 Hz (Figure 5B). Like humans, the Markov
decoder finds discrimination very challenging with the
smallest stimuli, and fairly routine for the largest (compare
Figures 2B and 5C).

Importance of Accounting for Fixational Eye Movements
The Markov decoder can be used to evaluate the

importance of accounting for fixational eye movements in
estimating the stimulus shape or orientation. Specifically, we
ask the question: how much better does the Markov decoder
perform compared to strategies that ignore the eye move-
ment statistics?

Two naive strategies can be proposed: The first assumes
that there are no eye movements. This amounts to using a
Markov decoder, but setting its presumed diffusion constant
to zero. Another strategy recognizes that the eye moves
approximately every 0.6 ms (the average time between
random walk steps on the square lattice), but is otherwise
ignorant of the eye movement statistics; it conservatively
assumes that jumps to all stimulus positions are equally likely.

Naturally, the decoder that uses the correct diffusion
statistics works best, but simulations reveal that it outper-
forms the two naive decoders by a large margin (Figure 5). For
very brief stimuli of the same duration as the transient retinal
response (;30 ms), the decoder that assumes a fixed stimulus
and the decoder that knows the correct movement statistics
perform equally well, because temporal filtering does not
allow the responses to track the stimulus movements. Yet,
under typical viewing conditions, such a duration is too brief
for human subjects to discriminate the stimulus shapes. As
the decoder integrates information beyond the temporal
filter’s persistence time, the movements become relevant and

the naive algorithm essentially blurs the stimulus even more.
The decoder giving equal odds to all locations at all times
relies only on the rare coincidences when multiple stimulated
neurons spike in tight synchrony. Eventually, this naive
decoder can manage to discriminate the stimuli, but it
requires a much longer time or many more spikes than the
Markov decoder.

Robustness
How robust is the algorithm to imperfections in imple-

mentation? The key parameter that incorporates the statistics
of the eye movements is the assumed diffusion constant. As
shown above, if the decoder assumes that the eye movements
are much faster or much slower than they really are, then the
performance degrades substantially. However, between these
two extremes, there is a broad range of assumed diffusion
constants that causes only a few percent of extra mistakes
(Figure 6A). In fact, the decoder benefits slightly from
assuming a lower diffusion constant, probably due to the
apparent stimulus persistence caused by temporal blurring.
This demonstrates that it is essential to account for eye
movements, but the algorithm proposed here is robust to
misestimates of the movement statistics.
Every time the decoder receives a retinal spike, the

estimated stimulus probability rises locally by a factor
proportional to the expected stimulated firing rate divided
by the background rate (Materials and Methods, Equation 10),
which reflects the confidence in the new information brought
by a retinal spike. Changing this factor in the Markov decoder
would be expected to alter its performance. However, we
found that performance is remarkably insensitive to this
variable over a wide range of values (Figure 6B).
Finally, we may ask whether the decoder performance is

sensitive to the assumed stimulus shapes. Each retinal spike
increases the estimated stimulus probability at all those
locations where a stimulus could potentially have caused that

Figure 5. Model Performance on the Horizontal versus Vertical Discrimination Task Shown in Figure 2

Performance is measured by simulating retinal responses, calculating decisions based on those responses, and computing the fraction of correct
decisions (see Materials and Methods). When fixational eye movements jitter the stimulus, the Markov decoder is able to perform well on the task by
accounting for the eye movement statistics (black curves). Two naive decoders are also applied to this task, one that assumes the stimulus is fixed (red)
and one that assumes maximum uncertainty about those movements (blue). Performance is shown as a function of stimulus duration (A), peak
stimulated firing rate (B), and stimulus size (C). Where not otherwise specified, the parameters for these simulations are background firing rate of 10 Hz,
a peak stimulated rate of 100 Hz, a stimulus of 1 3 2 arcmin2, a duration of 500 ms, and a diffusion constant of 100 arcmin2/s.
doi:10.1371/journal.pbio.0050331.g005
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spike. If the expected stimuli differ from the true stimuli,
then this probability increases over the wrong set of
locations, leading to suboptimal performance. To explore
this, we set the decoder’s expected stimulus shape to be larger
than the true shape by various amounts (Figure 6C).
Enlargement up to about 1 arcmin produced no noticeable
change in the decoder’s performance, but larger discrep-
ancies of about 2 arcmin led to significant decline. This
behavior can be understood as follows: a misestimate of the
stimulus size effectively leads to excessive smearing of the
positional information. This must be compared to the
diffusional smearing that occurs as the stimulus moves in
the typical time between informative spikes, which amounts
to approximately 1 arcmin. Thus the Markov decoder is
hardly affected by misestimates in stimulus shape smaller
than this amount.

In summary, the Markov decoder is robust to various
parameters that encompass its a priori assumptions about the
stimulus. If the decoder allows activity to diffuse at an
approximately correct rate, and expects shapes not dramat-
ically larger than the true stimuli, then it can achieve good
discrimination performance.

Network Implementation
Despite the apparent complexity of the differential

equation governing the Markov decoder, its dynamics map
directly onto a simple neural network with a structure
consistent with many known properties of visual cortex. For
clarity, we will first introduce a network that estimates the
location probabilities for a given stimulus shape, and then
show the extension required for shape discrimination.

Figure 7 depicts a network that implements the Markov
decoder algorithm for estimating the location of a stimulus
with a known orientation S. The network has three types of
neurons: the retinal neurons, a hidden layer of decoder

neurons, and an inhibitory neuron. Each neuron in the
hidden layer is associated with a spatial location, x, and its
activity at time t represents the estimated posterior proba-
bility (up to a normalization factor) that the stimulus is
present at that location, PðS; x; tÞ. The feedforward input to
each hidden layer neuron x consists of spikes from retinal
locations y, weighted by a spatial receptive field
fSðy� xÞ ¼ lnðrSðy� xÞ=r0Þ, which ranges from zero far from
the stimulus to a peak of lnðrmax=r0Þ. The weighted retinal
input is then multiplied by a variable gain proportional to the
activity of the postsynaptic neuron, PðS; x; tÞ. This gated
retinal input implements the contribution of Equation 2 to
the update of the estimated posterior probability. The
neurons in the network interact through lateral connections
mimicking the diffusion operator (Equation 4 and Figure 3C).
Recall that the diffusion operator takes the summed
probability of the nearest-neighbors of a given location,P

Dx PðS; xþ Dx; tÞ, and subtracts 4PðS; x; tÞ from this in
order to conserve probability. In the network, conservation
of activity is not required, so the subtraction can be omitted:
when the change in P is simply proportional to P, the solution
is an exponential decay that scales P uniformly at all
locations, leaving the relative values of the activity unaltered.
Thus, lateral excitatory connections are sufficient to imple-
ment the diffusion term in the network. For the same reason,
the network does not need any representation of the local
decay term, Equation 3, which also scales all activities equally.
Finally, the network includes a global divisive inhibition to
maintain network activity at a stable level despite the various
excitatory interactions.
To extend this framework to the discrimination task, we

need two copies of the network that differ by their orientation
tuning (Figure 8). In the ‘‘horizontal’’ network, representing
PðH; x; tÞ, the neurons are tuned to horizontal stimuli, hence
their receptive fields are determined by rH(y� x) (Figure 3B);

Figure 6. Markov Decoder Robustness to Mismatched Parameters

(A) Discrimination performance when the decoder’s estimate for the trajectory statistics is wrong: The stimulus is known to perform a random walk on
the retina, but the diffusion constant is misestimated. The performance is optimal for estimated values close to the actual diffusion constant and
declines gently on either side.
(B) Performance as a function of the expected stimulated firing rate, parameterized as ðrest

max � r0Þ=ðrmax � r0Þ.
(C) Performance as a function of the expected stimulus size, obtained by convolving the true stimulus shape with a spatial Gaussian of the specified
radius. In each of these plots, parameters are the same as in Figure 5.
doi:10.1371/journal.pbio.0050331.g006
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correspondingly, in the ‘‘vertical’’ network, representing
PðV ; x; tÞ, the receptive fields are related to rV ðy� xÞ. For
the discrimination task, the retinal position is irrelevant;
comparing the pooled activity from each subnetwork is
sufficient to discriminate between the stimulus orientations.
Note that the lateral excitatory connections in this network
architecture are orientation specific because fixational eye
movements translate the stimulus, but do not appreciably
rotate it: orientation, but not position, is preserved. On the
other hand, the stabilizing divisive normalization must be
global across orientations to ensure a meaningful comparison
between the two orientations.

Discussion

Fixational eye movements pose a major challenge for vision
since they scatter weak signals about fine stimulus features
across the retina. We addressed this challenge mathematically
by deriving an algorithm that guesses the orientation of a
stimulus, given spiking responses from a model retina and
prior knowledge about its function. It accomplishes this by
collecting and sorting the scattered feature information in a
systematic way, weighting retinal spikes according to an
estimated probability that those spikes reflect stimulus
features and not noise.

Biological Implementation
As described above, the decoder algorithm has a direct

mapping onto an abstract neural network, and we will argue
that primary visual cortex (V1) has many properties well
suited to instantiate this network with real neurons.
Specifically, we take the hidden layer neurons in Figure 7 to
be cortical cells that receive inputs from the retina via the
thalamus.

For good performance, these neurons should integrate
retinal spikes using linear, oriented receptive fields of the
same shape and size as the visual stimuli (Figure 8). We
showed that the decoder’s performance was robust to
mismatches between the true stimuli and the expected
stimuli (Figure 5B and 5C), so these receptive fields need be
only approximately tuned to the stimulus size and strength.
Linear oriented receptive fields are a well-established

characteristic of cortical simple cells [29]. For stimuli
subtending only a few human photoreceptors, we require a
receptive field of just 1 or 2 arcmin in size. Receptive fields
for cortical neurons dedicated to foveal vision are notoriously
difficult to measure, notably due to technical problems
associated with fixational eye movements. In macaques,
receptive fields have been reported as small as 3 arcmin,
slightly larger than the macaque’s cone resolution of about
1.7 arcmin [30,31]. Therefore, cortical neurons are likely to
exist with receptive fields of the appropriate size. Although
equivalent measurements are unavailable for human cortex,
our finest acuity may well be mediated by cortical neurons
driven by an oriented set of just a few cones.
To account for fixational eye movements, the neural

network must be organized retinotopically so that local
stimulus movements correspond to local interactions in
cortex. This is, of course, a known property of V1 [32,33].
Because fixational eye movements are largely independent in
each eye [34], the fine retinal positioning of the stimulus is
also independent for the two eyes: Proper accounting for
stimulus movement, therefore, requires that lateral excitation
should not cross eyes. Ocular dominance columns [35] are
thus seen as a necessary feature if cortex is to accommodate
fixational eye movements. Eye movements are best handled
before the signals from the two eyes are mixed, favoring a
locus in the lateral geniculate nucleus (LGN) or in V1 for the
proposed network.
Eye movements are expected to simply translate visual

features, but not rotate them, and these expectations should
be built into circuitry. Activity in the model decoder network
diffuses across space through lateral excitatory connections
between nearby neurons, but only those with similar
orientation preferences. In the early visual system, the
required iso-orientation facilitation has been observed
psychophysically [36–38], anatomically [39–42], and physio-
logically [43–45]. Lateral diffusion of activity has also been
directly imaged in visual cortex [46].
As the eye drifts, the retina moves rigidly in world

coordinates. But since the size of cortical receptive fields
increases with distance from the fovea [30,47,48], fixational
eye movements do not move stimuli across many receptive

Figure 7. Schematic for a Network Implementation of the Markov Decoder (Equation 1)

Spikes from retinal neurons (green, top layer) are collected by neurons in a hidden layer (black, middle layer) with linear receptive fields fS(y� x) and a
local gain that is set by activity in the recipient neuron. Global divisive inhibition is driven by the total activity of all neurons in the hidden layer through
a pooling neuron (blue, bottom neuron).
doi:10.1371/journal.pbio.0050331.g007
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fields in the periphery. Accordingly, there is no need to
compensate for fixational eye movements in the periphery.
We expect, therefore, to see some aspects of the cortical
network that are specialized for foveal vision. Consistent with
this, more of striate cortex is dedicated to responses from the
fovea than can be explained by the density of retinal ganglion
cells [49–51], and lateral suppression and facilitation differ
between central and peripheral vision [37].

The Markov decoder requires that the lateral facilitatory
interactions induce localized changes in the gain for new
input spikes. Such multiplicative gain modulations have
indeed been observed in the visual cortex [52,53]. A number
of neural mechanisms have been invoked to create neural
multipliers [54–60]. One potential mechanism involves the
postsynaptic NMDA (n-methyl-d-aspartic acid) receptor, a
glutamate-gated ion channel with a voltage sensitivity that
causes it to open only when the postsynaptic potential is
sufficiently large. In the visual cortex, NMDA activation has
been shown to produce a multiplicative effect on input gain
[61]. Synapses between cortical layers and within layers have
different NMDA and AMPA (alpha-amino-3-hydroxy-5-meth-
yl-4-isoxazole propionic acid) receptor distributions, so that
lateral inputs may be simply additive, whereas feedforward
input may experience a variable gain [62], as required by the
Markov decoder architecture.

With an accelerating nonlinearity and excitatory interac-
tions, this network has a positive feedback loop that would

cause the activity to quickly diverge. Normalization will
maintain stability, but the normalization must be global and
orientation independent so that neural activities can be
compared on the same scale. Previously described wide-field
divisive normalization [63–66] can serve this purpose,
although other global homeostatic mechanisms would func-
tion as well.
In our forced-choice task, the accumulated evidence for the

horizontal and vertical stimuli must be compared. This can be
accomplished downstream by a final winner-take-all compu-
tation in which the total activity in each subnetwork is pooled
and then compared [67]. This type of computation must take
place somewhere in the brain any time a decision must be
reached, and various biological implementations have been
proposed for this operation [68,69].
Whereas the input to the network consists of discrete

spikes, the network units themselves represent the stimulus
probability, which is a continuous variable. This variable
might be most simply encoded by the collective firing rate of
a cluster of neurons [70], especially given that the number of
cells representing the visual field expands dramatically from
the retina to the visual cortex [71]. Alternatively, the
computation might well proceed with discrete spikes: model
networks of spiking neurons tend to produce similar behavior
as rate models with continuous variables, so long as the spikes
are not too strongly correlated [72].
In summary, all the key elements of a Markov decoder for

short line segments are present in the neural circuitry of
primary visual cortex. One essential feature, namely monoc-
ular processing, is no longer available beyond V1. We
therefore propose that V1 functions as a dynamic network
to accumulate information on fine stimulus features in the
face of fixational eye movements.

Human Performance versus Model Performance
We presented psychophysical results indicating that human

subjects could reliably discriminate between horizontal and
vertical stimuli measuring 1 3 2 arcmin (100% accuracy;
Figure 2), but that the task was barely achievable when the
stimulus was half that size (70% accuracy). Using biologically
reasonable parameters, a Markov decoder of retinal spike
trains attains comparable, but slightly weaker, performance
(90% and 60%, respectively; Figure 5). What additional
information do humans have that might account for this
discrepancy? Here, we consider several aspects of realistic
visual processing that were ignored by the Markov decoder.
We treated only Off-type retinal ganglion cells, but there

are equally many On-type cells in the fovea, and in principle,
they could also contribute to discrimination. An On cell is
suppressed when a small, dark stimulus on a light background
enters its receptive field, and is then excited when the
stimulus exits. These responses are unreliable because the
reduction in firing rate from the background of 10 Hz is
detectable only after 100 ms of silence, and the excitatory
response is slow and weak. We explored this further with
explicit simulation of both On and Off cells: The decoder
performance improved very little (unpublished data), less
than required to fully account for human acuity.
Human fixational eye movements are not exactly random

walks. Instead, they exhibit some small persistence of velocity
on a timescale of 2 ms and antipersistence on a timescale of
100 ms [25,73]. To explore how these details affect the Markov

Figure 8. Two Independent but Competing Subnetworks, Each

Structured as in Figure 7, Receive Input from the Same Retinal Ganglion

Cells, but Use Different Receptive Fields

The total activity in each subnetwork is pooled by two readout neurons.
The more active readout neuron indicates the network’s estimate of the
stimulus orientation.
doi:10.1371/journal.pbio.0050331.g008
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decoder’s discrimination performance, we performed addi-
tional simulations. Antipersistence at long times can be
explained by occasional microsaccades that periodically
deflect the eye toward its starting position. Such occasional
jerks of the image hardly affected a Markov decoder ignorant
of microsaccades (unpublished data): After each stimulus
jump, there was only a slight delay until the tails of the
diffusing posterior distribution encountered the elevated
spike rate at the new stimulus location. The persistence of eye
movements at short times is consistent with velocity
correlations lasting just a few milliseconds [73]. For a given
diffusion constant, a persistent random walk lingers longer at
each retinal location than a pure Markov random walk,
leading to slightly stronger responses. Correspondingly,
simulations showed that the Markov decoder’s performance
improves modestly with the introduction of a short persis-
tence time (unpublished data).

As discussed above, the Markov decoder is suboptimal
because of the temporal blurring of the stimulus before spike
generation. The optimal decoder must keep track of all
possible histories affecting the current firing rate, rather than
only the last stimulus position, and the computational effort
rapidly becomes prohibitive. Strategies have been proposed
to simplify the decoding of such processes [74,75], but these
require complicated learning algorithms and do not lend
themselves to straightforward neural implementation. A
simpler strategy for improving the Markov decoder might
be to first process the retinal spike trains with a temporal
filter designed to ‘‘undo’’ temporal integration in the retina.
This could plausibly take place in the thalamus [76].

Finally, the real visual system enjoys two additional benefits
that were not available to the Markov decoder. The first is
global image motion: Our human observers viewed the tiny
bar stimuli on a white sheet posted within a laboratory scene.
As the eye moves, this peripheral background image moves
coherently upon the retina, providing additional global
motion cues that the brain could perhaps incorporate to

improve perception. Second, our model for retinal responses
used the most-random spike pattern for a given firing rate,
namely a Poisson process. By contrast, real retinal ganglion
cells fire more precisely [11,12] and could thus be more
informative, even for a Markov decoder.

Are Fixational Eye Movements Helpful or Harmful?
One commonly held view is that fixational eye movements

actually improve vision by preventing the decay of retinal
responses that occurs under static stimuli [20]. For example,
Rucci and Desbordes have demonstrated that for moderately
large, noisy stimuli, orientation discrimination is worse when
the image is stabilized on the retina, a result they attribute to
a loss of the image motion that would otherwise refresh, and
possibly structure, neural activity [77]. In contrast, here we
have described these eye movements as a hindrance rather
than a help. The transient nature of retinal ganglion cell
responses does imply that a fixed stimulus will elicit fewer
spikes than a moving stimulus, diminishing the signal that the
brain receives. But if the eye movements are too large, then
the light intensity is spread thinly over many cells, decreasing
each individual response while increasing the positional
uncertainty and thus the noise [78]. Between the limits of
no eye movement and very large eye movements, an optimum
exists. This should occur with eye movements that shift the
stimulus to a new set of retinal ganglion cells just as the initial
response starts to truncate, and no sooner. For a stimulus
area s and transient response duration s, this occurs when the
diffusion constant is D; s=4s. For tiny stimuli (s ¼ 0.5 3 1
arcmin2) and biphasic temporal kernels with s ¼ 35 ms, the
predicted optimum of D ; 3 arcmin2/s is more than a full
order of magnitude smaller than the naturally occurring eye
movements of approximately 100 arcmin2/s.
To explore this further, we computed the Markov decoder’s

performance as a function of the eye movement diffusion
constant (Figure 9). In one condition, the decoder’s assump-
tion about the diffusion constant is held fixed while the eye
movement statistics vary; this models a psychophysical
experiment in which a viewer’s gaze is artificially stabilized.
In another condition, the decoder’s assumed diffusion
constant varies to match the eye movement statistics,
approximately optimizing the decoder performance. In both
cases, there is an optimum for D near the value predicted
above, and the model acuity is dramatically worse than this
optimum when the natural diffusion statistics are used.
Natural eye movements are therefore substantially larger
than optimal for this fine acuity task, implying that they do
indeed present a problem for fine visual acuity that the brain
must solve.

Predictions
The Markov decoder model yields psychophysical and

physiological predictions. We argued that fixational eye
movements are unknown to the brain, so using an eye tracker
to replace the natural fixational eye movements with
exogenous jitter movements, such as eye trajectories re-
corded from a previous trial, should not affect fine acuity, a
prediction supported by recent evidence [79]. We also argued
that, for very small stimuli on a featureless background,
natural eye movements are larger than optimal: therefore,
partially stabilizing the retinal image should improve our
finest acuity so long as enough motion remains to avoid

Figure 9. Markov Decoder Discrimination Performance as a Function of

Eye Movement Diffusion Constant

The decoder’s assumed diffusion constant is either held fixed (blue) or
covaried with that of the eye (black). The measured diffusion constant for
eye movements is marked in red. These simulations used a biphasic filter
with perfectly matched positive and negative lobes, which is the filter
that most favors large eye movements. The stimulus measured 0.5 3 1
arcmin2; otherwise, parameters were as in Figure 5.
doi:10.1371/journal.pbio.0050331.g009
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prematurely truncating retinal responses (Figure 9). Although
discrimination of larger stimuli does benefit from eye
movements [79], there are indications that fine acuity is
improved by stabilization [80].

There are two major physiological predictions. First,
activity in V1 neurons should locally modulate the gain for
feedforward input originating from the retina. Without this
modulation, the advantage of using prior expectations is lost.
Second, if the neural interactions in V1 are to correctly
encode the probabilistic expectations given by random walk
eye movement statistics, then the interactions should imple-
ment a diffusion operator, which entails that the time delay
to reach maximal interaction strength should scale as the
square of the interaction distance. This should be observable
both directly, as lateral excitatory currents, and indirectly,
through the time course of the resulting gain modulation.

The Bayesian Framework
The essential aspect of the Markov decoder we have

described is that information of one type attunes the observer
to other, related information. In the present context, the
decoder expects that responses to oriented line segments are
correlated across space and time due to fixational eye
movements, and thus these expected responses are enhanced.
Other statistical regularities produce expectations as well.
For example, strings of line segments often occur together in
contours. Correspondingly, collinear iso-orientation facilita-
tion has been hypothesized to subserve contour integration
[41,81], and can be viewed as another instance of the
principle of enhancing responses to expected signals. More
generally, expectations should increase the gain for informa-
tion that is relevant to the current task, but when that
information is irrelevant, then expectations may instead
reduce the gain.

The probabilistic processing of information has generated
substantial interest as a general framework for neural
computation, often designated ‘‘Bayesian computation’’ due
to the use of Bayes’ rule in calculating probabilities. Human
perception has been shown in several conditions to behave
according to this rule [82–84]. Experimental evidence also
hints that the cortex may be implementing Bayesian
inference on a neural level [85]. Modeling studies have
suggested how networks of neurons could make these
probabilistic inferences [75,86–89]. One study of particular
relevance also describes a neural network for approximately
Bayesian decoding of arbitrary hidden Markov processes [90].

Although our mathematical formalism is closely related to
previous work, we have made several advances in applying the
Bayesian paradigm. First, we identified a concrete biological
puzzle of considerable practical importance: how can humans
see with high acuity when fixational eye movements rapidly
jitter the stimulus over a large area? Second, previous
Bayesian computations treated neural signals that were
poorly constrained by experiment, so the performance of
these computations could be characterized only qualitatively.
In contrast, retinal signals are well studied, enabling us to
make quantitative comparisons between model and human
performance. Third, previous studies predominantly de-
scribed the formal structure of Bayesian computations,
whereas we identified a simple and biologically plausible
mapping of the probabilistic calculations onto cortical
circuitry.

Outlook
The decoder we have described is optimized for discrim-

inating the orientation of line segments, but human acuity
extends to more complex tasks, such as telling ‘‘F’’ from ‘‘P.’’
Within our formalism, optimal discrimination of arbitrary
shapes would require receptive fields tuned to those shapes,
whereas the early visual system appears to encode oriented
edges, with more complex feature selectivity arising only later
in higher brain regions. Therefore, this Markov decoder by
itself cannot account for discrimination in complex acuity
tasks. However, we propose that it functions as a useful
preprocessor that reduces the confounding effects of fixa-
tional eye movements before passing signals to subsequent
cortical regions for high-level processing.
If the stimulus contains several lines of multiple orienta-

tions, the decoder’s output will have several peaks that
correspond to the individual oriented segments. These peaks
will track the stimulus pattern as it is scanned over the retina.
This output can then be processed by subsequent networks
tuned to more complex patterns. Simulations show that such
a pattern detector identifies an arrangement of oriented bars
better when it is provided with the output of a Markov
decoder than with signals from similar decoders that fail to
properly account for eye movements (see figure in Protocol
S1). Thus, the Markov decoder elaborates the conventional
model of V1 as extracting oriented image elements, and
improves over this static model through dynamic processing
that partially corrects for eye movements.
In real-world acuity tasks, we do not perceive the incessant

motion of the image upon our retinas, but rather perceive a
stable image in world coordinates. Nonetheless, our internal
representation early in the visual pathway stores visual
information in a retinal coordinate system [91]. This moving
frame of reference must eventually be superseded before our
stable perceptions arise and decisions are reached. The
network proposed here could be viewed as creating an
intermediate coordinate system: the most current informa-
tion is represented in retinal coordinates, but the nonlinear
operations of the network effectively shift the past retinal
coordinates into improved alignment. We may view this
neural computation as a step towards invariant world
coordinates.

Materials and Methods

Psychophysics. Three groups of small horizontal and vertical
stimuli like those in Figure 2 were presented at a distance of 4 m and
were scaled to subtend the angles 0.5 3 1, 0.75 3 1.5, and 1 3 2
arcmin2. Stimuli were printed in black ink on white paper. Ambient
lighting generated a luminance of 86 candelas/m2 for the white
background, and 20-fold dimmer for the black stimuli. Room features
provided global motion cues, which we did not seek to eliminate.
Nine subjects were asked to discriminate between the stimuli while
standing, and were not provided with error feedback. Subjects were
free to view the stimuli as long as they liked, typically taking a few
seconds per stimulus. Performance was reported as the fraction of
correct answers out of 32 attempts for each condition. Error bars
were given as 68% confidence interval around the mean, assuming a
binomial distribution of correct guesses and a uniform prior over the
fraction correct. Other experiments with briefly flashed stimuli
showed that reliable discrimination was already achieved within 500
ms (unpublished data).

Simulations. We generated model retinal responses for the
discrimination task in the following steps: the stimulus orientation
S was chosen randomly to be either horizontal or vertical, a random
walk trajectory was constructed, and the stimulus light intensity
profile was moved along this random walk trajectory; the dynamic
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light intensity at each retinal position was filtered by a temporal
kernel, then passed through a threshold rectifier to yield the
instantaneous firing rate; this rate drove an inhomogeneous Poisson
generator to produce the spike train for the retinal neuron at that
location. We passed these spikes to the Markov decoder implement-
ing Equation 1, which returned a guess of the stimulus identity. These
steps are depicted in Figure 3A and described in detail below.

In both the simulations of retinal spike trains and in the Markov
decoder, we modeled the fovea as a square lattice of cone
photoreceptors. In the human retina, cones are spaced every 0.5
arcmin, and the receptive fields of retinal ganglion cells each consist
of a single cone. Correspondingly, the model ganglion cells had
square receptive fields separated by 0.5 arcmin. For numerical work,
we simulated a 16 3 16 arcmin2 array with wraparound boundary
conditions, which was sufficiently large for the relevant values of the
diffusion constant and the diffusion time, yet small enough for fast
simulations.

The stimulus itself consisted of a rectangle with size z and a 1 3 2
aspect ratio oriented in either the vertical or horizontal direction.
Optical blur was produced by convolving the stimulus with a
Gaussian modulation transfer function of diameter 2r ¼ 0.5 arcmin
[10]. The stimulus at location x induced an instantaneous spatial light
absorption profile at retinal positions y of

ISðy; xÞ ¼ e�jyj
2=2r2

*U1;1ðyÞ*Uz;2zðx� yÞ; ð5Þ

where * denotes a convolution operation, and Ua;bðxÞ represents a
two-dimensional box profile with dimensions a and b. The resultant
stimulus profile is shown in Figure 3B.

We modeled fixational eye movements as a random walk that
shifts the stimulus across the retina. The one-sided power spectrum
of a one-dimensional random walk is given by D=p2f 2, where f is the
temporal frequency. Eizenman et al. [3] reported one-sided power
spectra with f �2 dependence for the horizontal component of
fixational eye movements, from which we inferred a two-dimen-
sional diffusion constant of D¼100 arcmin2/s. Corroborating results
come from direct measurements of squared eye displacement as a
function of time lag [25]; fitting these data with a straight line of
slope 4D expected from a random walk yielded diffusion constants
of the same magnitude, 100 arcmin2/s.

We simulated the trajectory of the stimulus as a random walk on a
discrete spatial lattice, but continuous in time. After an infinitesimal
time interval dt, the probability of stepping to a nearest neighbor
location is dt � D=a2, where D is the diffusion constant, and a the
distance between lattice points. After many such time steps over a
finite interval Dt, the probability that the walker has moved a distance
Dx horizontally and Dy vertically can be expressed in series form:

PðDx;Dy;DtÞ ¼ FðDx;DtÞ � FðDy;DtÞ

FðDx;DtÞ ¼ 1
N

XN�1
j¼0

exp i2p
jDx
Na

� �
exp � 2DDt

a2
1� cos2p

j
N

� �� �
; ð6Þ

where N is the number of points on a side of the square lattice. For
speedy simulations, we chose a constant sampling interval Dt¼ 0.7 ms
and drew independent random walk steps from this distribution;
finer temporal sampling produced nearly identical results (unpub-
lished data).

The spatial stimulus profile was moved around the model retina
according to the random walk. This produced a temporal sequence of
light intensities within each retinal ganglion cell’s receptive field,
which was then convolved with the parameterized biphasic temporal
filter (Figure 3D)

hðtÞ ¼ tn

snþ11

e�t=s1 � q
tn

snþ12

e�t=s2 ð7Þ

to produce a temporally blurred stimulus (Figure 4F). The parameters
were chosen as s1 ¼ 5 ms, s2 ¼ 15 ms, n ¼ 3, and q ¼ 0.8 for all
simulations [28] except Figure 9, for which q ¼ 1 to maximize the
performance improvement attributable to eye movements. Finally,
this spatiotemporal profile was offset by the background firing rate r0,
half-wave rectified to prevent negative firing rates, and scaled so that
the maximum possible firing rate was given by rmax. The typical firing-
rate parameters we used were r0 ¼ 10 Hz and rmax ¼ 100 Hz unless
otherwise specified.

The Markov decoder operated on one trial of all ganglion cell spike
trains to produce a guess for the stimulus identity, according to the
differential equation (Equation 1). This equation can be solved

iteratively, moving from spike to spike. When neuron y produces a
spike at time ty, the diffusion term (Equation 4) is negligible
compared to the spiking term (Equation 2), so we have only

@

@t
PðS; x; tÞ ¼ dðt� tyÞfSðy� xÞP S; x; tð Þ ð8Þ

Dividing both sides by PðS; x; tÞ and substituting fSðxÞ ¼ lnðrSðx=r0Þ,
we see that

@

@t
lnPðS; x; tÞ ¼ dðt� tyÞln

rSðy� xÞ
r0

: ð9Þ

Integrating the delta function over the spike from time t�y to time
tþy we find that the log-probability jumps at spike times by lnðrSðx=r0Þ,
which means that the probability itself is multiplied:

PðS; x; tþy Þ ¼
rSðy� xÞ

r0
PðS; x; t�y Þ ð10Þ

In the absence of spikes, only the terms of Equations 3 and 4
contribute to the differential equation (Equation 1), so the
probability distribution PðS; x; tÞ both decays and diffuses laterally
across space. Because the two oriented stimuli both produce the same
total spike rate from the retinal array regardless of position, the
decay term (Equation 3) does not alter the relative probabilities, and
we therefore neglect it. The diffusion term (Equation 4) can be
implemented most efficiently in the spatial frequency domain
~PðS; k; tÞ, where the diffusion operator Dr~ 2 simply multiplies its
operand. The solution to

@

@t
~PðS; k; tÞ ¼ Dr~ 2 ~PðS; k; tÞ ð11Þ

during a spike-free interval [t, t þ Dt] is

~PðS; k; tþ DtÞ ¼ exp DDtr~ 2
h i

~PðS; k; tÞ: ð12Þ

For computational speed, we sampled the decoder’s activity every
0.7 ms. Between samples, the probability distribution was multiplied
in the Fourier domain according to Equation 12, and at the sample
times, the probabilities were multiplied in the spatial domain
following Equation 10: once for each spike that occurred since the
last sample time. Thus we were able to execute the ideal observer
algorithm by multiplication alternately in the spatial domain and the
frequency domain. To ensure stability in the absence of the decay
term (Equation 3), at every sampling time, we rescaled the posterior
probability by its sum,

P
S;x PðS; x; tÞ, recovering a properly normal-

ized probability.
These estimated posterior probabilities can be displayed as a

function of space and time, as in Figure 4. Or to reach a decision in
the discrimination task, we summed the probabilities over all
positions after the specified stimulus duration T to obtain the
posterior probability for orientation, PðS;TÞ; the orientation with the
greatest probability counted as the decoder’s guess. By repeating this
process many times (104 iterations) and calculating the fraction of
correct trials, we quantified the performance for this ideal strategy
for various parameter sets, as plotted in Figures 5, 6, and 9.

Supporting Information

Protocol S1. The Derivation of the Markov Decoder Equation

Found at doi:10.1371/journal.pbio.0050331.sd001 (1.2 MB PDF).
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