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Atrial fibrillation (AF) is one of the most common supraventricular arrhythmias worldwide. However, the specific molecular
mechanism underlying AF remains unclear. Our study is aimed at identifying pivotal microRNAs (miRNAs) and targeting
genes associated with persistent AF (pAF) using bioinformatics analysis. Three gene expression array datasets (GSE31821,
GSE41177, and GSE79768) and an miRNA expression array dataset (GSE68475) associated with pAF were downloaded.
Differentially expressed genes (DEGs) were identified using the LIMMA package, and differentially expressed miRNAs (DEMs)
were screened from GSE68475. Target genes for DEMs were predicted using the miRTarBase database, and intersections
between these target genes and DEGs were selected for further analysis, including the generation of protein–protein interaction
(PPI) network, miRNA–transcription factor–target regulatory network, and drug–gene network. A total of 264 DEGs and 40
DEMs were identified between the pAF and control groups. Functional and pathway enrichment analyses of up- and
downregulated DEGs were performed. The common genes (CGs) were primarily enriched in the phosphoinositide 3-kinase-
(PI3K-) protein kinase B (Akt) signaling pathway, negative regulation of cell division, and response to hypoxia. The PPI network,
miRNA–transcription factor–target regulatory network, and drug–gene network were constructed using Cytoscape. The present
study revealed several novel miRNAs and genes involved in pAF. We speculated that miR-4298, miR-3125, miR-4306, and
miR-671-5p could represent significant miRNAs that act on the target gene superoxide dismutase 2 (SOD2) during the
development of pAF and may serve as essential biomarkers for pAF diagnosis and treatment. Moreover, MYC might function in
pAF pathogenesis through the PI3K–Akt signaling pathway.

1. Introduction

Atrial fibrillation (AF) is one of the most prevalent sustained
arrhythmias, estimated to affect 34 million people worldwide,
and the prevalence is increasing as the population ages [1].
Based on AF duration, AF can be divided into paroxysmal
AF, persistent AF (pAF), long-standing pAF, and permanent
AF [2]. The morbidity rate of AF is high, leading to substan-
tial public health and economic burdens [3]. However, the
pathophysiological mechanisms of AF are complex and var-
iable, and the pathogenesis of AF is still not fully understood
[4]. Currently available drug therapies for patients with AF
lack adequate efficacy and have been associated with poten-

tial adverse reactions. Although ablation is typically more
effective than drug therapy, this invasive procedure has
considerable potential for complications and is limited by
long-term recurrence [5]. Therefore, the elucidation of the
precise molecular mechanisms underlying AF is necessary
for the development of novel diagnostic biomarkers and
therapeutic targets.

Recently, multiple RNA families, including microRNAs
(miRNAs) and long noncoding RNAs, have become the
focus of investigations regarding the potential mechanism
of AF [6–8]. miRNAs are small, endogenous noncoding
RNAs, typically 20–25 nucleotides in length, which play core
roles in the regulation of messenger RNA(mRNA) and
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protein expression of target genes [9], and recent studies have
suggested that miRNAs may be involved in the pathophysiol-
ogy of AF [10]. Xu et al. reported that miR-324-3p directly
targets transforming growth factor β1 in fibroblasts and
may be involved in myocardial fibrosis development during
AF [11]. Chiang et al. identified a miR-106b-25 cluster that
regulates the posttranscriptional expression of ryanodine
receptor 2 (RyR2) and may serve as a potential molecular
mechanism underlying the pathogenesis of paroxysmal AF
[12]. Cañón et al. reported that the upregulation of miR-
208b disrupts calcium dynamics in HL-1 atrial myocytes,
which may contribute to atrial remodeling associated with
chronic AF (CAF) [13]. Lu et al. identified the targeting of
L-type Ca2+ channel genes by miR-328 as a contributor to
adverse atrial electric remodeling in AF [14]. To date, over
200 studies have examined the involvement of various miR-
NAs in AF pathogenesis.

Therefore, the study of miRNAs is likely to provide useful
insights into the pathophysiology of AF. Additionally, some
studies have found that AF-associated miRNAs found in
the circulation may serve as potential AF biomarkers,
whereas tissue-specific miRNAs may represent therapeutic
targets [15, 16].

In recent years, a new interdisciplinary subject known as
bioinformatics has developed rapidly, combining molecular
biology with information technology [17]. Using bioinformat-
ics analysis, Zhang et al. identified potentially crucial genes
associated with AF, including CXCR4, IGFBP2, IGFBP3, and
FHL2, that may represent target molecules for the develop-
ment of early diagnosis and future treatment strategies for
AF [18]. Among these genes, CXCR4 was found to be overex-
pressed in CAF patients and was hypothesized to contribute to
AF pathogenesis through the regulation of atrial fibrosis and
structural remodeling [19]. Zhang et al. also identified miR-
204-5p, miR-31-5p, and miR-223-3p as potentially significant
miRNAs involved in the development of AF, which could
serve as essential biomarkers for AF treatment [20]. The
atrial-specific upregulation of miR-31-5p during AF in
humans has been shown to be a key mechanism associated
with the atrial loss of dystrophin and neuronal nitrogen oxide
synthase (nNOS) [21].

To our knowledge, few studies have investigated miRNAs
and their target genes in the heart tissue of patients with pAF.
Therefore, we aimed to identify critical microRNAs and tar-
get genes involved in pAF using bioinformatics analysis.
These results may provide novel insight into the underlying
mechanisms associated with pAF pathogenesis and result in
the identification of potential biomarkers for the diagnosis
and treatment of pAF.

2. Materials and Methods

2.1. Microarray Data. Four pAF datasets (GSE31821,
GSE41177, GSE79768, and GSE68475) were obtained from
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih
.gov/geo) [22]. Three of these datasets (GSE31821, GSE41177,
and GSE79768) are gene expression arrays generated using
the GPL570 (HG-U133_Plus_2) Affymetrix Human Genome
U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA, USA).

GSE68475 is an miRNA expression array generated using
GPL15018 Agilent-031181 Unrestricted_Human_miRNA_
V16.0_Microarray 030840. The datasets were composed as fol-
lows: GSE31821 included heart tissues obtained from 2 normal
samples and 4 patients with pAF; GSE41177 contained 38 heart
tissue samples, including 32 from patients with pAF and 6 nor-
mal heart tissue samples; GSE79768 consisted of 26 heart tissue
samples, including 14 pAF heart tissue samples and 12 normal
heart tissue samples; andGSE68475 contained 10 samples from
the heart tissue of patients with pAF and 11 normal heart tissue
samples.

2.2. Study Design and Differentially Expressed Gene Screening.
The research was performed according to the experimental
workflow shown in Figure 1. Using the robust multiarray
average algorithm in R package software, version 3.6.2
(http://www.R-project.org/), three datasets (GSE31821,
GSE41177, and GSE79768) were analyzed with the Affyme-
trix platform. Raw array data were converted into expression
values, followed by background correction, quintile normaliza-
tion, and probe summarization. The GSE31821, GSE41177,
and GSE79768 datasets were then merged into the integrated
dataset using the ComBat algorithm of the Bioconductor sva
package [23]. The LIMMA package was then applied to screen
differentially expressed genes (DEGs) [24]. Differentially
expressed miRNAs (DEMs) were screened from GSE68475.
The cut-off used to select DEGs was defined as p value < 0.05,
and ∣log fold − change ðFCÞ ∣ >0:5. DEMs were selected using
the cut-off values p value < 0.05 and ∣log FC ∣ >0.

2.3. Functional Enrichment Analysis. The online tool Data-
base for Annotation, Visualization and Integrated Discovery
(DAVID) [25] was used to annotate the Gene Ontology (GO)
enrichment analysis [26] of identified DEGs. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) Orthology
Based Annotation System (KOBAS) webserver was used to
annotate and identify KEGG-enriched pathways [27]. Signif-
icant enrichment thresholds for GO and KEGG analyses
were p value < 0.05 and count ≥ 2.

2.4. Protein–Protein Interaction (PPI) Network Construction.
The miRTarBase database includes greater than three hun-
dred and sixty thousand miRNA–target interactions (MTIs),
which have been validated experimentally. Target genes for
40 DEMs identified from GSE68475 were predicted using
the miRTarBase database [28]. A Venn diagram was used
to present the intersection between identified DEGs and tar-
get genes of DEMs, referred to as common genes (CGs).
Search Tool for the Retrieval of Interacting Genes (STRING,
https://string-db.org) is a biological resource that provides
the critical assessment and integration of protein–protein
interactions [29]. In this study, the list of CGs was submitted
to the STRING database to detect significant protein–protein
interactions with confidence ðcombined scoreÞ > 0:4. Based
on the STRING results, a PPI network was constructed and
visualized by Cytoscape 3.7.2 software [30].

2.5. miRNA–Transcription Factor–Target Regulatory Network.
The transcription factors (TFs) targeted by CGs were pre-
dicted using the Enrichr database (http://amp.pharm.mssm
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.edu/Enrichr/) [31]. The results with a p value < 0.05 were
screened out. After miRNA–TF–target regulatory relation-
ships were obtained, and an miRNA–TF–target regulatory
network was constructed using Cytoscape software.

2.6. Drug–Gene Network Analysis. The Drug–Gene Interac-
tion Database (DGIdb) [32] was developed to consolidate
various data sources that reporting gene druggability and
drug–gene interactions. Using the DGIdb (http://www
.dgidb.org/), drug–gene pairs were predicted, and a drug–
gene network was built using Cytoscape software.

2.7. Statistical Analysis. For all analyses, a p value < 0.05 was
considered significant.

3. Results

3.1. Identification of DEGs. A total of 264 DEGs were identi-
fied, including 179 up- and 85 downregulated genes in AF
compared with normal controls (Supplementary Table 1). A
total of 40 DEMs were identified between the AF group and
the control group, including 37 up- and 3 downregulated
miRNAs (Supplementary Table 2). A volcano plot and heat
map of the identified DEGs can be observed in Figures 2(a)
and 2(b), respectively.

3.2. Functional Enrichment Analysis. Functional enrichment
analysis indicated that the upregulated DEGs were primarily
involved in biological process (BP) terms, such as signal
transduction and immune response. In the cell component
(CC) ontology, the upregulated DEGs were significantly
enriched in extracellular exosome and extracellular region.
The molecular function (MF) analysis also showed that the
upregulated DEGs were primarily enriched in protein bind-
ing and calcium ion binding (Figure 3(a) and Supplementary
Table 3). Additionally, the KEGG pathway analysis of
upregulated DEGs was found to be enriched in metabolic
pathways and cytokine–cytokine receptor interactions
(Figure 4(a) and Supplementary Table 4). The downregulated
DEGs were primarily enriched in 10 GO terms, including 4
BP terms (negative regulation of cell proliferation), 5 CC
terms (extracellular region), and 1 MF term (clathrin binding;
Figure 3(b) and Supplementary Table 5). In addition, the
downregulated DEGs were significantly enriched in 5 KEGG
pathways, including cytokine–cytokine receptor interactions
and metabolic pathways (Figure 4(b), Supplementary Table 6).

3.3. Target Gene Prediction. A total of 2,383 target genes for
the 40 identified DEMs were predicted by the miRTarBase
database. A Venn diagram was generated to show the inter-
section between DEGs and these target genes (Figure 5(a)).
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Figure 1: Flowchart of data analysis. GEO: Gene Expression Omnibus; mRNA: messenger RNA; TFs: transcription factors.

3Computational and Mathematical Methods in Medicine

http://amp.pharm.mssm.edu/Enrichr/
http://www.dgidb.org/
http://www.dgidb.org/


–1

0

5

–l
og

10
 p

 v
al

ue

10

0

log2 fold change

1

Change

Down

Not

Up

(a)

Figure 2: Continued.
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(b)

Figure 2: The volcano plot and heat map of DEGs. (a) Red and blue dots represent upregulated and downregulated genes, respectively. (b)
The gradient color from blue to red represents the gene expression value (AF group/control group) from downregulation to upregulation,
respectively. DEGs: differentially expressed genes; AF: atrial fibrillation.
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3.4. Protein–Protein Interaction (PPI) Network. To identify
the most important genes, we constructed a PPI network using
Cytoscape software. The PPI network included 10 nodes and 9
edges, and MYC, superoxide dismutase 2 (SOD2), and
thioredoxin-interacting protein (TXNIP) had the highest num-
bers of nodes (Figure 5(b)). The CGs were primarily enriched
in the negative regulation of cell division, the response to hyp-
oxia, and the phosphoinositide 3-kinase– (PI3K–) protein
kinase B (Akt) signaling pathway (Figure 5(c)).

3.5. miRNA–TF–Target Regulatory Network Analysis. After
miRNA–gene and TF–gene pairs were predicted, 72
miRNA–TF–target regulatory relationships were obtained,
and a regulatory network (involving 11 miRNAs, 35 TFs,

19 coupregulated genes, and 7 codownregulated genes) was
constructed (Figure 6). In the regulatory network, SOD2
was regulated by miR-3125, miR-4306, miR-4298, and
miR-671-5p. MYC and heat shock protein 90 alpha family
class B member 1 (HSP90AB1) interacted with several TFs,
including hypoxia-inducible factor 1α (HIF1α) and signal
transducer and activator of transcription 1 (STAT1).

3.6. Drug–Gene Network Analysis. For the CGs, 98 drug–gene
pairs were acquired. The drug–gene network included 93
drugs, 4 upregulated CGs (including matrix metalloprotein-
ase 9 (MMP9), glutamate-ammonia ligase (GLUL), eukary-
otic translation initiation factor 2 subunit 3 (EIF2S3) and
HSP90AB1), and 1 downregulated CG (SOD2; Figure 7).
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Figure 3: GO analysis of DEGs. (a) Upregulated DEGs. (b) Downregulated DEGs. DEGs were divided into 3 functional groups, including BP,
CC, and MF. GO: Gene Ontology; BP: biological process; CC: cellular component; MF: molecular function; DEGs: differentially expressed
genes.
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Our results revealed that dipyridamole could interact with
HSP90AB1, suggesting a potential treatment target for AF,
but the specific mechanism remains unclear.

4. Discussion

In our study, we integrated three publicly available, gene-
related pAF datasets using bioinformatics analysis. We
identified 264 DEGs, including 179 that were upregulated
and 85 that were downregulated in pAF compared with nor-
mal controls. In addition, we identified 40 DEMs using an
miRNA-related AF microarray dataset. A total of 2,383
potential target genes were associated with the identified
DEMs, which were predicted using the miRTarBase database,
and the intersection between these target genes and the iden-
tified DEGs was selected for further study as CGs. Finally, we
constructed an miRNA–TF–target regulatory network to
identify the miRNAs and TFs that regulate the expression
of the identified target genes.

miRNAs can regulate the expression of target genes using
multiple methods [33]. In most cases, miRNAs inhibit target

mRNA expression by binding to the 3′ untranslated region
(3′UTR) or protein-coding sequences to prevent translation;
therefore, we were more concerned with reverse-regulated
miRNA–mRNA pairs. Within the generated miRNA–TF–
target regulatory network, 12 pairs of miRNA–mRNA pairs
associated with pAF were identified, among which SOD2
was the most significant target gene.

Recent studies have indicated that atrial structural
remodeling and electrical remodeling are important mecha-
nisms involved in the occurrence and maintenance of AF,
and atrial fibrosis, inflammation, oxidative stress, neuroen-
docrine, and autonomic nervous regulation have been identi-
fied as the primary factors that promote the occurrence of
atrial remodeling. Macrophages also play important roles in
the regulation of these factors and atrial remodeling [34,
35]. Moreover, etiological studies of familial AF have sug-
gested that AF has a degree of heritability [36].

SOD2 is a mitochondrial antioxidant enzyme, and Xu and
colleagues reported that the protein expression level of SOD2
was upregulated in AF model rats following treatment with
the proliferator-activated receptor-γ activator pioglitazone
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Figure 4: KEGG pathway analysis of DEGs. (a) Upregulated DEGs. (b) Downregulated DEGs. KEGG: Kyoto Encyclopedia of Genes and
Genomes; DEGs: differentially expressed genes.
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Figure 5: The Venn diagram, PPI network, and enrichment analyses of 26 CDEGs. (a) Venn diagram shows the intersection of DEGs and
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[37]. In vivo (rodent) experiments have indicated the cardiac
antifibrotic effects of the natural compounds bufalin and
lycorine, which act by downregulating miR-671-5p [38]. Yang
et al. found that miR-4306 can directly act on vascular
endothelial growth factor A (VEGFA) to inhibit the extra-
cellular signal-regulated kinase (ERK)/nuclear factor kappa
B (NF-κB) signaling pathway, which prevented human
monocyte-derived macrophage migration [39]. Moreover,
chronic, intermittent hypoxia exposure induced significant
atrial remodeling in a rat model, which could be attenuated
by tolvaptan, which may be due to tolvaptan-mediated alter-
ations in the NF-κB signaling pathway [40]. Brain-derived
neurotrophic factor (BDNF) may affect the regeneration of
human early endothelial progenitor cells by increasing the
levels of miR-4298 [41]. miR-3125 can bind to identified
single-nucleotide polymorphisms (SNPs) in the 3′UTR of
GATA4, inducing somatic mutations and dysregulation,
which may play pivotal roles in congenital heart defects
(CHDs) [42]. Thus, we propose that miR-671-5p, miR-4306,
miR-4298, and miR-3125 may represent significant miRNAs
involved in the development of AF and play significant roles
in AF, possibly through interactions with the target gene

SOD2. To our knowledge, this represents the first paper to
report miRNA–SOD2 pairs, which requires experimental
validation.

In this study, five genes, including FHL2, MYC,
HSP90AB1, GLUL, and DNAJB4, were targeted by TFs.
Among these five genes, MYC, HSP90AB1, GLUL, and
DNAJB4were also identified as hub genes in the PPI network,
and MYC was significantly enriched in the PI3K–Akt signal-
ing pathway. Studies have shown that the activation of the
PI3K–Akt signaling pathway promotes the growth and pro-
liferation of cells, inhibits apoptosis [43], reduces blood glu-
cose levels [44], enhances inflammatory response, and
aggravates the vulnerability of unstable atherosclerotic pla-
ques [45]. Jalife and Kaur reported that the interaction
between AF and atrial remodeling could exacerbate arrhyth-
mia [46]. McMullen and collaborators found that PI3K–Akt
signaling pathway inhibition increased AF incidence [47].
Xue and coworkers showed that exogenous hydrogen sulfide
might reduce diabetes mellitus-induced atrial remodeling
and AF through the activation of the PI3K–Akt–endothelial
nitric oxide pathway [48]. Zhao and collaborators suggested
that aliskiren treatment might upregulate the PI3K–Akt

Figure 6: The miRNA–TF–target regulatory network. The circles represent DEGs, the triangles represent miRNAs, and the rhombi represent
TFs. Red represents an upward adjustment, and green represents a downward adjustment. DEGs: differentially expressed genes; miRNA:
microRNA; TFs: transcription factors.
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pathway, resulting in cardioprotective effects against rapid
atrial pacing [49]. Taken together, these results suggest that
regulation of the PI3K–Akt signaling pathway might partici-
pate in AF progression. Cardiac fibrosis occupies an impor-
tant position in cardiac remodeling, which is consistent
with AF [50]. MYC is a famous oncogene, and most studies
of MYC have focused on the formation and metastasis of
tumors. Zhang and Sun [51] demonstrated that the expres-
sion of c-MYC was upregulated by the long noncoding
RNA ROR, which facilitated the proliferation and differenti-
ation of cardiac fibroblasts. Moreover, MYC may represent a
significant molecular factor downstream from PI3K–Akt in
various tumors [52]. Based on the combination of genes that
were enriched in the PI3K–Akt signaling pathway, HIF1α
and STAT1 were identified in association with MYC. HIF1α
expression has been shown to increase in the right atrial

appendages of AF patients [53], and Tsai and coworkers
demonstrated that STAT1 is activated in pigs with AF [54].
Based on our results, we speculate that HIF1α and STAT1
may specifically bind to MYC, regulating MYC expression,
and that MYC might function in AF progression through
the PI3K–Akt signaling pathway.

However, this study had some limitations. First, themiRNA
and mRNA we obtained were not from identical samples. In
addition, we concentrated on public databases. Additional
in vitro and in vivo studies are required to validate our findings.

5. Conclusions

In summary, miR-4298, miR-3125, miR-4306, and miR-671-
5p could represent significant miRNAs that act on the target
gene SOD2 during the development of pAF and could

Figure 7: The drug–gene network. Red circle, green circle, and grey square represent upregulated DEGs, downregulated DEGs, and drugs,
respectively. DEGs: differentially expressed genes.
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potentially serve as essential biomarkers for pAF diagnosis
and treatment. Moreover, MYC might function in the patho-
genesis of AF through the PI3K–Akt signaling pathway.
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