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ABSTRACT: In this report, we present a structurally and
spectroscopically characterized diorganocopper system in three
distinct oxidation states: [CuIICuII] (1), [CuIICuIII] (2), and
[CuIIICuIII] (3). These states are stabilized by a macrocyclic ligand
scaffold featuring two square-planar coordination {C2

NHCN2
pyrazole}.

We have analyzed the geometric and electronic structures using X-
ray diffraction (XRD) and multiple spectroscopic methods
including nuclear magnetic resonance (NMR), UV−vis, and
electron paramagnetic resonance (EPR) spectroscopies, in
combination with density functional theory (DFT) calculations.
Remarkably, this study provides a structural determination of
mixed-valence diorganocopper(II,III) complex 2, which is at the
borderline between valence-trapped or charge-localized class I
systems and charge moderately delocalized class II systems in Robin and Day classification. These findings enhance our
understanding of the systematic structural and electronic changes that occur in diorganocopper complexes in response to redox
transformations.
KEYWORDS: high-valent organocopper complex, macrocycle carbene ligand, oxidation states, structure and electronic state,
mixed-valence complex

■ INTRODUCTION
The exploration of copper complexes is fundamentally
significant due to their remarkable versatility in catalyzing
various chemical-bond-forming reactions1−7 and biological
oxidation processes.8−20 Notably, the copper ion typically
exploits changes in its oxidation state to facilitate these copper-
mediated reactions.21−33 Consequently, the synthesis, struc-
ture, reaction mechanisms, and synthetic application of
organocopper species across various oxidation states have
been extensively researched. Prior to the 1990s, high-valent
organocopper compounds were considered rare and intrinsi-
cally unstable. Since the first structurally well-defined high-
valent organocopper(III) species was reported in 2000,34 the
majority of successful examples are supported by macrocyclic
chelating ligand, as CuIII ions prefer square-planar coordination
(Figure 1a).5,22,24,28,29,35−45 Despite the significant achieve-
ments made in monoorganocopper(III), the stable and well-
defined high-valent binuclear copper compounds remain in
their infancy, due to a scarcity of ligand scaffolds capable of
stabilizing binuclear copper in various states. To date, only two
structurally characterized diorganocopper(III,III) compounds
have been reported (Figure 1b).17,46 Besides, the Tolman
group reported spectroscopy and theory of hydroxo-bridged
mixed-valent CuIICuIII and symmetric CuIII CuIII species.11

Therefore, a system that enables the isolation and study of

high-valent binuclear copper complexes in the relevant
[CuIICuII], [CuIICuIII], and [CuIIICuIII] states presents both
attractive and challenging prospects.
Over the past few years, N-heterocyclic carbene ligands

(NHCs) have been widely used to trap reactive intermediates
in unusual oxidation states, owing to their strong σ-donating
properties.47−51 For instance, recent studies by the Meyer
group revealed that the macrocycles {py2NHC2} (L′, py =
pyridine) and {py2NHC4} (L), featuring combinations of
pyridine and NHC donors, exhibit great flexibility and support
a series of mononuclear Cu complexes in oxidation states of +I,
+II, and +III, as well as binuclear complexes [LCu2]2/3+ in the
CuICuI and mixed-valent Cu1.5Cu1.5 states, respectively.37,52

Interestingly, despite large structural changes, mixed-valent
Cu1.5Cu1.5 complex was fully delocalized and fast electron self-
exchange rate. Moreover, the majority of the literature suggests
that most reported NHC-CuII complexes required the addition
of chelating N- or O-donors, often contain anionic coligands,
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and their redox chemistry is generally associated with
decomposition or significant structural changes.23,53−59 Con-
sidering these factors, we propose that the macrocycle
polycarbene ligand, featuring two {C2

NHCN2
pyrazole} subunits,

can trap high-valent diorganocopper complexes in different
oxidation states (Figure 1c). This proposal is supported by the
successful use of this ligand in synthesizing square-planar
coordination bimetallic platinum group complexes [M2L]-
(PF6)2 (M = Ni, Pd, Pt),60−62 demonstrating its potential to
stabilize higher valent organocopper complexes.
Herein, we present a diorganocopper system exhibiting three

distinct oxidation states�[CuIICuII], [CuIICuIII], and
[CuIIICuIII]�within a single host scaffold, without significant
structural modifications. The structure in question was
corroborated by both experimental and theoretical evidence.
Notably, the unpaired electron in the mixed-valence complex 2
was found to be localized on a single Cu ion. This complex was
thoroughly characterized by using XRD and multiple
spectroscopic methods, including NMR, UV−vis−NIR, diffuse
reflectance spectroscopy (DRS), and EPR, in addition to DFT
calculations. These findings highlight a distinction between the
mixed-valence complex 2 and the resting state of the biological

CuA center,63 which is a fully delocalized mixed-valent
dicopper form.

■ RESULTS AND DISCUSSION

Synthesis and Redox Properties of Diorganocopper(II,II)
Complex

A dicopper(II,II) complex, [Cu2L](OTf)2 (1), can be obtained
via reacting [H6L](OTf)4 with an excess copper powder in
CH3CN under O2 atmosphere. However, the isolated yield is
low (ca. 22%). According to the relevant literature,58 we
assumed that the side products are probably caused by the
reaction of [H6L](OTf)4 with Cu2O freshly generated from
copper oxidation under weakly acidic conditions. Expectedly,
the reaction of [H6L](OTf)4 with an excess Cu2O in
acetonitrile did afford an unusual complex [Cu8L2](OTf)4,
which decomposed slowly in air (see Supporting Information,
Scheme S3). Overall, the intermediate of this reaction may be
complex [Cu8L2](OTf)4; however, it also afforded other side
products, which is still unclear. Besides, the initial deprotona-
tion of [H6L](OTf)4 with Na[N(SiMe3)2] in THF, followed
by treatment with Cu(OTf)2 led to the isolation of complex 1
in 17% yield, as illustrated in Scheme 1. The formation of

Figure 1. Represented examples of previously reported organocopper(III) complexes and the binuclear copper complexes in the distinct oxidation
states (II/II, II/III, and III/III) reported in this work.

Scheme 1. Synthesis of the Complexes 1, 2, and 3

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c00745
JACS Au 2024, 4, 4406−4414

4407

https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=sch1&ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00745?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


complex 1 is confirmed by high-resolution electrospray
ionization (HR-ESI) mass spectrometry (see Supporting
Information, Figure S2) and by single-crystal X-ray diffraction
(Figure 2). Complex 1 is stable in both the solid state and in
CH3CN solution under an inert atmosphere (Ar or N2) at
room temperature. X-ray crystallography reveals that complex
1 contains two crystallographically equivalent CuII centers,
each hosted within a {C2

NHCN2
pyrazole} subunit of ligand

[H6L](OTf)4. Each CuII center is coordinated with two
pyrazol nitrogen atoms and two NHC donors, resulting in a
planar but twisted coordination geometry (τ4 = 0.07). The
CuII−CNHC bond lengths (approximately 1.98 Å) are slightly
longer than those of CuI−CNHC.55,64 The Cu1···Cu2 distance
of 3.649 Å in complex 1 is too great to suggest a significant
coprophilic Cu1···Cu2 interaction (Table 1). The
{C2

NHCCu1N2
pyrazole} unit is nearly coplanar, forming a

dihedral angle of 59.55° with the plane defined by the
{C2

NHCCu2N2
pyrazole} (Table 1). These structure features

define the overall structure of complex 1, reminiscent of the
conformations exhibited by macrocyclic ligand in the four-
coordinate bimetallic platinum group complexes [M2L](PF6)2
(M = Ni, Pd, Pt).60,62 Furthermore, weak antiferromagnetic
coupling between the two S = 1/2 Cu(II) centers was
confirmed by superconducting quantum interference device
(SQUID) magnetometry on a powder sample (1.8−300 K, J =
−13.1 cm−1, Figure 3). As a result, the paramagnetism of
complex 1 precludes NMR spectroscopic characterizations at
ambient temperature (see Supporting Information, Figure S1).
Subsequently, the redox properties of complex 1 were

investigated electrochemically using cyclic voltammetry, as
depicted in Figure 4a. An electrochemical series comprising
two reversible redox steps is discerned, characterized by half-
wave potentials (E1/2) of 0.02 and 0.25 V (relative to Fc+/0,
Figure 4a). This reversibility was confirmed by a linear

dependence of the current on the square root of the scan rate,
consistent with Randles−Sevcik equation (refer to Supporting
Information, Figures S14 and S15 for details). Notably, the
oxidation potential of complex 1 is comparatively lower than
those reported for many CuII or CuIII complexes with anionic
N- or C-donor ligands.65 The reversible redox behavior of 1
also suggests that the macrocyclic ligand possesses the
necessary structural and electronic pliability to accommodate
all three oxidation states, ranging from CuIICuII, through
CuIICuIII, to CuIIICuIII, within this dicopper framework. In
parallel, the comproportionation constant (Kc) for complex 2
was determined to be 7.8 × 103, as calculated from the
potential separation (ΔE1/2) associated with the sequential
oxidation of the two Cu(II) ions, indicative of the
thermodynamic stability of the mixed-valent species.66

Figure 2. ORTEP plots (50% probability) of the crystal structures of the cations of 1, 2, and 3. Hydrogen atoms, lattice solvent (CH3CN), and
anions are omitted for clarity. Selected atom distances and angles of 1, 2, and 3 are listed in Table 1.

Table 1. Selected Distances [Å], Bond Lengths [Å], and Angles [deg] for 1, 2, and 3

complexes 1 2 3 complexes 1 2 3

C1−Cu1 (Å) 1.985(7) 1.962(3) 1.916(7) C1−Cu1−C2 (deg) 86.10(3) 88.02(13) 84.30(3)
C2−Cu1 (Å) 1.981(7) 1.988(2) 1.888(7) C1−Cu1−N1 (deg) 175.20(2) 170.04(11) 172.70(3)
N1−Cu1 (Å) 1.998(5) 1.903(3) 1.899(6) C2−Cu1−N4 (deg) 174.55(2) 174.57(12) 173.00(3)
N4−Cu1 (Å) 1.999(6) 1.970(3) 1.902(6) N1−Cu1−N4 (deg) 96.10(2) 93.15(10) 96.17(2)
C3−Cu2 (Å) 1.979(6) 1.899(3) 1.890(8) C3−Cu2−C4 (deg) 87.07(2) 84.25(13) 84.10(3)
C4−Cu2 (Å) 1.982(6) 1.896(3) 1.889(7) C3−Cu2−N3 (deg) 174.80(2) 171.05(12) 173.40(3)
N2−Cu2 (Å) 2.004(5) 1.894(3) 1.892(6) C4−Cu2−N2 (deg) 173.90(2) 172.51(12) 172.40(3)
N3−Cu2 (Å) 2.011(5) 1.990(3) 1.883(6) N2−Cu2−N3 (deg) 96.40(2) 98.16(11) 96.60(2)
Cu1−Cu2 (Å) 3.649 3.657 3.530 dihedral angle (deg) 59.55 131.90 56.25

Figure 3. SQUID data for [Cu(L)2]2+ (black circles) recorded in the
temperature range 1.8−300 K, at an applied magnetic field of 1 T.
Simulations (red solid lines) provide the following parameters: g =
2.06, J = −13.1 cm−1, and temperature-independent paramagnetism
TIP = 220 × 10−6 emu/mol.
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To further investigate the specified species (CuIICuIII and
CuIIICuIII), chemical oxidation of complex 1 was initially
performed at −40 °C and monitored using UV−vis spectros-
copy. The UV−vis spectrum of complex 1 exhibits a
pronounced band at 420 nm (ε = 1068 M−1 cm−1, Figure
4b). The addition of Cu(OTf)2

67 to a solution of complex 1 in
acetonitrile led to an increase in the intensity of the band at
λmax = 420 nm, as well as the emergence of a broad feature
extending into the near-IR (Figure 4b). Titration experiments
suggested that these new spectral features reached maximum
intensity upon the addition of 1 equiv of Cu(OTf)2 (Figure
S12a). Notably, when more than 1 equiv of Cu(OTf)2 was
added, the feature of 420 nm became approximately twice as
intense as that of complex 1, while a distinct feature in the NIR
region disappeared (Figures 4b and S12b). These results
indicate that the absorption at 420 nm and the broad
absorption around 1000 nm could be attributed to ligand-to-
metal (LMCT) transitions and the metal-to-metal intervalence
charge transfer transition, respectively. The oxidized products
are stable in CH3CN solution under Ar atmosphere at −40 °C.
However, they slowly decompose in CH3CN solution at room
temperature, as evidenced by UV−vis spectroscopy (Figure
S11). These findings suggest that the preparation and isolation

of the oxidized diorganocopper complexes through chemical
oxidation is viable.
Structural Characterization of Diorganocopper(II,III)
Complex

We synthesized the diorganocopper(II,III) complex [Cu2L]-
(OTf)3 (2) using Cu(OTf)2

67 as oxidant. The complex was
obtained as an orange solid in high yield (approximately 95%
yield) (Schemes 1 and S4). The HR-ESI mass spectrum of
complex 2 (in positive-ion mode, Figure S4) exhibited peaks at
m/z = 903.9676, m/z = 376.5084, and m/z = 201.3550,
corresponding to [[Cu2L](OTf)2]+ (calcd 903.9701),
[[Cu2L](OTf)]2+ (calcd 376.5095), and [Cu2L]3+ (calcd
201.3555), respectively. Crystals of complex 2 were obtained
by slow diffusion of Et2O into a saturated CH3CN solution of
the crude material at −35 °C (Figure 2). The structure of
complex 2 in the solid state closely resembled that of complex
1 (Figure 7), indicating a low reorganization energy for the 1e−

oxidation complex 1. Analysis of the Cu−CNHC bonds revealed
that the Cu−CNHC bonds of Cu2 (1.899(3) and 1.896(3) Å)
in complex 2 were considerably shorter than the Cu−CNHC

bonds of Cu1 (1.962(3) and 1.988(2) Å), but the latter are
almost identical to the Cu1 bonds in dicopper(II, II) complex
1 (1.985(7) and 1.981(7) Å), as well as Cu2−CNHC bonds
(1.979(6) and 1.982(6) Å). This observation is consistent with
the expectation that the increased electron deficiency of the
metal center enhances its interaction with the carbene
donors.38 Furthermore, oxidation of 1 to 2 led to significantly
shortened Cu−Npyrazole distances (Table 1), indicating that the
one-electron oxidation primarily occurred at the Cu2 center.
The X-band EPR spectrum of 2 recorded at 295 K in fluid

CH3CN solution displays a quartet (Figure 5a). This arises
from the hyperfine interaction with one Cu nucleus, indicative
of the predominant localization of the sole unpaired electron of
2 on a single Cu center. A powder sample of 2 also elicits an
analogous EPR spectrum (Figure S21). The g and A anisotropy
were resolved in the 120 K spectrum measured for 2 in a
frozen nPrCN/CH3CN (5:1) solution (Figure 5b). Satisfactory
simulations with EasySpin software package68 yield g|| =
2.1174, g⊥ = 2.0291, and A||(63Cu/65Cu) = 639 MHz, A⊥ = 108
MHz. The observed anisotropic patterns of g and A tensors (g||
> g⊥ > 2.0 and |A||| > |A⊥|) are typical of mononuclear square-
planar cupric species distinguished by the dx2‑y2-based singly
occupied molecular orbital (SOMO).69 The superhyperfine
splitting was found to originate from two equivalent 14N nuclei
(I = 1, natural abundance 99.6%) with Aiso(14N) = 52 MHz,
which suggests delocalization of the spin density onto the
diazole N atoms due to the strong covalent interaction
between Cu and the diazole ligands. Notably, the slight
difference in the nuclear g values of 63Cu and 65Cu isotopes
(63Cu I = 3/2, natural abundance 69.2%, g = 1.4824, and 65Cu
I = 3/2, natural abundance 30.8%, g = 1.5878) is manifest in
the lowest- and highest-field longitudinal hyperfine lines of
63Cu/65Cu (Figure 5b, insets).70 Our repeated attempts to fit
the spectrum recorded at 295 K (Figure 5a) showed that at
this temperature, the system does not tumble fast enough to be
in the fast-motion regime. Consequently, simulations invoking
the slow-motion approximation produce a reasonable solution
with rotational correlation time t = 7.5 × 10−11 s alongside the
fixed g and A values determined above.
To further probe the electronic structures of 1 and 2, UV−

vis−NIR absorption spectra were collected for CH3CN
solutions of 1 and 2 at 298 K (Figure 6). The UV−vis−NIR

Figure 4. (a) Cyclic voltammogram and DPV of complex [Cu2L]-
(OTf)2 (1) in CH3CN (0.1 M) [nBu4N](PF6) at 298 K, conditions:
working electrode: glassy carbon electrode; reference electrode: Ag+/
Ag; scan rate = 100 mV/s. (b) UV−vis spectra of [Cu2L](OTf)2 (1),
[Cu2L](OTf)3 (2), and [Cu2L](OTf)4 (3) (0.4 mM) in CH3CN at
233 K.
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spectrum of 1 exhibits an intense band at 23 740 cm−1 (ε ∼
1020 M−1 cm−1). TD-DFT calculations indicate that this band
is attributed to the d-d transitions at each Cu(II) site and
crossing the two Cu(II) sites. Upon one-electron oxidation,
this feature is broadened with the maximum shifting to 23 500
cm−1, and its intensity rises (ε ∼ 1620 M−1 cm−1). Considering
the variation of the intensity, we assign this feature to a ligand-
to-metal (LMCT) transition. TD-DFT calculations support
this assignment. Importantly, for complex 2, a new, weak band

(εmax = 210 M−1 cm−1) emerges in the near-IR region centered
at 10600 cm−1, which is attributed to the metal-to-metal
intervalence charge transfer transition (IVCT). TD-DFT
calculations of 2 in CH3CN solution also showed an intense
band arising from the Cu1-dxd2−yd2

-based σ* to Cu2-dxd2−yd2
-based

σ* orbital at 9370 cm−1 (for details, see the Supporting
Information), in line with the observed spectrum. The solid-
state powder spectrum of 2 measured with diffuse reflectance
spectroscopy (DRS, Figure S23) shows absorption bands at
440 and 900 nm, in analogy to that found for the solution
sample. The band shape analysis of this Gaussian-shaped
absorption based on Hush’s theory gives half-height Δν1/20 =
4460 cm−1 that is in reasonable agreement with Δν1/2 = 5250
cm−1 observed experimentally, and the effective electronic
coupling matrix element Hab = 610 cm−1 for weakly interacting
centers (for details, see the Supporting Information). Given
that 2Hab/λ = 0.11, complex 2 is best described as being close
to the borderline between valence-trapped or charge-localized
class I systems and charge moderately delocalized class II
systems in Robin and Day classification,71 consistent with the
view inferred from EPR measurements. Furthermore, neither
temperature dependence nor solvent dependence was found
for the IVCT feature of complex 2 (Figures S24 and S25),
corroborating the aforementioned assignment.
Synthesis and Structural Characterization of
Diorganocopper(III,III) Complex

Given the above results, we reacted complex 1 with 2 equiv
Cu(OTf)2

67 to give diamagnetic [Cu2L](OTf)4 (3) as dark-
orange solid in high yield (ca. 76%). The diamagnetism of 3 is
reflected by sharp 1H NMR signals in the normal range (0−8.0
ppm in CD3CN, Figure S5). Any dynamics of the puckered
conformation in solution are slow on the NMR time scale, as
was observed for [Ni2L](PF6)2.

60 Remarkably, the Cu−C
resonance is strongly upfield shifted in the 13C NMR spectrum
(144.6 ppm, Figure S6), in line with the electron-deficient
nature of the CuIII center.38 But complex 3 is unstable at room
temperature, as confirmed by 1H NMR measurements (Figure
S9). Interestingly, the mixtures of 1 and 3 caused species 2 in
CH3CN solution at −40 °C (Figure S13), which indicated the
rapid electron transfer (ET) between 1 and 3. Luckily, dark-
orange crystals of 3 suitable for X-ray diffraction analysis were
obtained at −35 °C by slow diffusion of Et2O into a saturated
CH3CN solution. As shown in Figure 2, the structure of
complex 3 in solid state is very similar to that of the 1 and 2
(Figure 7). Further oxidation of 1 led to significantly
shortening of the Cu1−CNHC bond lengths from 1.962(3)
and 1.988(2) Å in 2 to 1.916(7) and 1.888(7) Å in 3 (Table

Figure 5. (a) EPR spectrum of 2 (black line) recorded in fluid
CH3CN solution at 295 K. Simulation (red line) with fixed g|| =
2.1174, g⊥ = 2.0291, and A||(63Cu/65Cu) = 639 MHz, A⊥(63Cu/65Cu)
= 108 MHz gives rotational correlation time t = 7.5 × 10−11 s.
Acquisition conditions: microwave frequency = 9.33431 GHz, power
= 1 mW, modulation amplitude = 12 G. (b) EPR spectrum of 2
(black line) recorded in frozen nPrCN/CH3CN (5:1) solution at 120
K. Simulation (red line) gives g|| = 2.1174, g⊥ = 2.0291, and
A||(63Cu/65Cu) = 639 MHz, A⊥(63Cu/65Cu) = 108 MHz; Aiso(14N) =
52 MHz. Acquisition conditions: microwave frequency = 9.329897
GHz, power = 1 mW, modulation amplitude = 5 G. Inset: simulations
using 100% 63Cu (purple line), 100% 65Cu (blue line), and natural
abundance of 63Cu/65Cu (red line) nuclei.

Figure 6. Electronic spectra of complexes 1 (black line) and 2 (blue
line) in CH3CN solution.

Figure 7. (a) Overlay of the cations of 1 (blue) and 2 (red); (b)
overlay of the cations of 3 (green) and 2 (red).

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c00745
JACS Au 2024, 4, 4406−4414

4410

https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00745/suppl_file/au4c00745_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00745?fig=fig7&ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00745?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


1), in agreement with those reported for CuIII−CNHC (1.879−
1.884 Å).37,38

DFT Calculation and Electron Structure Analysis

To gain more insight into the electronic structures of this series
of binuclear copper complexes, detailed DFT calculations were
performed. For complex 1, the open-shell singlet featuring two
antiferromagnetically coupled CuII centers was calculated to be
stabilized by more than 35.6 kcal/mol compared to the closed-
shell singlet, but close in energy with a marginal difference of
1.2 kcal/mol to the corresponding triplet state having the two
ferromagnetically coupled fragments. According to the formula
developed by Yamaguchi et al.,72,73 a coupling constant of J =
−15.2 cm−1 was calculated, which is in excellent agreement
with the experimental J value of −13.1 cm−1 measured by
SQUID magnetometry. As such, DFT computations qual-
itatively reproduce the experimental findings, in particular the
weak antiferromagnetic coupling found for complex 1.
The computed structure of complex 2 shows that the two

Cu ions feature disparate Cu−N and Cu−C distances with a
long Cu···Cu separation of 3.51 Å, all in accordance with its X-
ray structure (Table S4). Relative to 1, complex 2 features
more covalent Cu-ligand bonding as a consequence of the
metal-centered oxidation. The SOMO is the Cu1-dx d2−yd2

-based
σ* antibonding molecular orbital (MO) with appreciable
contributions from N-px,y and C-px,y atomic orbitals, while the
corresponding MO with a predominant Cu2-dx d2−y d2

parentage is
unoccupied (Figure 8). In line with this, the computed spin
density is largely located on the Cu1 center (51%) and has a
negligible contribution from Cu2 (1%) (Figure S33). Thus,
their mutual electron transfer from Cu1 to Cu2 is severely
hindered by extremely low orbital overlap arising from the
unfavorable orientation of the two coordinating planes. These
findings rationalize its weak IVCT absorption and the four-line
pattern of the Cu hyperfine interaction in its EPR spectra.

■ CONCLUSIONS
In this study, we synthesized, isolated, and structurally
characterized a diorganocopper system in three distinct redox
states: [CuIICuII], [CuIICuIII], and [CuIIICuIII]. These redox
states were supported by a macrocyclic ligand scaffold that
features two square-planar coordination {C2

NHCN2
pyrazole}

compartments. Notably, this work presents the first report
on the structural determination of mixed-valence
diorganocopper(II,III) complex 2. Through crystallographic
and spectroscopic investigations, it was found that complex 2 is
at the borderline between valence-trapped or charge-localized
class I systems and charge moderately delocalized class II
systems in Robin and Day classification. Additionally, the UV/
vis−NIR spectroscopy and TD-DFT calculation provided

insights into the electronic structure of the mixed-valence
complex 2 in solution. In summary, these findings enhance our
understanding of the systematic changes in structure and
electronic state in diorganocopper complexes accompanying
variations in redox states. This work suggests that such
binuclear complexes may serve as a promising bioinspired
molecular framework for probing multielectron transformation
processes. Ongoing investigations are hence being conducted
to explore their applications and further understand their
capabilities.

■ METHODS
Ligand [H6L](OTf)4 was synthesized according to the procedures
described in the literature.60 Experiments involving air- or moisture-
sensitive reagents were performed using standard Schlenk techniques
under an argon atmosphere or in a glovebox. Solvents were freshly
distilled according to standard procedures prior to use. Glassware was
dried in an oven at 90 °C before use. Deionized water was further
purified using a Milli-Q ultrapure water purification system. 1H and
13C{1H} NMR spectra were recorded on a 400 MHz Bruker Biospin
Advance III NMR spectrometer. ESI-HRMS spectra were measured
on LCMS-IT/TOF instruments (Shimadzu and Thermo U3000+).
UV−vis measurements were recorded using an Agilent Cary 60 UV−
vis spectrometer or an Agilent Cary 8454 UV−vis spectrometer. The
C H N elements content was evaluated by EuroVector elemental
analyzer. The electrochemical measurements were carried out with
the three-electrode system using a CHI-660E electrochemical
workstation. Single crystals suitable for X-ray diffraction measurement
were collected with a Rigaku Agilent SuperNova Dual system at 173
K. Continuous-wave (cw) X-band EPR measurements were
performed on a Bruker A200 spectrometer equipped with a high-
sensitivity cavity (ER4119HS) in conjunction with microwave bridge
Bruker A40X. Magnetic susceptibility data were measured from
powder samples of solid material in the temperature range 1.8−300 K
by using a SQUID magnetometer with a field of 1 T. UV−vis−NIR
spectra were recorded with a SHIMADZU UV-3600i Plus
spectrophotometer.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacsau.4c00745.

Additional experimental details, materials, methods,
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Figure 8. Cu1-dx d2−y d2
-based singly occupied MO and the corresponding Cu2-dx d2−yd2

-based unoccupied MO of complex 2 (using the PBE0 functional
and def2-TZVP basis set).
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or by contacting The Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +
44 1223 336033.
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