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GPI = glucose-6-phosphate isomerase; IL = interleukin; ITAM = immunoreceptor tyrosine-based activation motif; MHC = major histocompatibility
complex; MIP = macrophage inflammatory protein; OA = osteoarthritis; RA = rheumatoid arthritis; SCF = stem cell factor; TGF-β = transforming
growth factor-β; TLR = Toll-like receptor; TNF = tumor necrosis factor.
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Introduction
The mast cell has long been known to mediate important
manifestations of allergic disease. Crosslinking of surface-
bound IgE results in the immediate release of granule
contents, including histamine, and the more gradual
elaboration of other proinflammatory mediators. Clinical
manifestations can range from seasonal allergic rhinitis to
life-threatening anaphylaxis.

However, research over the past two decades has
revealed that the role of mast cells is not limited to IgE-
mediated immune responses. Mast cells express surface
receptors for IgG, complement, and specific pathogen-
associated molecular patterns. Mast cells are capable of
phagocytosis, intracellular killing, and antigen presentation.
Correspondingly, mice deficient in mast cells have been
found to exhibit striking susceptibility to death from certain
types of bacterial infection. Beyond the acute phase of the
immune response, mast cells may participate in the
response of tissue to injury by means of mediators that
promote angiogenesis and fibrosis.

Recently, several laboratories have established that mast
cells have a critical role in the pathogenesis of synovitis in
a murine system with considerable similarity to rheumatoid
arthritis (RA) [1,2]. This finding has renewed interest in
older histological data documenting prominent mast cell
infiltrates in the rheumatoid synovium. We review here the
functions of mast cells as a prelude to the discussion of
the current state of knowledge about the role of mast cells
in murine and human inflammatory arthritis.

Basic biology of mast cells
Mast cells are found principally in mucosae and in
connective tissue, generally clustered at epithelial
surfaces and around nerves and blood vessels [3]. They
originate in bone marrow and circulate as CD34+

committed progenitor cells, differentiating into mature
mast cells only after entry into the tissue [4,5]. These
mature cells may divide further. Tissue mast cells are
highly heterogeneous, with great variability in size, granule
contents, cytokine production and receptor expression;
both in vitro experience and in vivo data suggest that this

Review
Mast cells in inflammatory arthritis
Peter A Nigrovic1,2 and David M Lee1

1Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
2Division of Immunology, Children’s Hospital of Boston, Boston, Massachusetts, USA

Corresponding author: David M Lee, dlee@rics.bwh.harvard.edu

Published: 2 November 2004

Arthritis Res Ther 2005, 7:1-11 (DOI 10.1186/ar1446)
© 2004 BioMed Central Ltd

Abstract

Mast cells are present in limited numbers in normal human synovium, but in rheumatoid arthritis and
other inflammatory joint diseases this population can expand to constitute 5% or more of all synovial
cells. Recent investigations in a murine model have demonstrated that mast cells can have a critical
role in the generation of inflammation within the joint. This finding highlights the results of more than 20
years of research indicating that mast cells are frequent participants in non-allergic immune responses
as well as in allergy. Equipped with a diversity of surface receptors and effector capabilities, mast cells
are sentinels of the immune system, detecting and delivering a first response to invading bacteria and
other insults. Accumulating within inflamed tissues, mast cells produce cytokines and other mediators
that may contribute vitally to ongoing inflammation. Here we review some of the non-allergic functions
of mast cells and focus on the potential role of these cells in murine and human inflammatory arthritis.
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heterogeneity represents an exquisite developmental
sensitivity to local signals [3]. Similarly, the maintenance of
mast cells within tissues is controlled by the local
environment, in particular the production of stem cell
factor (SCF, c-kit ligand) by stromal cells [6]. Mature mast
cells are also capable of trafficking, as shown by their
recruitment to chemotactic stimuli such as RANTES and
their efflux from tissue through lymphatic channels and
possibly blood vessels [7–9].

Functions of mast cells
IgE-mediated activation
Mast cells express the high-affinity IgE receptor FcεR1, a
tetrameric complex of an α chain (to which IgE binds), a β
chain and a dimer of γ chains [10]. The γ chain is shared
with other stimulatory receptors, including the high-affinity
IgG receptor FcγR1 and the low-affinity immune complex
receptor FcγR3a. On crosslinking of the IgE receptor by
multivalent antigen, the immunoreceptor tyrosine-based
activation motifs (ITAMs) on the β and γ chains become
phosphorylated and initiate a signaling cascade, resulting
in three distinct pathways of mediator production: explosive
release of preformed mediators, elaboration of eicosanoids,
and de novo synthesis of cytokines and chemokines.

Explosive release of preformed mediators
Within seconds to minutes of IgE crosslinking, granules in
the cytoplasm of the mast cell fuse with each other and
with the cell surface membrane, ejecting their contents
into the extracellular milieu. The contents of the granules
depend on the conditions under which the mast cell has
matured, but include histamine, proteoglycans (for
example heparin), and a series of neutral proteases
broadly grouped into tryptases, chymases, and carboxy-
peptidases. Histamine promotes vascular permeability;
proteoglycans provide a scaffold within the granule that
allows the packaging of proteases; and the neutral
proteases cleave proteins from matrix and plasma in
addition to activating propeptides such as the precursors
for interleukin-1β (IL-1β) and angiotensin II. The tryptase
mMCP6 (murine mast cell protease 6) also contributes
potently to neutrophil chemotaxis [11]. Certain subsets of
mast cells store tumor necrosis factor (TNF) within the
granules as well, representing the body’s only source of
TNF available for immediate release [12].

Elaboration of eicosanoids
Within minutes of IgE-mediated activation, mast cells
begin to generate eicosanoids derived from cleavage of
arachidonic acid from membrane phospholipids [13].
Important arachidonic acid metabolites include the
leukotrienes (leukotriene B4 and the cysteinyl leuko-
trienes), which increase vascular permeability, induce
vasoconstriction and recruit leukocytes, and prosta-
glandins including the neutrophil chemoattractant and
vasoactive mediator prostaglandin D2.

De novo synthesis of cytokines and chemokines
Within hours, a later phase of mast cell activation through
IgE becomes evident with the induction of new gene
transcription and translation, generating a host of cyto-
kines and chemokines (Table 1). The mix of cytokines
generated by a particular mast cell depends on its
individual state of differentiation.

The importance of IgE-mediated mast cell activation to the
health of the organism is still incompletely defined. The
preservation of this system under evolutionary pressure,
despite allergic diseases and anaphylaxis, is strong
suggestive evidence that there is benefit to the host. One
likely candidate function is resistance to parasitic disease,
because mice deficient in IgE exhibit impaired defense
against the helminths Schistosoma mansoni and
Trichinella spiralis [14,15].

IgE-independent functions of mast cells
Mast cells cluster at sites of contact with the external
world, such as mucosal and epithelial surfaces. Similarly,
they are found near blood vessels and in the linings of
potential spaces such as the peritoneum, pleural space,
and synovial cavity. This localization suggests a role in
surveillance, and indeed mast cells are capable of
detecting pathogens and initiating an inflammatory
response, earning this cell the appellation of immune
sentinel [16]. Further, mast cells accumulate in chronically
inflamed tissue, suggesting that their role might not be
limited to the initiation phase of the immune response.

Mast cells in bacterial infection
The physiological importance of mast cells in defense
against bacteria has been clearly demonstrated. Mast-cell-
deficient W/Wv mice have impaired clearance of bacterial
infection in the peritoneum [17,18] and lung [18],
accompanied by markedly higher mortality after
experimental infection. This vulnerability was found to be
associated with decreased infiltration of neutrophils to the
site of infection and could be corrected by reconstitution
with wild-type mast cells. Within an hour of peritoneal
infection, lavage fluid shows a striking increase in TNF
levels in the presence of mast cells. Anti-TNF treatment
largely abrogates the effect of mast cell reconstitution,
whereas injection of TNF concurrent with infection
substantially mimics the benefits of reconstitution in mast-
cell-deficient mice. Although mast cells can phagocytose
and kill bacteria [19], the results imply that the critical role
of mast cells in these models is not direct anti-bacterial
action but the generation of TNF and other mediators
(such as leukotrienes [20]) that recruit neutrophils and
possibly other cells to contain the infection.

Mast cells possess multiple mechanisms to detect
bacterial invasion. These include Toll-like receptors (TLRs)
1, 2, 4, and 6, CD48 (a receptor for a Gram-negative
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fimbrial protein), and receptors for anaphylatoxins C3a
and C5a and the complement opsonin iC3b [21–25].
Interestingly, mast cells triggered by means of these
mechanisms seem capable of responses that are
substantially more differentiated than those unleashed
through IgE/FcεR1. In contrast to the wholesale
‘anaphylactic’ degranulation that characterizes maximal
IgE-mediated stimulation, bacteria can trigger a gradual
and partial (so-called ‘piecemeal’) degranulation proportional

to the stimulus [19,26]. The production of lipid mediators
and cytokines/chemokines seems also to be tailored to
the event, and can even be entirely decoupled from the
release of granule contents (reviewed in [27]).

An important consequence of mast cell activation may be
the mobilization of adaptive immunity. Mast cell leukotriene
B4 recruits memory CD4+ and CD8+ T cells, which can
then be activated locally by mast cells presenting
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Table 1

Selected mast cell mediators and their potential roles in arthritis

Mediator Some relevant functions

Granules

Histamine Vascular permeability, leukocyte recruitment, fibroblast/chondrocyte activation

Heparin Angiogenesis, osteoclast differentiation and activation

Neutral proteases Matrix degradation, leukocyte recruitment, fibroblast activation

TNF Leukocyte recruitment, fibroblast/chondrocyte activation

Eicosanoid mediators

PGD2 Vascular permeability, neutrophil recruitment

LTB4 Vascular permeability, leukocyte recruitment and activation

Cysteinyl leukotrienes Vascular permeability, immunomodulatory (LTC4)

Cytokines/chemokines

IL-1 Leukocyte recruitment, fibroblast/chondrocyte activation, angiogenesis

IL-2 Lymphocyte stimulation

IL-3 Leukocyte growth factor

IL-4 Immunomodulatory, profibrotic

IL-6 Activation of leukocytes and fibroblasts

IL-8 Neutrophil recruitment

IL-10 Immunomodulatory

IL-13 Immunomodulatory, B cell stimulation

IL-18 Angiogenesis, lymphocyte stimulation

TNF Leukocyte recruitment, fibroblast/chondrocyte activation, angiogenesis

IFN-γ Activation of synovial macrophages

TGF-β Immunomodulatory, fibroblast mitogen, angiogenesis

PDGF Fibroblast mitogen

VEGF Fibroblast mitogen, angiogenesis

bFGF Fibroblast mitogen

NGF Fibroblast mitogen

MCP-1 Leukocyte recruitment

MIP-1α, MIP-1β Leukocyte recruitment, osteoclast differentiation

RANTES Leukocyte recruitment

bFGF, basic fibroblast growth factor; IFN, interferon; IL, interleukin; LTB4, leukotriene B4; LTC4, leukotriene C4; MCP-1, monocyte chemoattractant
protein-1; MIP, macrophage inflammatory protein; NGF, nerve growth factor; PDGF, platelet-derived growth factor; PGD2, prostaglandin D2;
RANTES, regulated upon activation, normal T-cell expressed and secreted; TGF-β, transforming growth factor-β; TNF, tumor necrosis factor;
VEGF, vascular endothelial growth factor. See text for references.
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phagocytosed peptides via both MHC class II and MHC
class I molecules [28–31]. Mast cells might also
potentiate de novo antigen-specific responses by
promoting the migration of dendritic cells to lymph nodes
and recruiting circulating naive T cells to these nodes by
means of TNF and macrophage inflammatory protein-1β
(MIP-1β) [8,32,33]. Although the ultimate physiological
importance of each of these defensive capabilities remains
to be established, it seems probable that antimicrobial
efficacy accounts at least in part for the remarkable
evolutionary conservation of the mast cell.

Mast cells in antibody-mediated disease
As noted, mast cells express receptors for IgG as well as
IgE. These include FcγR2b and FcγR3a, low-affinity IgG
receptors involved principally in the response to immune
complexes and other constellations of colocalized IgG
molecules. Under certain conditions, mast cells can also
express the high-affinity receptor FcγR1 [34]. These
receptors permit mast cells to participate in humoral
defense, but they also enable a role for mast cells in
antibody-induced pathology. Thus, in a mouse model of
peritonitis induced by intraperitoneal injection of antibody
against an antigen injected intravenously (the reverse
passive Arthus reaction), peritoneal mast cells exposed to
immune complexes release a burst of preformed TNF and
recruit neutrophils [35]. Similarly, in an analogous skin
model, mast cells have been shown to potentiate the
response to antibody administered subcutaneously
against an antigen delivered systemically [36]. Optimal
mast cell participation in this reaction requires a functional
complement system, suggesting that complement fixation
by immune complexes provides an important auxiliary
signal to mast cells, in particular via C5a [37]. A related
phenomenon is observed in a model of bullous
pemphigoid: subcutaneous administration of an antibody
against the hemidesmosomal antigen BP180 induces
inflammatory attack, resulting in lysis of the dermal–
epidermal junction. In the absence of mast cells or
complement, inflammation is markedly attenuated [38,39].
As in bacterial peritonitis, the key function of mast cells in
these models of antibody-mediated pathology seems to
be the mobilization of neutrophils, because the wild-type
phenotype can largely be rescued in mast-cell-deficient
animals with injection of neutrophils or neutrophil
chemotactic factors.

Mast cells: a role in chronic inflammation?
In the models discussed so far, the principal function of
mast cells seems to be to ‘jump start’ the immune
response, in particular to initiate the rapid recruitment of
inflammatory cells. Structurally, the mast cell is uniquely
equipped for this task, with its capacity for the immediate
release of preformed mediators and the rapid elaboration
of lipid mediators. However, the mast cell’s activity does
not end with this initial response. Mast cells continue to

elaborate cytokines for hours after a single stimulus, and a
degranulated mast cell can recharge and fire again
[40,41]. Some mast cell mediators have effects such as
the promotion of angiogenesis, whose relevance is more
evident after the acute inflammatory response [42].
Further, mast cells accumulate at sites of chronic
inflammation, prima facie evidence that their role is not
restricted to the initiation of immune responses; examples
include the gut in inflammatory bowel disease or
helminthic infection, the asthmatic airway,
sclerodermatous skin, and lung in interstitial pulmonary
fibrosis [43–46]. Though no pathogenic role has yet been
definitively assigned to the mast cell in these conditions,
potential functions include ongoing recruitment of
inflammatory cells, stimulatory effects on stromal cells
resulting in fibrosis, and the development of new blood
vessels. It is also conceivable that mast cells might in
some cases limit or otherwise modulate local
inflammation, although no data to this effect are available.
Particular proinflammatory mechanisms are discussed
below in detail as they pertain to the potential role of the
synovial mast cell in arthritis.

Mast cells in inflammatory arthritis
Mast cells in normal and inflamed human synovium
The synovium of patients with RA is an archetypal example
of a chronically inflamed tissue characterized by an
expanded population of mast cells (Fig. 1). In the normal
joint, the synovium consists of a thin lining layer of
macrophages (macrophage-like synoviocytes, ‘Type A’
cells) and fibroblasts (fibroblast-like synoviocytes, ‘Type B’
cells) embedded in a connective tissue matrix and resting
on a sublining of highly vascular loose connective tissue
and adipose tissue. In the absence of inflammation,
scattered mast cells are seen in the sublining, clustered
around vessels and nerves and forming up to 3% of all
cells within the synovium [47]. The role of mast cells in the
normal synovium remains to be defined, although the
importance of mouse peritoneal mast cells for defense
against bacterial peritonitis suggests that one important
function of synovial mast cells might be to monitor the
vulnerable acellular joint cavity for early evidence of
infection.

In RA, the synovial lining thickens from 1–3 cells to
10 cells or more, and the sublining becomes infiltrated
with T cells, B cells, macrophages, and occasional neutro-
phils. Mast cells are commonly markedly increased in
number and can make up 5% or more of the expanded
population of total synovial cells. The number of accumu-
lated mast cells differs substantially from patient to patient,
in general varying directly with the intensity of joint inflam-
mation [17,24,48–55]. Mast cells are present throughout
the synovial sublining, with occasional microanatomic
clustering in the pannus near sites of cartilage and bone
erosion [53,54]. A relative mastocytosis may also be
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observed in other arthritides, including juvenile rheumatoid
arthritis, systemic lupus erythematosus, psoriatic arthritis,
and some cases of osteoarthritis (OA) [49].

Accompanying the increased numbers of mast cells, mast
cell mediators are also present at higher concentrations in
the synovial fluid of inflamed human joints. These
mediators include histamine and tryptase, both considered
to be specific for mast cells [56–60]. Again, patient-to-
patient variability is considerable. Although mast cells from
RA and OA do not appear distinct histologically, and
express a generally similar panel of surface receptors, RA
but not OA mast cells have been noted to express the
receptor for the anaphylatoxin complement fragment C5a
[24]. Interestingly, whereas normal human synovium
contains mainly mast cells of the so-called ‘connective
tissue’ phenotype, expressing both tryptase and chymase
in their granules (MCTC), inflamed synovium also features
mast cells that express only tryptase (MCT), a phenotype
more commonly associated with mast cells maturing
under the influence of T cell cytokines at mucosal sites
[24,55,61]. Although the significance of these
subpopulations is uncertain, mast cells with similar
phenotypes isolated from skin and lung exhibit divergent
patterns of cytokine secretion, with IL-4 produced
predominantly by MCTC cells whereas MCT cells elaborate
IL-5 and IL-6 [62]. If this is true in the synovium, then these
two types of mast cell might have different

pathophysiological roles in inflammatory arthritis, because
IL-4 has profibrotic effects whereas IL-6 may be
stimulatory for T and B lymphocytes (reviewed in [63]).
Correspondingly, MCTC cells tend to be found in ‘deeper,’
more fibrotic areas of the inflamed synovium, whereas
MCT cells tend to be found more superficially and in
association with lymphoid aggregates [24,61].

Mast cells in arthritis: insights from the K/BxN arthritis
model
Synovial mast cell degranulation was previously noted in
association with arthritis in several animal models, but a
critical functional role in pathogenesis has recently been
firmly established with the K/BxN mouse model
[1,2,64,65]. This arthritis model, mediated by auto-
antibodies against the ubiquitous enzyme glucose-6-
phosphate isomerase (GPI), demonstrates important
similarities to human RA including symmetric joint
involvement, chronicity, a distal-to-proximal gradient of
joint involvement, and histological features including
synovial infiltrates, pannus, and erosions of cartilage and
bone [66].

A key feature of this model is the ability to transfer the
pathogenic autoantibodies passively to induce arthritis in
recipient mice [67]. This passive transfer arthritis
mechanistically ‘disconnects’ the afferent pathogenic
events involving the adaptive immune response and
affords an analytic focus on the efferent pathogenic
mechanisms of synovial inflammation. Given the large and
ever-increasing number of targeted genetic deletions in
mice, it has been possible to apply the power of this
genetic technique to dissect the molecular requirements
for induction of arthritis. Transfer of serum into mice
deficient in various participants in the inflammatory
response has identified a critical role for cytokines (IL-1,
TNF), IgG Fc receptors (especially FcγR3), complement
(C3, C5) and the C5a complement receptor in arthritis
pathogenesis [2,68,69]. Immune complexes are
implicated in the pathogenesis by the observation that
multiple anti-GPI antibodies with non-overlapping epitope
specificities – as would be required to form an
antigen–antibody lattice – are required for the initiation of
arthritis [70].

At the cellular level, the concept of the mast cell as
immune sentinel led to the hypothesis that this lineage
might participate pathogenically in autoantibody-driven
K/BxN serum transfer arthritis. Expressing receptors for
both immune complexes and complement, synovial mast
cells would be well positioned to initiate the tissue
response to K/BxN serum. Consistent with this hypothesis
is the observation that mice deficient in mast cells are
highly resistant to arthritis, whereas reconstitution with
normal mast cells restores the wild-type phenotype
(Fig. 2). Furthermore, degranulation of mast cells in the

Available online http://arthritis-research.com/content/7/1/1

Figure 1

Mast cells within the rheumatoid synovium. Shown is fixed, paraffin-
embedded synovial tissue obtained during arthroplasty from a patient
with chronic rheumatoid arthritis. This tissue was stained with safranin-
O, which labels mast cell granule proteoglycans red, and
counterstained with hematoxylin. Note the frequent safranin-O-positive
mast cells present within the synovial sublining (several indicated with
arrows). A fold of thickened synovial lining is seen at the bottom left of
the image (outlined with a dotted line) and a blood vessel (BV) is
visible in the middle of the field, with erythrocytes staining blue.
(Section 5 µm thick; original magnification ×400.)
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synovium is the first event observed histologically,
occurring within 1–2 hours of administration of K/BxN
serum [1]. Thus, as in antibody-mediated peritonitis,
synovial mast cells seem to act as early responders,
mobilizing the inflammatory response against a perceived
insult. In their absence, no other cell constitutively resident
within the synovium or present in the circulation seems to
have the capacity to initiate the recruitment of
inflammatory cells to the joint that characterizes arthritis in
the wild-type animal. However, details of the mechanisms
of mast cell activation as well as the relevant mast cell
effector functions in this model remain to be defined.

Mast cells and the initiation of human synovitis
The involvement of mast cells in the earliest phases of
human synovitis remains a subject for conjecture. As
described previously, mast cells can be triggered by IgG
immune complexes, complement, TLR ligands, and
microbial antigens. Each of these stimulatory pathways
may be of relevance to human arthritis. Immune complexes
are thought to cause the arthritis of serum sickness and
cryoglobulinemia but have also been documented in the
serum, synovial fluid, synovium, and cartilage of patients
with RA and are once again a field of active investigation
in the pathogenesis of RA [71–74]. Complement
activation has similarly been well documented within
rheumatoid synovium [75]. Infection with bacteria or
viruses could trigger mast cell activation by means of
TLRs and specific pathogen receptors. Even in the
absence of infection, mast cells could be stimulated via
TLRs by synovial constituents with TLR ligand activity,
including heat shock protein 60 and breakdown products
of hyaluronan, potentially amplifying any inflammatory

process within the joint [76]. Mast cell IgE receptors might
also have a role in a small subset of patients, because IgE
rheumatoid factors and IgE-containing immune complexes
have been documented in some patients with RA [77,78].

Once activated, mast cells in the synovium would be
expected to initiate inflammation through several
mechanisms; a limited number of candidate pathways are
outlined in Fig. 3. Vasoactive mediators such as histamine,
prostaglandin D2, and the leukotrienes increase vascular
permeability, whereas TNF, IL-1, and histamine promote
the expression of the adhesion molecules P-selectin,
E-selectin, ICAM-1, and VCAM-1 on the endothelial
surface [79,80]. Circulating leukocytes bearing appropriate
counter-receptors, such as leukocyte function-associated
antigen-1 (LFA-1) (itself of heightened affinity under the
influence of proinflammatory cytokines through ‘inside-out’
regulation), could then be recruited into the synovium
along gradients of chemotactic mast cell products such as
leukotriene B4, monocyte chemoattractant protein-1,
tryptases (for example mMCP6), and IL-8. Activation of
resident synovial macrophages and arriving monocytes
and neutrophils by means of interferon-γ, IL-6 and TNF
would be expected to result in further amplification of
leukocyte recruitment and an enhanced output of
proinflammatory cytokines.

Beyond the ‘jump start’: a role for mast cells in chronic
synovitis in mouse and humans?
In some murine models of bacterial and antibody-induced
disease, the physiological role of mast cells can largely be
replaced by a single administration of neutrophils or
neutrophil chemoattractants [17,31,35,38]. This observation
suggests that mast cells have no substantial continuing
role in these pathologic states. In K/BxN arthritis, and
potentially in human arthritis, is there a role for the synovial
mast cells beyond the initiation of synovitis?

An initial observation applies. In K/BxN serum transfer
arthritis, two serum injections are followed within 1–3 days
by an intense synovitis. This reaction peaks over the
course of 2 weeks but is ultimately self-limiting, resolving
within 6 weeks. Although some human joint diseases run
such a self-limited course (such as serum sickness and
postviral arthritis), many human arthritides are chronic. In
such chronic conditions, any factors inducing mast cell
activation might well be persistent. This is so in K/BxN
mice, which exhibit a progressive erosive arthritis in the
setting of persistently high levels of autoantibodies in the
serum. ‘Chronicity’ can be mimicked in wild-type mice by
means of a repeated transfer of K/BxN serum. In this
setting, synovial mast cells can undergo repetitive cycles
of activation and thus participate in ongoing disease much
more substantially than has been observed in models of
peritonitis and skin disease. Indeed, degranulating synovial
mast cells are readily observed in established K/BxN
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Figure 2

Mast cells constitute a critical pathogenic link in K/BxN serum transfer
arthritis. Compared with wild-type controls, mast-cell-deficient W/Wv

mice injected with K/BxN arthritogenic serum are resistant to the
development of arthritis. After reconstitution with cultured wild-type
mast cells, but not sham reconstitution, normal susceptibility is
restored. Error bars = SEM. (Adapted from reference [1], with
permission.)
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arthritis [1]. Yet a functional contribution of mast cells to
continuing inflammation remains to be experimentally
determined.

In humans, given the expanded numbers of mast cells
within the joint and their enormous capacity for the
production of cytokines and chemokines, it would be
surprising indeed if they were of no consequence to the
chronic inflammatory response. The broad range of mast
cell effector functions includes the elaboration of
mediators with bioactivity directed at marrow-derived
leukocytes as well as mesenchymal tissue elements
(Fig. 3). Because the pathogenic state of inflammatory
arthritis displays prominent responses by both infiltrating

leukocytes and mesenchymal cells, in particular synovial
fibroblasts, we will examine the potential influence of mast
cells on both compartments in arthritis.

Mast cells and synovial leukocytes
The rheumatoid synovium is thick with infiltrating leukocytes.
These include T lymphocytes, B lymphocytes, macrophages,
mast cells and scattered neutrophils. Ongoing recruitment of
these cells results from the upregulation of selectins and
integrins on synovial endothelium, allowing migration up
chemotactic gradients into the joint. The composition of
inflammatory cells recruited in a continuing fashion by mast
cells, including the degree of skewing of lymphocytes toward
Th1 versus Th2 responses, might be an important

Available online http://arthritis-research.com/content/7/1/1

Figure 3

Candidate proinflammatory functions of mast cells in synovitis. Mast cell effector functions suggest their participation in diverse pathogenic
pathways in inflammatory arthritis, including leukocyte recruitment and activation, synovial fibroblast activation and hyperplasia, angiogenesis, and
cartilage and bone destruction. Activated mast cells elaborate mediators potently capable of enhancing vasopermeability, inducing endothelial
expression of adhesion molecules, recruiting circulating leukocytes, and activating infiltrating leukocytes as well as resident macrophages, thereby
contributing to the early phases of inflammatory arthritis. In chronic synovitis, mast cells synthesize mitogens and cytokines that activate synovial
fibroblasts, recruit macrophages, and promote the growth of new blood vessels, implicating them in synovial lining hyperplasia and pannus
formation. Further, mast cells may participate in joint destruction by the induction of matrix metalloproteinases (MMPs) from fibroblasts, by
activation of chondrocytes, and by direct and indirect promotion of osteoclast differentiation and activation. Because activated synovial fibroblasts
demonstrate enhanced stem cell factor (SCF) expression, a potentially important positive feedback loop is established in which SCF promotes
mast cell survival and proliferation, leading to the mastocytosis described in inflamed synovium. Note that the importance of these candidate
pathways in vivo remains to be established. See text for details and references. bFGF, basic fibroblast growth factor; IFN, interferon; IL, interleukin;
MCP = monocyte chemoattractant protein; M-CSF, macrophage colony-stimulating factor; MIP, macrophage inflammatory protein; PDGF, platelet-
derived growth factor; PMN, polymorphonuclear cell; RANK-L, receptor activator of NF-κB ligand; TNF, tumor necrosis factor. (Graphic design by
Steve Moskowitz.)
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determinant of the ultimate outcome of inflammation. The
production of anti-inflammatory mediators by mast cells
remains uncharacterized [81].

Prominent within the rheumatoid synovium is a greatly
expanded population of synovial macrophages. These
cells do not proliferate locally but instead are recruited
from circulating monocytes [82]. Mast cells are potent
sources of chemokines that mediate this recruitment,
including IL-8, monocyte chemoattractant protein-1,
MIP-1α, and RANTES [3]. Mast cells might also contribute
to the activation of these macrophages through the
production of interferon-γ and IL-6. Because macrophages
are major sources of the proinflammatory cytokines TNF
and IL-1 within the joint, mast cell effects on the size and
activation state of the synovial macrophage population
might functionally modulate the course of inflammatory
arthritis.

Mast cells and the synovial mesenchyme
The synovial mesenchyme, consisting principally of
synovial fibroblasts, is prominently involved in joint
inflammation. Fibroblasts increase greatly in numbers and
assume a histological appearance suggestive of increased
synthetic activity, with expansion of the endoplasmic
reticulum and increased numbers of granules in the
cytoplasm [83]. Indeed, synovial fibroblasts make up the
shroud-like pannus characteristic of the rheumatoid joint
and are an important source of multiple mediators
implicated in arthritis. These include degradative enzymes
such as collagenase and stromelysin and proinflammatory
molecules including IL-1, IL-6, and prostaglandin E2
(reviewed in [84]). They contribute to the differentiation
and activation of osteoclasts, the effector cell responsible
for bone erosions, through the production of macrophage
colony-stimulating factor (M-CSF) and receptor activator
of NF-κB ligand (RANKL) [85,86].

Mast cells may potently influence synovial fibroblast
biology in RA. Consistent with a proposed role in wound
healing and in multiple fibrotic disease states, mast cells
produce a range of mediators with powerful effects on
fibroblasts (Table 1) [87]. Further, synovial mast cells are
often noted in close physical proximity to synovial
fibroblasts [50]. Mast cell tryptase promotes chemotaxis
and collagen synthesis in fibroblasts, and histamine
stimulates fibroblast proliferation [88–90]. Other fibroblast
mitogens produced by mast cells include nerve growth
factor, basic fibroblast growth factor, platelet-derived
growth factor, vascular endothelial growth factor (VEGF),
and transforming growth factor-β (TGF-β) [91]. The
cytokine IL-4, produced predominantly by mast cells of a
tryptase–chymase phenotype, induces proliferation and
collagen production by fibroblasts [92], and indeed, as
noted above, MCTC cells tend to reside in more fibrotic
areas of the inflamed joint. Because leukotriene C4 seems

to have antifibrotic effects, it remains possible that mast
cells can limit as well as promote fibrosis, although
scattered foci of fibrosis associated with mast cell
infiltrates in systemic mastocytosis suggest a net
profibrotic effect [91,93,94].

Mast cells may also potentiate mediator production by
synovial fibroblasts through the elaboration of cytokines
such as TNF and IL-1. IL-1 induces the elaboration of
collagenase and prostaglandin E2, and TNF elicits similar
responses while also inducing synovial fibroblasts to
generate IL-1 [95–97]. Indeed, the production of
collagenase and other inflammatory products of fibro-
blasts has been noted to localize to the immediate
environment of activated mast cells [98].

This communication between mast cells and synovial
fibroblasts is bidirectional. Mast cells require stimulation
by SCF for differentiation in situ as well as activation [6].
Fibroblasts in inflamed or healing tissues express higher
levels of SCF, and upregulation of SCF expression has
been noted in synovial specimens exposed to TNF
[99–101]. Indeed, such surface expression seems to be
of particular importance to mast cell development,
because Sl/Sld mice unable to display surface-bound SCF
lack tissue mast cells despite an intact production of
soluble SCF [102,103]. Further, transwell experiments
demonstrate that physical contact is required for certain
stimulatory effects of fibroblasts on mast cells [104,105].
Fibroblasts might also promote the survival of mast cells
by means of SCF-independent pathways yet to be fully
defined [106].

In addition to fibroblasts, the synovial mesenchyme also
contains blood vessels. As would be expected, the
expanded cellular population in the inflamed synovium
requires an enhanced blood supply, and neoangiogenesis
has an important pathophysiological function in RA. Mast
cell mediators implicated in the promotion of angiogenesis
include heparin, vascular endothelial growth factor, TGF-β,
TNF, IL-1, and IL-18 [42,107]. Further, TNF can induce
synovial fibroblast production of another pro-angiogenic
factor, angiopoietin-1 [108]. Though the ultimate
importance of mast cells in synovial angiogenesis remains
unclear, the association of mast cells with blood vessels,
including newly developing blood vessels, makes the
promotion of angiogenesis a plausible role for mast cells
in vivo (reviewed in [109]).

Finally, some data suggest that mast cell mediators might
exert a direct effect on cartilage and bone. Thus, whereas
the coculture of chondrocytes with inactive mast cells
tends to promote the synthesis of proteoglycans, the
activation of mast cells in this context favors proteoglycan
degradation [110]. Further, the activation of chondrocytes
via IL-1, TNF, and histamine might induce the production
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of matrix metalloproteinases and prostaglandins [111,112].
Finally, mast cell mediators including histamine and MIP-
1α might directly promote the differentiation and activation
of osteoclasts, the final common pathway of bone
destruction in inflammatory arthritis [113–115]. Corro-
boration in vivo will be required to establish the
importance of these in vitro findings.

Conclusions
Mast cells are a normal cell population within the human
synovium, and in line with their role as sentinels they likely
have an important physiological role as an ‘early warning
system’ for infection within the vulnerable joint cavity. Data
from the K/BxN mouse model now show that mast cells
also have a critical role in the pathogenesis of inflam-
matory arthritis, in particular in arthritis induced by
autoantibody-containing immune complexes. Although a
similar mechanism remains unproven for human joint
inflammation, markers of mast cell activation are observed
in joint fluid from patients with chronic arthritis and mast
cell numbers are often greatly expanded within the
inflamed synovium. Equipped with an impressive array of
mediators, mast cells can promote synovitis by recruiting
inflammatory cells from the blood, inducing synovial
fibroblast hyperplasia and mediator production, and
fostering angiogenesis. Although much remains to be
learned about the role of the mast cell in arthritis, such a
role now seems highly likely, offering a potential new
target for therapeutic agents in the treatment of RA and
other inflammatory diseases of the joints.
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