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The emergence of cancer immunotherapies utilizing adoptive cell transfer (ACT) continues
to be one of the most promising strategies for cancer treatment. Mast cells (MCs) which
occur throughout vascularized tissues, are most commonly associated with Type I
hypersensitivity, bind immunoglobin E (IgE) with high affinity, produce anti-cancer
mediators such as tumor necrosis factor alpha (TNF-a) and granulocyte macrophage
colony-stimulating factor (GM-CSF), and generally populate the tumor microenvironments.
Yet, the role of MCs in cancer pathologies remains controversial with evidence for both
anti-tumor and pro-tumor effects. Here, we review the studies examining the role of MCs in
multiple forms of cancer, provide an alternative, MC-based hypothesis underlying the
mechanism of therapeutic tumor IgE efficacy in clinical trials, and propose a novel strategy
for using tumor-targeted, IgE-sensitized MCs as a platform for developing new cellular
cancer immunotherapies. This autologous MC cancer immunotherapy could have several
advantages over current cell-based cancer immunotherapies and provide newmechanistic
strategies for cancer therapeutics alone or in combination with current approaches.

Keywords: mast cells, adoptive cell transfer, cancer immunotherapy, FceRI, IgE
ADOPTIVE CELL TRANSFER FOR CANCER IMMUNOTHERAPY

The use of autologous cells that can be targeted to tumors and induce apoptosis is an emerging
therapeutic option to treat malignancies (1). From 2017 to 2018, there was a > 112% increase in the
number of cell-based active agents in the global cancer immunotherapy pipeline. Most cells being
investigated for autologous cancer immunotherapy have both pro- and anti-tumor mediators,
Abbreviations:MC, Mast Cell; MCs, Mast Cells; ADMC, Adipose-Derived Mast Cells; IgE, Immunoglobin E; TNF-a, Tumor
Necrosis Factor Alpha; GM-CSF, Granulocyte-Macrophage Colony-Stimulating Factor; AMCIT, Autologous MC Cancer
Immunotherapy; ACT, Adoptive Cell Transfer; CAR, Chimeric Antigen Receptor; CAR T, Chimeric Antigen Receptor T Cells;
TIL, Tumor-Infiltrating Lymphocyte; CRS, Cytokine Release Storm; EFS, Event-Free Survival; ORR, Overall Response Rate;
PFS, Progression-Free Survival; OS, Overall Survival; ADCC, Antibody-Dependent Cellular Cytotoxicity; FDA, US Food and
Drug Administration; NK, Natural Killer Cells; DC, Dendritic Cells.
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their elevated numbers correlated with positive or negative
patient outcomes, and strategies investigated to either inhibit
their presence in tumors or utilize them for their anti-tumor
properties. This strategy of adoptive cellular transfer (ACT) is
typified by the use of autologous, peripheral T cells engineered ex
vivo to express a transmembrane chimeric antigen receptor
(CAR) composed of an extracellular, antigen-specific single-
chain antibody and an intracellular T cell signaling domain
(CAR T) (2). The use of CAR T-cell therapies has been
approved by the Food and Drug Administration for children
with acute lymphoblastic leukemia and adults with advanced
lymphomas (3). Other T-cell based strategies, such as tumor-
infiltrating lymphocyte (TIL) and engineered T cell receptor
therapies are also being investigated (4). Several non-T immune
cells also have potential anti-tumor activity. For example,
dendritic cells (DC) modified in vitro with specific tumor-
associated antigens to generate an immune response for
cancer-cell elimination has led to clinical trials testing their
safety and efficacy (5). Natural killer cells (NK) can eliminate
cancer cells with surface markers associated with oncogenic
transformation and have been investigated in clinical trials in
patients with hematological malignancies or solid tumors (6).
Peripheral blood eosinophils and neutrophils, containing potent
mediators utilized by the immune system for pathogen
destruction, have recently been demonstrated to have
antitumorigenic activity (7, 8). As mentioned above, strategies
to control tumor macrophages have resulted in numerous
clinical trials in cancer patients to eliminate them alone or in
combination with other therapies (9–11). Strategies to deplete
macrophages are typified through inhibition of the CSF-1/CSF-
1R signaling pathway. In general, depleting strategies have had
limited success as unwanted removal of beneficial macrophages
in non-tumor sights is a challenge (12). Conversely, other studies
have hypothesized the anti-tumor capabilities of macrophages
could be exploited and thus examined employing them as a form
of ACT (13). While cytotoxic macrophages proved effective in
animal models, this observation did not translate to humans
(14). Recent strategies using CAR are intended to polarize pro-
tumor and immunosuppressive M2 phenotype to a M1
phenotype with phagocytic functions, target cancer specific
biomarkers, and induce an adaptive immune response (15, 16).
In short, most cells being investigated as new platforms for
cancer immunotherapy exert both pro- and anti-tumor effects.
Therefore, the challenges moving forward in utilizing these cells
is to remove the pro-tumor activity and/or enhance their anti-
tumor functions. A summary table on the history of cell types
being explored or used as cancer immunotherapy is shown
in Table 1.
CHALLENGES WITH CELL-BASED
CANCER IMMUNOTHERAPIES

While the numbers of autologous cells to target and inhibit
cancer cell growth in vivo continues, so do the unanticipated
Frontiers in Oncology | www.frontiersin.org 2
roadblocks and challenges emerge. One challenge associated with
CAR T cell therapies is the potentially life-threatening side-effect
loosely defined as cytokine release syndrome (CRS). The CRS is
induced by a systemic release of inflammatory cytokines
associated with the T cell infusion and proliferation (and other
T cell stimulants) (29). Also, the overwhelming majority of
unique tumor antigens reside inside tumors, out of the reach
of cells targeting them. This has led to efforts to identify and
optimize delivery methods such as “in situ vaccination” at the
tumor site hypothesized to release the inner tumor-associated
antigens (30–33). Relatedly, most tumor antigens are
promiscuous being found in and on cancerous and non-
cancerous cells. This off-target phenomenon can result in
serious or even fatal outcomes. An example of this is relates to
an early trial in which T-cells were targeted to melanoma-
associated antigen 3 (MAGE-A3) on metastatic cancers.
Nervous system cells also express a similar MAGE-A12. As a
result, T cells also invaded patients brain tissue resulting in the
death of 2 out of 9 patients (34). The CAR T cell target CD19 is
found on normal and malignant B cells. This can lead to lower
immune cell numbers and side effects, such as a higher risk of
infection when healthy cells are destroyed (35). Cancer cells are
readily accessible to immune cells in blood as they circulate as
individual cells or small clumps of cells compared to much larger
solid tumors. Thus, another consideration in ACT development
is the ability of the targeted cells to enter inside the tumor and
release their anti-tumor mediators and killing at multiple locations.
ALLERGY, CANCER RISK, AND THE
EMERGENCE OF TUMOR TARGETING
IGE’S FOR CANCER IMMUNOTHERAPY

Epidemiological studies investigating a correlation between
atopic disease (e.g. serum IgE levels) and several types of
cancer have demonstrated either a protective role or as a risk
factor depending on the location (36–38). The retrospective,
epidemiological observations that dominate the literature in
general evaluated self-reported allergy histories, total IgE
measurements, and/or skin prick tests and risks of cancer. An
emerging area of research that suggests that patients with
“ultralow” IgE serum levels have an associated with high rates
of new malignancies not observed in mice (39–41). Specifically,
patients with IgE deficiency and negative skin prick tests had a
higher rate of malignancy than patients who had IgE deficiency
with positive skin tests (41). This is important as a hallmark of
IgE mediated functional responses of tissue mast cells (MCs) is
the skin prick test which would support the possibility that IgE
bound to MCs may have a role in tumor surveillance. As the
epidemiological evidence linking atopic status to cancer risk
continues to evolve (increased, decreased, or no association) so
have the proposed hypotheses attempting to relate the possible
mechanism linking allergy to cancer (37).

The development of atopy is initiated by the generation of IgE
which binds FceRI on MCs and basophils to induce allergic
March 2022 | Volume 12 | Article 830199
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mediator release which induces allergy inflammation when
encountering allergen. Tumor targeting IgE’s are being
developed in an attempt to harness the diverse acquired
responses mediated through IgE (e.g. parasite expulsion), the
success of targeting cancer tumor markers with humanized IgG
as a therapeutic strategy (42), and the epidemiological evidence
suggesting a protective role for atopy against some malignancies
Frontiers in Oncology | www.frontiersin.org 3
(43). The IgE isotype has several potential advantages over IgG
antibodies approved by the FDA on the market to treat various
cancers such as the low serum levels of IgE (generally 100,000
fold lower than IgG) that result in less competition for FceR
occupancy, lack of inhibitory FceR, and induces a different anti-
tumor immune response compared to IgG (44, 45). Currently,
there are over 10 IgE antibodies derived from patients or
TABLE 1 | Chronological history of cell-mediated cancer immunotherapy strategies.

Cell type Year Clinical trials Strategy for targeting Mechanism of action Targeted cancer Refs

Bacteria cells 1891 n/a Injection of heat-killed cultures of bacteria into
tumors to stimulate immune response.

Coley’s toxins released
through the stimulation of
TLRs on immune cells

Sarcoma,
lymphoma,
testicular
carcinoma, etc.

(17)

T cells 1974 n/a T cells exposed to histocompatible, virus-infected
target cells lysed lymphocytic choriomeningitis-
infected cells in vitro and in vivo.

T-cell activation and release of
perforin and granzymes

Lymphocytic
choriomeningitis

(18)
(First cell-mediated
cancer
immunotherapy)

NK cells 1975
to
present

n/a Endogenous type-C viruses in tumor led to
immune cells reactivity in mice.

Tumor cell lysis with NK cells
by secretion of IFN-g, TNF-a,
GM-CSF, and chemokines

YAC-1 lymphoma
cell line

(19)

Mycobacteria 1990
and
1998

FDA approved Attenuated live culture of bacteria injected in
tumors to stimulate the innate immune response.

Macrophages phagocytosis Non-muscle
invasive bladder
cancer

(20)
ORR*=50%
PFS**=30m

Cytolytic T
lymphocytes
(CTLs)

1991 n/a Melanoma cells transduced with MZ2-E were
recognized and killed by CTLs.

CTL activation and release of
perforin and granzymes

Human melanoma (21)

T cell targeted
immunomodulators

1996-
present

>60 FDA approved
antibodies

Anti-PD-1/L1, anti-CTLA-4, Bispecific T-cell
Engager (BiTE) antibodies, etc.

T-cell activation and release of
perforin, granzymes, etc.

Colon carcinoma,
fibrosarcoma,
melanoma, bladder
cancer

(22)

ORR=12%-70%

Antigen presenting
cells (APC)

2010 FDA approved GM-CSF/PAP fusion proteins induce APC
activation and mobilized anti-PAP T cells.

Stimulation of T-cell immune
response against PAP and
release of perforin and
granzymes

Prostate Cancer (23)
ORR= 32%
OS***

Dendritic cell (DC)
vaccine

1989-
present

FDA approved Immunization of mice with DC pulsed with
unfractionated tumor proteins induced protective
immunity against subsequent in vivo tumor cell
challenge.

Antigen presentation by MHC
I and CD8+ T cell secretion of
perforin, granzymes, etc.

Malignant
lymphomas stages
III and IV, Breast
cancers, etc.

(24)

Dendritic cells 2010-
2020

Phase II completed DC pulsed with melanoma specific peptides or
tumor cell lysate stimulate response to melanoma
cells.

Antigen presentation by MHC
I and CD8+ T cell secretion of
perforin, granzymes, etc.

Brain tumors (25)

CAR T cells 2010-
present

FDA approval 2017
and 2018.

T cells with chimeric antigen receptor to B cell
CD19.

T-cell activation and release of
perforin, granzymes, etc.

CD19+ B cell acute
lymphoblastic
leukemia

(26)

ORR= 72%
PFS=9.2 m

Neutrophils 2010-
present

n/a The anti-tumor activity of alemtuzumab was
shown to be primarily dependent on the ADCC
mediated by neutrophils in vivo.

G-CSF B-cell lymphocytic
leukemia

(8)
GM-CSF

Macrophages 2011-
present

Used in several
clinical trials as a
combinatorial
immunotherapy

Macrophages manipulated with antibodies or
reprogrammed with metabolic/epigenetic
substances to repolarize towards an anti-tumor
phenotype

Downregulation of pro-tumor
cytokines; Upregulation of
anti-tumor cytokines

Pancreatic,
melanoma, ovarian
cancer, etc.

(27)

Oncolytic viral
particles

2015 FDA approved Viral particles modified to express GM-CSF for
patients with melanoma

GM-CSF Metastatic
melanoma

(28)
ORR=16%

Eosinophils 2019 n/a Adoptive transfer and cytokine neutralizations. IL-5 Colorectal cancer (7)
INFg

CAR Macrophages 2020 n/a Macrophages with chimeric antigen receptor to
HER2/neu induced anti-tumor activity.

Phagocytosis, HER2+ ovarian
cancer, CD19+
leukemia

(15)
MHC II,
TNF, INFg
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produced to target tumor-specific that have been assessed using
in vitro and in vivo cancer models (Tables 2 and 3) For example,
Fu et al. investigated the serum levels of IgE in patients with
pancreatic cancer and revealed the cytotoxic effect of the purified
IgE against this type of cancer cells (49). The synthesized human
tumor-specific IgE’s such as MOv18 IgE for ovarian carcinoma
(47), Trastuzumab and C6MH3-B1 IgE’s for breast (50), colon
(58), and ovarian (47) cancers, Cetuximab IgE for breast and
epidermoid carcinoma (52), anti-hCD20 for human B-cell
lymphoma (53), anti-PSA for human prostate cancer (55),
have been investigated by many research groups (Tables 2 and
3). Of note, the MOv18 IgE specific for the folate receptor alpha
(FRa) was demonstrated to have anti-tumor effects in vitro and
in vivo and is in phase 1 clinical trials testing with early data
demonstrating demonstrated safety and efficacy in ovarian
cancer patients (64). The survival of FRa-positive xenograft-
bearing mice was increased in the presence of monocytes (48).
Systemic treatment with MOv18 IgE induced TNF-a and IL-10
upregulation in tumors and significantly upregulated TNF-a,
MCP-1 and IL-10 levels in bronchoalveolar lavage fluid using an
in vivo xenograft model (65). Further in vitro studies examined
the anti-tumor mechanism of IgE and demonstrated pro-
inflammatory signals and tumor cell killing by human
monocytes (66). An IgE targeting the tumor-associated antigen
SLC3A2 induced FceRI-mediated degranulation using a rodent
cell line transfected with human receptor and triggered with
SLC3A2-positive cell lines (58). The antibody did not trigger
human basophil activation using unfractionated peripheral
blood from cancer patients. In each of these studies, the
mechanistic emphasis was on IgE-monocyte-mediated anti-
tumor effects via IgE Fc-mediated ADCC.
Frontiers in Oncology | www.frontiersin.org 4
MC IN CANCER; EVIDENCE FOR BOTH
ANTI- AND PRO-TUMOR ROLES

As mentioned above, MCs are the final tissue effector cell in
FceRI-IgE allergic responses through the release of histamine
and other noxious mediators. Their ability to release these
mediators is also controlled by non-IgE and non-receptor
mechanisms that are less common and include hypoxia,
adenosine, and certain chemokines within the tumor milieu
(67). MCs possess both pro-tumor and anti-tumor mediators,
are found in large numbers in and around many types of tumors,
and studies have variously suggested MCs should be targets for
inhibition/depletion or exploited as an anti-tumorigenic strategy
(67). There are various studies that showed MCs have an anti-
tumorigenic role in ovarian cancer (68), clear-cell renal cell
carcinoma (ccRCC) (69), B cell lymphoma (70), skin cancer
(71, 72), renal cancer (73), oral squamous cell carcinoma (OSCC)
(74, 75), non-small-cell lung cancer (NSCLC) (76, 77), intestine
cancer (71, 78), lung cancer (79), melanoma (80–82), prostate
cancer (83–85), colorectal cancer (86), and breast cancer (57, 87–
92) (Figure 1A). Patients with elevated MC counts had a
significantly better event-free survival (EFS) compared
to those with fewer MCs in several tumor types. Several
unique phenotypic characteristics of MCs could contribute
mechanistically to anti-tumor effects. Human MCs are unique
in that they have prestored, releasable (through FceRI) tumor
necrosis factor alpha (TNF-a), histamine, and tryptase within
their granules. The biggest impediment to using TNF-a as an
anti-cancer agent is its systemic toxicity and strategies that
limit its systemic distribution through local administration in
patients have been investigated (93). Histamine induces the
TABLE 2 | In-vitro studies of IgE dependent cancer immunotherapy.

Year Recombinant
IgE

Name Effector cells against cancer cells Target cancer Ref.

1991 Anti-HIV gp120 n/a Human blood basophils and using IgE pathway for cancer immunotherapy H2712 mouse mammary
carcinoma

(46)

1999 Anti-FRa MOv18 IgE Human basophils and platelets against IGROV1 cell line Ovarian carcinoma (47)
2003 Anti-FRa MOv18 IgE Monocytes, eosinophils against human ovarian carcinoma cell line IGROV1 Human ovarian cancer (48)
2008 IgE from

patient
n/a Peripheral blood mononuclear cells against HPAC cell line Human pancreatic cancer (49)

2009 Anti-HER2/neu Trastuzumab IgE Monocytic cell line U937 against SKBR3; Rat basophilic leukemia MC (RBL-SX38)
expressing human FceRI, against murine colon adenocarcinoma cell line CT26-HER2/neu

Human HER2/neu positive
breast and colon cancers

(50)

2011 anti-FRa MOv18 IgE RBL SX-38 against ovarian carcinoma IGROV-1 cell line Ovarian carcinoma (51)
2012 Anti-EGFR Cetuximab IgE Purified human monocytes and MC, U937 and RBL-SX38 cell lines against EGFR

epidermoid and breast cancer cell lines
Human breast cancer and
epidermoid carcinoma

(52)

2012 Anti-hCD20 n/a Primary human MC and eosinophils derived from umbilical cord blood against VU-3C6
hybridoma and OCI-Ly8 lymphoma cancer cell lines

Human B-cell non-
Hodgkin lymphoma

(53)

2012 Anti-HER2/neu C6MH3-B1 MC of transgenic mice strains that express human FceRI against murine mammary
carcinoma cells that express human HER2/neu (D2F2/E2)

Breast and ovarian cancer (54)

2013 Anti-PSA AR47.47 IgE RBL-SX-38 cells sensitized with anti-PSA IgE and challenged with PSA or artificial
molecules containing multiple epitopes of PSA

Human prostate cancer (55)

2017 Anti-FRa rMOv18 IgE/
IgG2b

RBL-2H3 targeting WAG adenocarcinoma and ovarian tumor FRa+ cancers (56)

2019 Anti-HER2/neu Trastuzumab
IgE/C6MH3-B1
IgE

Human primary skin/adipose derived MC against breast cancer cell lines Breast cancer (57)

2021 SF-25 SLC3A2 RBL-SX-38 cell, basophils, cancer cell lines and in vivo xenograft models Colon cancer (others) (58)
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differentiation of immature myeloid cells and suppresses their
ability to support the growth of tumor allografts (71). Increased
histidine decarboxylase (which produces histamine) gene
expression is associated with better relapse-free and overall
survival in breast cancer patients and histamine treatment
reduces tumor growth and increased apoptosis in xenograft
breast cancer models (94). Mast cell tryptase alters the
morphology and reduces the proliferation of human melanoma
cells (82). We and others have demonstrated human MC release
copious amounts (2,500-4,000 pg/ml from 105 cells) of
granulocyte-macrophage colony-stimulating factor (GM-CSF);
also, an anti-tumor mediator investigated in over 50 clinical trials
(95). Mast cells showed direct antitumor effects in vitro and
decreased angiogenesis and recruitment of NK and T cells in
vivo (80).

In contrast, other studies have suggested a pro-tumorigenic role
of MCs in different cancers (Figure 1A) with increased MC
populations in certain tumor microenvironments associated with
poor patient prognosis (96–106). These studies investigated the
expression of MCmarkers (e.g. chymase/tryptase expression, FceRI,
c-KIT, etc.) in tumor tissues using immunohistochemistry, flow
cytometry, immunoblotting, or RT-PCR techniques (67, 107, 108).
In general, most published studies that attribute a pro-tumorigenic
role for MC rely on correlations with increased MC numbers at a
single time point, dependent on the tumor type, stage, and cancer
microenvironment-and patient outcomes (Figure 1B). A
“snapshot” analysis demonstrating an increase or decrease in MC
numbers based on immunohistochemistry and subsequent
association with a specific prognosis cannot be relied on to
predict if these cells have a beneficial or deleterious effect.
Frontiers in Oncology | www.frontiersin.org 5
Observing an increase in MC numbers paralleled by a poor
prognosis (or vice versa) demonstrates a correlation, not a
causation between numbers and prognosis. Studies are needed to
assess the effects selectively knocking down (i.e. CRISPR) the pro-
tumorigenic and/or upregulation of anti-tumorigenic mediators
from human MCs. Nonetheless, MCs are one of the first cells to
infilitrate the tumor microenvironment and possess such a wide
range of receptors and molecules with diverse functions that
mediate tumor responses that adds to the controversial role they
play in the disease (109).

Another issue surrounding the analysis of the MCs role in
cancers relates to conclusions drawn from MC knockout studies,
with constraints in results observed depending on the model
(110–112). In some cases, a pro- and anti-tumor effect was
observed in the same tumors (67, 113, 114). In addition,
differences in MC phenotypic and functional responses
between mice and humans have been well documented (111,
115–123). For example, Fcg receptor expression and functional
responses mediated by them on mouse and human MCs and
monocytes are vastly different (124–126). Further, mouse MCs
have a diverse range of various proteases (127) while human
MCs principally express three proteases (tryptase, chymase, and
carboxypeptidase-A) (128). Histamine is released from human
MCs, while both serotonin and histamine are liberated in
reasonable amounts from MCs in mice, and both contribute to
the physiological effects in anaphylactic reactions, respectively in
these species. Interleukin-3 has a profound effect on murine MC
differentiation and function not observed with human MCs. Of
course, cancer therapeutic strategies require animal models to
determine efficacy of drug targets, safety, biodistribution, etc.
TABLE 3 | In-vivo studies of MC/IgE dependent cancer immunotherapy.

Year IgE Name Animal Anti-tumor mechanism/details Target cancer Ref.

1999 Anti-hFRa MOv18 IgE Mouse Human peripheral blood mononuclear cells (PBMC) against
IGROV1

Human ovarian carcinoma (47)

2012 Anti-hHER2/neu C6MH3-B1 Mouse Mast cells of transgenic mice that express functional human FceRI
against D2F2/E2

Human breast and ovarian
cancer

(54)

2012 Chimeric mouse-
human anti-
hMUCI

n/a Chimeric mouse-
human

Administration of anti-hMUC1 IgE significantly reduced growth of
MUC1+ tumors in hFceRI transgenic mice

Human breast carcinoma (53)

2013 Anti-hPSA AR47.47 IgE Mouse Mice immunized with PSA alone or in combination with anti-PSA
IgE demonstrated effector cells’ activation but not systemic
anaphylaxis

Human prostate cancer (55)

2014 Anti-hFRa MOv18 IgE Cynomolgus
monkey

Human and monkey PBMC against human U937 and IGROV1 cell
line

Human ovarian carcinoma (59)

2015 Anti-hFRa MOv18 IgE Human In clinical trials phase I since 2015 Human ovarian cancer (60)
2016 Anti-hHER2/neu Trastuzumab/

cetuximab
IgG

Dog HER-2 mimotope vaccines used in canine to assess safety and
efficacy

Human HER2 positive
breast cancer

(61)

2017 n/a n/a Mouse Mice lacking multiple MC proteases (e.g. tryptase) exhibited higher
extent of melanoma colonization compared to wild type animals

Mouse melanoma (62)

2017 Anti-hFRa hMOv18 IgE/
IgG2b

Immunocompetent
rat

Anti-folate receptor-a IgE, but not IgG recruits macrophages to
attack tumors via TNF-a/MCP-1 signaling

Human FRa+ cancers
such as ovarian

(56)

2019 Rat anti-hCSPG4
IgE

n/a Rat Immunocompetent mice bearing CSPG4+ tumor received
systemic doses of IgE

Human melanoma,
glioblastoma, and breast
carcinoma

(63)

2021 SF-25 SLC3A2 Mouse SLC3A2-specific IgE demonstrated cytotoxicity against tumor cells
and longer overall survival

Colon cancer (58)
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But caution must be taken when extrapolating data from mouse
models of cancer, especially when focused on MC numbers and
MC Fc-specific mechanisms.
COULD MCS MEDIATE THE EFFICACY OF
ANTI-TUMOR IGE’S AND IN IGE TUMOR
SURVEILLANCE?

The mechanisms underlying the anti-tumor effects of therapeutic
IgE’s are mostly attributed to monocyte and macrophage
Frontiers in Oncology | www.frontiersin.org 6
infiltration and subsequent IgE-mediated activation of these
cells around tumors (56, 65, 129, 130). This hypothesized
mechanism seems counter-intuitive to current evidence that
demonstrates tumor-infiltrating myeloid cells promote, rather
than inhibit-cancer progression (10). FcϵRIa-positive
macrophages have been identified as critical infiltrating cells
that induce tumor progression in squamous cell carcinoma (131)
[although evidence is presented that the anti-FcϵRI antibody
used in this study was not specific for FcϵRI on macrophages
(132)]. As is the case with MC, macrophages may initiate,
promote, or suppress the development of cancer, possess both
pro (e.g. VEGF, EGF, and TGF-b) and inhibitory (e.g. nitric
A

B

FIGURE 1 | Overview of the role of human MC in different cancerous microenvironments. (A) The histograms summarize the data analysis from 75 published
studies on MC's anti- or protumorigenic role in the various human cancer microenvironments. The y-axis shows cancer types and MC association in different tumor
environments in the large and small histogram-top, respectively. The x-axis indicates the number of studies (all histograms). Highlighted regions demonstrate the
number of anti-tumorigenic studies. JMP software was used to show the distribution of number of studies and finding across the categorical variables such as
cancer type and MC association in tumor microenvironments in the 75 published studies. (B) The Bar-Pie chart illustrates the percentage of the 75 published studies
which focused on either anti- or protumorigenic effects of MCs in various cancer microenvironments. In all studies, descriptive analysis is the primary evaluation
strategy for MCs role in different cancer microenvironments. In the second step, most of the studies investigated either the Correlative, Experimental, or combination
(Correlative-Experimental) approaches. Cutaneous T Cell Lymphomas (CTCL); clear-cell Renal Cell Carcinoma (ccRCC); Oral Squamous Cell Carcinoma (OSCC);
Non-SmallCell Lung Cancer (NSCLC); Toll-Like Receptor 2 (TLR2); Tumor Growth Inhibitor (TGI). Predominant is predominancy of the numbers of infiltrated MCs that
was investigated in some studies showing the pro-tumorigenic effect on some cancers at certain stages.
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oxide), and have been implicated to mediate angiogenesis,
invasiveness, metastasis, and acquired resistance to therapeutic
strategies largely based on correlations between cell numbers and
patient outcomes (133–135).

The hypothesis that monocytes/macrophages mediate anti-
tumor efficacy to tumor IgE’s is also premised on the surface
expression of FceRI on monocytes/macrophages that controls
their effector functions. However, the expression of FceRI on
primary human monocytes has been reported to be low (<10% in
non-atopic patients), or not at all, compared to primary human
MC and the expression level on monocytes is 10 to 100-fold less
than observed for peripheral blood basophils from the same
subjects (136, 137). While humanmonocytes can be manipulated
to increase FceRI expression in vitro (66) it is unknown if
primary, tissue macrophages express FceRI to any degree in
humans. It also cannot be assumed the expression of IgE
receptors will stay the same after entry and maturation in the
tissues as monocytes undergo phenotypic changes upon tissue
entry as they mature into macrophages (138). Others have shown
human tissue macrophages do not express FceRI (139–141).
Here, another difference between species relates to reports in
rodent studies that support the conclusion that macrophages can
mediate anaphylaxis in mice; a phenomenon not described in
humans (142, 143). One study showed that the responses of
human alveolar macrophages involving IgE in vitro (144, 145)
was most probably mediated by FceRII (CD23) which has lower
affinity for IgE, is distinct functionally from FceRI (146, 147), and
would help explain the RBC-rosetting most of these older studies
used to determine IgE binding (148, 149). Lastly, other tissue
cells besides MC have been reported to express FceRI (e.g.
Langerhan cells) and the low affinity receptor for IgE (150).
Human basophils (and in some cases eosinophils) express FceRI
they are not normally found in tissue but are recruited following
certain pathological mechanisms (151). Human eosinophils have
demonstrated FceRI expression (and have anti-tumor properties
(7)) but only from donors with eosinophilia and lymphomas
(152). Thus, the likelihood of tumor specific IgE binding to
human monocyte-derived, tissue macrophages with unknown
FceRI expression to mediate effects seems less likely given many
other IgE binding cells are present. MCs [with almost 100%
FceRI expression (57)] are as abundant or more abundant in the
tumor microenvironment than macrophages depending on the
tumor type. For example, the rodent form of IgE MOv18 reduced
lung metastases in a syngeneic rat tumor model expressing
human FRa which was attributed to TNFa, IL-10, and MCP-1
released by MOv18-triggered monocytes (56). However, the
cytokine profile induced in BAL by MOv18 (TNFa, MCP-1,
and IL-10) could very likely include a contribution from lung
MCs which we and many others have shown produce such
cytokines upon FceRI stimulation (57, 153–156). We thus
propose the binding of tumor targeted IgE Fc to human MC
FceRI and subsequent triggering of this receptor upon tumor
engagement mediate the anti-tumor effects of therapeutic IgE’s
given the demonstrated high amounts of FceRI on primary
human MCs in the tumor milieu (157), the high numbers of
FceRI (>1 x 105/cell) that require only ≈100 receptors for full
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activation (67, 158), the affinity of this interaction (159), the
juxtaposition of MCs with cancers cells (67), and the anti-tumor
mediators released from MCs (160). Infusion of IgE into patients
is hypothesized to increase surface expression of MC FceRI as
this receptor is dependent on serum IgE levels (158, 161).
STUDIES USING TUMOR TARGETING
IGE’S AND MCS

Attempts to utilize anti-tumor mediators from MCs for cancer
cell targeting was first examined using a mouse–human chimeric
IgE specific for CD20 and the epithelial antigen MUC1. Cord
blood-derived MCs sensitized with anti-hCD20 IgE are cytotoxic
to CD20 tumor cells in vitro (53). We used adipose-derived mast
cells (ADMC) sensitized with human anti-HER2/neu IgE which
bound to and released MC mediators when incubated with
HER2/neu-positive human breast cancer cells (SK-BR-3 and
BT-474) resulting in TNF-a mediated, tumor cell apoptosis
(57). Importantly, monomeric (shed) HER2/neu and serums
from HER2+ breast cancer patients did not induce ADMC
degranulation, suggesting that such an interaction will not
trigger systemic anaphylaxis.
WILL MC BE ADDED TO GROWING LIST
OF TUMOR TARGETING CELLULAR
IMMUNOTHERAPY?

As discussed above the variety of cell types being investigated as
new strategies for cancer immunotherapy continues to increase.
MCs are similar to tumor associated macrophages as discussed
above in that both have both pro- and anti-tumor capabilities
and correlative studies led to assumptions regarding their role in
various cancers (16). Because of this, initial efforts were aimed at
depleting or repolarizing these cells as a therapeutic, anti-tumor
strategy. MCs are presently at the apparently contradictory
position in which rationale arguments could be made for
inhibiting their numbers in the tumor milieu or increasing
their numbers and harnessing their natural associated anti-
tumor mediators within them. Yet from our perspective
informed decisions as to deplete, increase, or repolarize MCs
cannot be made until more studies assess their functional role in
cancer models. As with human macrophages, human MC may
need to be “repolarized” from a Type I hypersensitivity-
associated cell type to an anti-cancer cell through up or down
regulation of certain mediators. To this end, transfection/
transduction of primary MCs has only recently been achieved
using human peripheral blood derived MCs (162). The
conditions that will now allow us to manipulate MC so that
maximal anti-tumor activity is conferred and/or potential
deleterious mediators can be deleted are being explored in
our laboratory.

We propose human MCs as another cell type to be used in
ACT for cancers in which tumor specific IgE’s are available or
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could be made. To do this, autologous MCs could be obtained
from adipose tissue or cultured from peripheral blood and
expanded ex vivo. Anti-tumor capabilities could be increased
or deleterious mediators downregulated during expansion.
FceRI-positive MCs are then sensitized with IgE targeting
antigens found on tumors. The tumor targeting MCs would
then injected into the patient and become active upon FceRI-IgE
crosslinking. This autologous MC cancer immunotherapy
(Figure 2) would result in the release of anti-tumor mediators
within the tumor milieu (see graphical abstract). Recently we
have demonstrated up to 6 x 106 human ADMC can be injected
i.v. into mice with no toxicological effects. The ADMC, sensitized
with human IgE recognizing the breast cancer antigen HER2/
neu, shrink HER2/neu-positive tumors in vivo using a xenograft
mouse model (manuscript submitted). Since human GM-CSF is
not active in mice (163) the anti-tumor effects we have observed
are expected to be stronger in humans in which GM-CSF would
be fully active (164). This approach may enhance anti-tumor
immunity through epitope spreading of cancer antigens.
Importantly, this strategy may spurn new areas of research
through transformation or manufacturing of tumor-targeted
IgE’s. Harvesting adipose tissue from patients is not difficult,
commonly performed, and increasingly being used for a wide
variety of clinical applications (165, 166). Recently, we have
demonstrated peripheral blood, CD34-positive stem cell derived
MC also have anti-tumor activity providing a second source of
autologous MCs (data not shown).
ADVANTAGES OF AMCIT AS A NEW
CANCER IMMUNOTHERAPY APPROACH

There is a growing list of human IgE antibodies targeting cancer
antigens that have been fully characterized which provide the
targeting needed to transport the MCs to the tumor sites (43).
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It should be noted with caution when examining anti-tumor
effects experimentally that the use of certain tumor targeted IgE’s
is limited as human IgE does not bind mouse FceRI receptors
(167). Second, the in vitro incubation of MCs with IgE for
targeting is extremely stable (168) and allows for the saturation
of FceRI binding, thus maximizing the effect while preventing
patient IgE binding. IgE also stays bound to MCs for several
months in vivo (169–173). Third, the adipose stem cells may be
cryopreserved, reconstituted, and differentiated into ADMC
while retaining expression of introduced genetic modules (data
not shown). This is an important characteristic, as it greatly
enhances the “logistics” of the potential therapy in that patient
cells could be transduced, cryopreserved for shipping, and
reconstituted when needed for therapy. Fourth, MC activation
is hypothesized to induce acute inflammation and destruction of
cancer cells in the tumor microenvironment due to the release of
multiple mediators. The presence of dead tumor cells would
allow uptake and presentation of tumor antigens by antigen
presenting cells as with dendritic cells that elicit an adaptive, long
lasting immune response not only to the targeted antigen but
also to other tumor antigens due to epitope spreading. This
would increase due to the local release of GM-CSF from MCs
(174, 175) and the release of regulatory T-cell function
suppressors (176). Of course, the use of tumor IgE’s alone or
using tumor IgE-sensitized MCs as proposed here has the
obvious potential to induce a systemic allergic response.
Strategies to delete select mediators in human MCs are
underway but with caution as it is simply not known if those
with potential “toxic” side effects also have potent anti-tumor
effects. Lastly, this strategy has the potential to circumvent
challenges associated with current ACT strategies in which
hyperactive T cells create a cytokine storm (177), reduced
chances of off-target binding (not expressed on normal cells;
e.g. CD19) (178), and avoid the lack of expansion and/or
persistence of autologous cells (as with NK cells) (179).
FIGURE 2 | Autologous MC cancer immunotherapy; a potential new platform for cancer therapy. We propose using MCs as a new cell type for adoptive cell transfer
for cancers in which tumor-specific IgE’s are available. MC progenitors are obtained from patient, MCs expanded and polarized to enhance cytotoxicity and/or minimize
systemic toxicity, and re-polarized MCs reinfused into patient.
March 2022 | Volume 12 | Article 830199

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fereydouni et al. Cytotoxic Mast Cells for Cancer
CONCLUSIONS AND FUTURE
DIRECTIONS

While the role of MCs in all cancer pathogenesis is still unclear,
future studies are needed to examine if ex vivo-derived MCs
possess anti-tumor capabilities. Questions remain regarding the
possibility of systemic MC activation, although this issue can be
overcome as discussed above with prophylactic anti-histamines,
as is common practice (180–183). An alternative clinical strategy
could be to first add IgE, followed by the MCs. Antigen levels on
target cells may vary in patients, which could minimize cell
targeting and activation. It is not anticipated that high levels of
antigen will be needed, as human MCs require ≈100 FceRI
receptors to aggregate for a full activation response (158) and
all FceRI will be saturated so that patient IgE binding will not
occur. Shed antigen in serum may also “mask” the MC-bound
IgE without inducing degranulation, however blocking future
binding. That said, this remains unlikely given the in vivo studies
using IgE antibodies to tumor antigens do not suggest masking
(50, 58, 184, 185).

There are myriad reasons to speculate on the many potential
roadblocks that could arise during the development of
the AMCIT as a new cancer immunotherapy strategy. But it is
important to highlight similar misgivings, inaccurate predictions
regarding toxicity, and major setbacks in the early years of CAR
T-cell therapy (177, 186, 187). The emergence of CAR-T
immunotherapy was met with skepticism and progressed only
gradually based on incremental insights over many years. Even
though unexpected toxic effects in Phase 1 studies can quell any
Frontiers in Oncology | www.frontiersin.org 9
new therapy, the unfortunate reality is that it can take time to
distinguish toxic effects as was the case in the first CART-19 trials
(186, 188, 189). The point is that it is impossible to predict what,
if any, side effects might occur in vivo with ADMC until studies
to assess their role are performed. We believe the need for novel
therapies that bring new mechanisms to combat cancer
pathologies are important to investigate given the continued
morbidity and mortality associated with this disease.
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