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Background: The accuracy of traditional clinical methods for assessing the metastatic status of axillary lymph nodes (ALNs) is
unsatisfactory. In this study, the authors propose the use of radiomic technology and three-dimensional (3D) visualization technology
to develop an unsupervised learningmodel for predicting axillary lymph nodemetastasis in patients with breast cancer (BC), aiming to
provide a new method for clinical axillary lymph node assessment in patients with this disease.
Methods: In this study, we retrospectively analyzed the data of 350 patients with invasive BC who underwent lung-enhanced
computed tomography (CT) and axillary lymph node dissection surgery at the Department of Breast Surgery of the Second Xiangya
Hospital of Central South University. The authors used 3D visualization technology to create a 3D atlas of ALNs and identified the
region of interest for the lymph nodes. Radiomic features were subsequently extracted and selected, and a prediction model for
ALNs was constructed using the K-means unsupervised algorithm. To validate the model, the authors prospectively collected data
from 128 BC patients who were clinically evaluated as negative at our center.
Results: Using 3D visualization technology, we extracted and selected a total of 36 CT radiomics features. The unsupervised
learning model categorized 1737 unlabeled lymph nodes into two groups, and the analysis of the radiomic features between these
groups indicated potential differences in lymph node status. Further validation with 1397 labeled lymph nodes demonstrated that the
model had good predictive ability for axillary lymph node status, with an area under the curve of 0.847 (0.825–0.869). Additionally, the
model’s excellent predictive performance was confirmed in the 128 axillary clinical assessment negative cohort (cN0) and the 350
clinical assessment positive (cN+ ) cohort, for which the correct classification rates were 86.72 and 87.43%, respectively, which
were significantly greater than those of clinical assessment methods.
Conclusions: The authors created an unsupervised learning model that accurately predicts the status of ALNs. This approach
offers a novel solution for the precise assessment of ALNs in patients with BC.
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Introduction

Breast cancer (BC) has emerged as the most prevalent malignant
tumor worldwide, overtaking lung cancer, and constitutes 11.7%
of all cancer diagnoses[1–3]. Additionally, it ranks as the fifth most

common cause of cancer-related mortality globally. The primary
cause of death in patients with BC is tumor metastasis and
recurrence, and axillary lymph node metastasis (ALNM) is an
important risk factor[4–6]. Consequently, early assessment of
axillary lymph nodes (ALNs) plays a crucial role in the diagnostic
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and therapeutic processes for BC patients[6–13]. However, con-
ventional clinical evaluation methods are hindered by their sub-
jective nature and reliance on the expertise and discretion of
medical professionals[14].

Computer-aided diagnosis (CAD) technology has demon-
strated considerable promise in enhancing the accuracy and
precision of detecting ALNM[15–17]. By utilizing machine
learning, deep learning, and image analysis techniques, CAD
autonomously analyzes and interprets medical imaging data,
thereby helping physicians diagnose diseases and assess prog-
noses. This technology potentially improves the efficiency and
effectiveness of BC axillary management[18,19]. Radiomics, a
crucial component of CAD, is an emerging field that integrates
medical imaging and computer science. Clinical issues can be
analyzed by segmenting regions of interest (ROIs) in conven-
tional medical images for tumor identification and character-
ization and extracting various radiomic features[20–22]. By the
analysis of BC patient images, radiomic methods can be used
to help physicians identify features associated with ALNM and
develop predictive models[23–28].

Recent radiomic-based prediction methods primarily rely
on the primary lesion of BC to infer ALNM (Supplementary
Table 1, Supplemental Digital Content 2, http://links.lww.
com/JS9/C721). However, the inherent heterogeneity of
tumors presents challenges, and few studies have predicted
ALNM based on the lymph node lesion itself[29,30]. Challenges
include difficulty in locating ALNs, low detection rates on
conventional imaging methods, and establishing labels for
metastatic lymph nodes, which are limiting factors for the
advancement of this technique.

In a prior study, we implemented VitaWorks 3D visualiza-
tion technology for ALN localization, marking the first
application of this technology[31]. It provides a comprehensive
and visual representation of the spatial location, size, and
morphology of lymph nodes. The detection rate surpassed that
of computed tomography (CT) and ultrasound, identifying
lymph nodes as small as 2–3 mm in diameter[31,32]. Building
on this, we developed a 3D atlas of ALNs in BC using
VitaWorks technology, enhancing detection rates and reducing
reliance on radiologists’ subjective diagnostics, thereby mini-
mizing manual errors and increasing localization objectivity
and accuracy. To overcome the challenge of limited labeled
data, we employed unsupervised learning models. These
models are adept at analyzing data and uncovering inherent
patterns, even without labeled data.

Therefore, in this study, we propose utilizing 3D visualiza-
tion technology for ALN localization and an unsupervised
learning approach to establish an ALNM prediction model for
patients with partial ALNM. We anticipate that this study will
provide a novel method for accurate ALN assessment and
offer more precise diagnostic and treatment guidance for BC
patients (Fig. 1).

Methods

Patient selection

This retrospective study analyzed data from patients diagnosed
with invasive BC admitted to the Department of Breast Surgery at
the Second Xiangya Hospital of Central South University from
January 2019 to March 2023. The inclusion criteria were as

follows (1): underwent BC surgery at our hospital with post-
operative pathology confirming invasive BC (2); underwent
axillary lymph node dissection (ALND) at our hospital (3);
completed a high-resolution, thin-section enhanced CT scan of
the lung in our radiology department within 1 month before
surgery; and (4) had complete clinicopathological data. The
exclusion criteria for patients were as follows (1): had bilateral
primary or metastatic BC (2); received neoadjuvant therapy
(NAT) before surgery (3); had incomplete or poor-quality CT
scans, flat scans only, or scans conducted externally; and (4) had
distant metastatic lesions or concurrent other malignancies.

After rigorous screening, 313 patients were included.
Additionally, 37 additional cases of invasive BC patients with
postoperative pathology indicating total ALNM were collected
from our center between January 2016 andMarch 2023; none of
these patients underwent NAT or met the inclusion criteria.
Furthermore, we prospectively collected data from 128 early-
stage BC patients with negative axillary clinical evaluations
between January and July 2023. These patients initially under-
went sentinel lymph node biopsy (SLNB) surgery. If metastasis
was detected in the sentinel lymph node (SLN) during intrao-
perative frozen section pathology, the patients underwent ALND
surgery (Fig. 2).

Clinical pathology data extracted from the electronic med-
ical records included patient factors such as age, menopausal
status, pathological TNM stage, examination report time,
tumor type, grade, estrogen receptor (ER) status, progesterone
receptor (PR) status, human epidermal growth factor receptor
2 (HER2) status, the Ki-67 index, tumor molecular typing, the
number of ALNMs, and total ALNs. The CT data included
hospitalization number, CT number, and exam time. The
study adhered to the Helsinki ethical statement standards and
was approved by the Ethics Review Committee of Xiangya
Second Hospital, Central South University, under the ethics
number LYF2023043. The work has been reported in line with
the Standards for the Reporting of Diagnostic accuracy studies
(STARD) (Supplemental Digital Content 1, http://links.lww.
com/JS9/C720) criteria[33].

CT image acquisition

All recruited patients underwent high-resolution thin-section
enhanced CT of the lungs within one month before surgery.
The CT images were acquired using three machine models (1):
GE Revolution 256 and GE 680 64 (2); Siemens Somatom
Perspective, Siemens Somatom Definition Flash, and Siemens

HIGHLIGHTS

• This retrospective study located 1737 unlabeled computed
tomography lymph node images based on three-dimen-
sional visualization and trained an unsupervised learning
model to predict axillary lymph node metastasis.

• The unsupervised learning model was validated in 1397
supervised lymph nodes with an area under the curve value
of up to 0.847 (0.825–0.869), a sensitivity of 80.70% and
a specificity of 88.84%. Correct classification rate (CCR)
of 86.72% was validated in a prospective cN0 cohort of
128 cases. The validated CCR was 87.43% in a 350-case
retrospective cN+ cohort.
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Somatom Force; and (3) United Imaging uCT780. For scan-
ning, patients were placed in a supine position with
their arms raised and aligned along the midline of the bed.
The scans were extended from the lung apex to the lower edge

of the twelfth thoracic vertebra using an orthostatic localiza-
tion image. The CT parameters included a tube
voltage of 120 kV, a tube current of 200 mAs, a frame rota-
tion time of 0.5 s, and detector collimation of 64 mm× 0.625

Figure 1. Schematic of the study design.
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mm. The field of view ranged from 400 to 500 mm,
with a 512× 512 matrix, a layer thickness of 1 mm, and zero
layer spacing. The contrast agent, iopromide, was
administered via the elbow vein using a dual-tube high-pres-
sure syringe at a flow rate of 3.0 ml/s and a dosage of 1.2 ml/
kg, followed by a 30 ml saline flush.

Radiologists transferred the raw CT data of patients onto CD-
ROMs in DICOM format for storage. Lymph nodes identified in
CT images were classified based on pathology reports: non-
metastatic if all examined nodes were free of metastases
and metastatic if pathology indicated metastasis in all
examined nodes.

3D visualization technology

This study utilized 3D visualization technology developed by
Shanghai Evision Medical Technology Co., Ltd., to recon-
struct 3D images from 2D CT scans of each patient. The
technology used algorithms for the automatic identification,
segmentation, and extraction of ALN information and subse-
quently constructed a 3D ALN atlas. The 3D ALN atlas of
each patient was viewed and manipulated using VitaWorks
software (http://www.vitaworks.cn/), with the localization
navigation function determining the position of the target
lymph node on the CT image.

Segmentation and labeling of the ROI of the ALN

Lymph node ROIs were segmented using the 3D-Slicer soft-
ware segmentation module[34]. Since a lymph node appears
across multiple CT image layers, segmentation was performed
on each layer to fully capture the 3D structural features. The

markers were subsequently applied to the 3D ALN atlas,
establishing a one-to-one correspondence with the CT image
lymph nodes.

CT radiomic feature extraction and selection

The Radiomics module in 3D-Slicer software[34] was used to
extract features from the ROI masks in the original CT images.
Before extraction, the voxel size was resampled to 1× 1×1 mm3,
and the histogram width interval for image gray values was set at
25. From each target lymph node, 107 quantitative radiomic
features across seven categories were extracted, and the Z scores
were normalized. A correlation analysis then eliminated features
with linear correlations exceeding 0.9, leaving 36 features with
the highest predictive performance.

Statistical analysis

The baseline data were analyzed using R Studio’s R version
4.1.3 (R Project for Statistical Computing) and SPSS v27.0[35].
Normally distributed quantitative data are presented as the
mean ± SD, while non-normally distributed data are presented
as the median and interquartile range. Categorical data are
summarized using frequencies and percentages. The normality
of the quantitative data was assessed using the Shapiro—Wilk
test (normal distribution considered at P> 0.05), and
variance homogeneity was assessed using the Bartlett test (chi-
square considered at P> 0.05). Unsupervised modeling and
validation were performed with the K-means algorithm. The
area under the curve (AUC) CIs were calculated using the
Wilson interval scoring method. Significance levels were two-

Figure 2. Overall flow chart of this study. ALND, axillary lymph node dissection; SLNB, sentinel lymph node biopsy.
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sided, with P< 0.05 considered indicative of statistical
significance.

Results

Construction of the unsupervised learning model in the
training set

This study harnessed the data of 190 patients with partial ALNM
as a training set to investigate the association between CT ima-
ging and the metastatic status of ALNs. We extracted radiomic
features from the 1737 unlabeled lymph nodes of these patients.
The median age of the individuals in the training cohort was
52 years (IQR, 28–79 years), and most of the patients were in
stage T2 (71.1%), while a substantial number were in stage N1
(62.6%) (Table 1). Following feature selection, 36 critical CT

radiomic features were identified. An unsupervised learning
model was subsequently developed based on these features,
categorizing the enrolled ALNs into two groups: Group 1, with
1073 lymph nodes; and Group 2, with 664 lymph nodes
(Fig. 3A).

Differential radiomic characterization of group 1 and group 2

Upon analyzing the radiomic shape features of the two groups,
we observed that Group 1 exhibited a greater surface-to-
volume ratio and shorter least axis length, suggesting flatter
and more regular-shaped lymph nodes. In contrast, patients in
Group 2 presented lower flatness and elongation and greater
least axis length, indicative of more spherical and irregularly
shaped lymph nodes. Additionally, Group 2 patients’ gray-
level co-occurrence matrix (GLCM) features, including higher
inverted difference normalization (IDN), inverse difference

Table 1
Baseline characteristics of each cohort.

Training set Validation set cN0 cN+
(N= 190) (N= 160) (N= 128) (N= 350)

Age
Mean (SD) 51.6 (10.9) 52.6 (10.6) 52.7 (10.7) 52.1 (10.8)
Median [Min,
Max]

51.5 [28.0,
79.0]

52.0 [21.0,
81.0]

53.0 [26.0,
79.0]

52.0 [21.0,
81.0]

Pathological types
IDC 185 (97.4%) 150 (93.8%) 121 (94.5%) 334 (95.4%)
ILC 3 (1.6%) 8 (5.0%) 5 (3.9%) 11 (3.1%)
IMC 1 (0.5%) 1 (0.6%) 1 (0.8%) 3 (0.9%)
IMPC 1 (0.5%) 1 (0.6%) 1 (0.8%) 2 (0.6%)

Histological grade
I 0 (0%) 2 (1.3%) 17 (13.3%) 2 (0.6%)
II 149 (78.4%) 131 (81.9%) 99 (77.3%) 280 (80.0%)
III 41 (21.6%) 27 (16.9%) 12 (9.4%) 68 (19.4%)

T
T1 41 (21.6%) 46 (28.8%) 53 (41.4%) 87 (24.9%)
T2 135 (71.1%) 107 (66.9%) 71 (55.5%) 242 (69.1%)
T3 14 (7.4%) 7 (4.4%) 4 (3.1%) 21 (6.0%)

N
N0 0 (0%) 123 (76.9%) 91 (71.1%) 123 (35.1%)
N1 119 (62.6%) 0 (0%) 34 (26.6%) 119 (34.0%)
N2 57 (30.0%) 4 (2.5%) 1 (0.8%) 61 (17.4%)
N3 14 (7.4%) 33 (20.6%) 2 (1.6%) 47 (13.4%)

Molecular subtype
HER2+ 45 (23.7%) 46 (28.8%) 32 (25.0%) 91 (26.0%)
Luminal-A 23 (12.1%) 28 (17.5%) 43 (33.6%) 51 (14.6%)
Luminal-B 85 (44.7%) 57 (35.6%) 41 (32.0%) 142 (40.6%)
TNBC 37 (19.5%) 29 (18.1%) 12 (9.4%) 66 (18.9%)

ER
Negative 61 (32.1%) 57 (35.6%) 29 (22.7%) 118 (33.7%)
Positive 129 (67.9%) 103 (64.4%) 99 (77.3%) 232 (66.3%)

PR
Negative 73 (38.4%) 70 (43.8%) 42 (32.8%) 143 (40.9%)
Positive 117 (61.6%) 90 (56.3%) 86 (67.2%) 207 (59.1%)

HER-2
Negative 145 (76.3%) 114 (71.3%) 96 (75.0%) 259 (74.0%)
Positive 45 (23.7%) 46 (28.8%) 32 (25.0%) 91 (26.0%)

Ki-67
＜14 25 (13.2%) 37 (23.1%) 50 (39.1%) 62 (17.7%)
≥ 14 165 (86.8%) 123 (76.9%) 78 (60.9%) 288 (82.3%

ER, estrogen receptor; HER-2, human epidermal growth factor receptor 2; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; IMC, invasive mucinous carcinoma; IMPC, invasive micropapillary
carcinoma; PR, progesterone receptor; TNBC, triple-negative breast cancer
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moment (IDM), and correlation, pointed to more complex
textural characteristics. These observations led to the
hypothesis that Group 2 might predominantly represent dis-
eased ALNs (Fig. 4).

Lymph node-level validation in the validation set

The validation cohort included 123 patients without ALN
metastasis and 37 with complete lymph node metastasis,
encompassing 941 nonmetastatic and 456 metastatic lymph
nodes (Table 1). Using the unsupervised algorithm, these 1397
lymph nodes were divided into two groups (Group 1 and
Group 2; Fig. 3B). Group 1 included 924 lymph nodes,
90.48% of which were nonmetastatic, whereas Group 2
included 473 lymph nodes, 77.80% of which were metastatic
(Fig. 5A–B). The model’s effectiveness was further corrobo-
rated by an AUC of 0.847 (95% CI: 0.825–0.869), a correct
classification rate (CCR) of 86.18%, a sensitivity of 80.70%,
and a specificity of 88.84%. These results confirmed the close
relationship between the CT radiomic features and ALN sta-
tus, demonstrating the superior predictive capability of the
model (Fig. 5C-D).

Patient-level validation of the unsupervised model

For external validation, we prospectively collected data from
128 clinical assessment negative (cN0) patients. Of these
patients, 38 underwent ALND surgery due to intraoperative
SLN metastasis. The model successfully predicted metastasis in
28 of these patients. Among the 90 patients without SLN
metastasis, the model accurately predicted 83 patients. Hence,
the model achieved a CCR of 86.72%, significantly surpassing
the clinical assessment rate of 70.31% (P< 0.001; Fig. 6A, C;
Table 2).

Additionally, validation was performed on 350 clinical
assessment positive (cN + ) patients. The model correctly
identified lymph node metastasis in 216 out of 227 patients

and accurately predicted the absence of metastasis in 90
out of 123 patients. The CCR for this model was 87.43%,
which was markedly greater than the clinical assessment
rate of 64.86% (P< 0.001; Fig. 6B, D; Table 3). Thus, the
efficacy of the unsupervised model employing CT radiomic
features as a predictor of ALNM in BC patients was
demonstrated.

Discussion

In this study, we utilized 3D visualization and radiomics techni-
ques to extract a multitude of radiomic features from CT images
of the ALNs. Utilizing the K-means unsupervised algorithm for
predictive modeling in a subset of patients with partial ALNM
(comprising 1737 unlabeled lymph nodes), we discovered a
robust correlation between these radiomic features and the
metastatic status of the ALNs in BC patients. Subsequent lymph
node-level validation was performed on a total of 1397 labeled
lymph nodes, encompassing both metastatic and nonmetastatic
patients. Additionally, patient-level validation was conducted for
128 cN0 and 350 cN+ patients. The results demonstrated that
our model significantly outperformed traditional clinical assess-
ment methods in predicting ALNM, demonstrating remarkable
predictive accuracy.

ALNM status critically impacts the prognosis of BC
patients, necessitating the identification of those at inter-
mediate to high-risk for tailored preoperative treatment[36,37].
Clinically, distinguishing metastatic from normal lymph
nodes in BC patients is challenging using conventional
methods[13,38–40]. For instance, Tan et al.[41] reported that
their model, which incorporates clinicopathologic features,
achieved an AUC of 81.9%, which was slightly reduced to
81% upon the inclusion of these features; Song et al.[42]

extracted radiomic features from dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) to develop a pre-
dictive model, achieving an AUC of 80.5% in the validation

Figure 3. Clustering of ALNs in the training cohort (A) and validation cohort (B).
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Figure 4. Radiomic characterization of Group 1 and Group 2. GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; GLDM, gray level
dependence matrix, GLSZM, gray level size zone matrix; IMC2, informational measure of correlation 2; IDN, inverted difference normalization; IDM, inverse
difference moment; MCC, maximum correlation coefficient; NGTDM, neighboring gray tone difference matrix.
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set, which increased to 86.7% with the integration of clin-
icopathologic factors into a nomogram. Additionally, Romeo
et al.[43] developed a classifier based on 18F-FDG PET/MRI
radiomics features from primary BC lesions, which exhibited
an accuracy of 78.6% (AUC= 0.839) and a sensitivity and
specificity of 67.9 and 100%, respectively, in the test set.
Wang et al.[44] discovered that DCE-MRI-based radiomic
models, both intratumoral and peritumoral, combined with
clinico-radiological characteristics could predict ALN metas-
tasis in BC patients with an AUC of up to 83.9%, indicating
significant clinical applicability. Nevertheless, these meth-
odologies are primarily focused on breast lesions
(Supplementary Table 1, Supplemental Digital Content 2,
http://links.lww.com/JS9/C721).

In our study, we adopted an unsupervised learning algorithm
to analyze the morphological and textural characteristics of
individual lymph nodes, among other features. This approach led
to the identification of two distinct clusters, enabling effective
categorization of ALNs based on radiomic features. Validation
on 1397 labeled ALNs revealed an AUC of 0.847, with a speci-
ficity reaching 90.5%. These findings are pivotal for the diagnosis
and treatment of ALNM in BC patients, helping clinicians
develop a more accurate basis for decision-making. It also
represents the first instance of an unsupervised learning predic-
tion method that combines 3D visualization technology and

CT-LN radiomic features, achieving innovations in both lymph
node localization and characterization. In clinical applications
involving cN0 and cN+ patients, the model achieved CRRs of
86.72 and 87.43%, respectively. These results indicate that the
model not only accurately evaluates lymph nodes but also reliably
identifies the presence of ALNM in patients. Notably, this model
identified 28 high-risk patients among 128 cN0 individuals,
aiding in the formulation of precise preoperative treatment stra-
tegies (Table 2). Similarly, 90 relatively low-risk patients were
identified among the 350 cN+ individuals, potentially predicting
unnecessary ALND (Table 3). Thus, this study introduces an
efficacious approach for ALN resection prediction, showing
considerable promise for clinical application.

Furthermore, the model we developed for predicting ALN
status using CT radiomic features is straightforward, objec-
tive, cost effective, and free from subjective biases, leading to
high diagnostic efficacy. The first ALNM prediction model
was constructed based on CT images of individual lymph
nodes. This study is not without limitations. First, it is based
on retrospective data from a single-center clinical study.
Therefore, further validation in a larger population from
external medical institutions is needed. Second, the identifi-
cation of lymph nodes using 3D visualization technology is
contingent upon image contrast, which can be challenging
when lymph nodes are near soft tissues. Finally, the false

Figure 5. Validation of the unsupervised model at the lymph node level in the validation cohort A-B) Group 1 and Group 2 lymph node distributions; C) ROC curves
of the unsupervised model; D) correct classification rate, specificity and sensitivity of the unsupervised model.
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negative rate (FNR) of the model was higher than that of
conventional SLNB in cN0 patients, which might cause
patients to miss the best treatment opportunity; therefore,
validation in larger samples and at external centers is needed
before extending the model to the clinic. In addition, in future
studies, we will carefully evaluate the difference between
micrometastases and macrometastases, which is a key direc-
tion for follow-up studies. Despite these limitations, this study
introduces a novel approach to the clinical assessment of
ALNs, markedly enhancing the detection of metastatic lymph

nodes and enabling the evaluation of residual ALNs post-
surgery. This methodology has substantial potential for broad
clinical adoption. Future research will focus on validating the
reliability of the method.

In conclusion, this study presents a novel methodology for
clinicians in the assessment of ALNM that could substantially
influence decision-making regarding ALN surgery. Its imple-
mentation has the potential to markedly advance the field of
individualized and precise diagnosis and treatment of metastatic
disease in ALNs.

Figure 6. Assessment of unsupervised modeling in cN0 patients and cN+ patients (A and C) correct classification andmisclassification rates (A) and sensitivity and
specificity (C) of the model for cN0 patients; (B and D) correct classification and misclassification rates (B) and sensitivity and specificity (D) of the model for cN+
patients.

Table 2
The assessment metrics of the model for cN0 patients.

Pathological examination

Metastasis No metastasis Total CCR Sensitivity Specificity FPR FNR

Model
Metastasis 28 7 35 86.72% 73.68% 92.22% 7.78% 26.32%
No metastasis 10 83 93

Total 38 90 128

CCR, correct classification rate; cN0, axillary clinical assessment negative; FNR, false negative rate; FPR, false positive rate.
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