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RESEARCH NOTE

Direct application of an ECG-based 
sleep staging algorithm on reflective 
photoplethysmography data decreases 
performance
M. M. van Gilst1,4* , B. M. Wulterkens1,2, P. Fonseca1,2, M. Radha1,2, M. Ross3, A. Moreau3, A. Cerny3, P. Anderer3, 
X. Long1,2, J. P. van Dijk1,4 and S. Overeem1,4

Abstract 

Objective: The maturation of neural network-based techniques in combination with the availability of large sleep 
datasets has increased the interest in alternative methods of sleep monitoring. For unobtrusive sleep staging, the 
most promising algorithms are based on heart rate variability computed from inter-beat intervals (IBIs) derived from 
ECG-data. The practical application of these algorithms is even more promising when alternative ways of obtaining 
IBIs, such as wrist-worn photoplethysmography (PPG) can be used. However, studies validating sleep staging algo-
rithms directly on PPG-based data are limited.

Results: We applied an automatic sleep staging algorithm trained and validated on ECG-data directly on inter-beat 
intervals derived from a wrist-worn PPG sensor, in 389 polysomnographic recordings of patients with a variety of sleep 
disorders. While the algorithm reached moderate agreement with gold standard polysomnography, the performance 
was significantly lower when applied on PPG- versus ECG-derived heart rate variability data (kappa 0.56 versus 0.60, 
p < 0.001; accuracy 73.0% versus 75.9% p < 0.001). These results show that direct application of an algorithm on a dif-
ferent source of data may negatively affect performance. Algorithms need to be validated using each data source and 
re-training should be considered whenever possible.
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Introduction
Polysomnography (PSG) remains the gold standard for 
objective sleep monitoring, despite obvious disadvan-
tages such as obtrusiveness, costs associated with data 
acquisition and analysis, and unsuitability for long-term 
recordings. Because of these limitations, alternative 
methods to record sleep and associated pathological 
events gain increasing interest. Gaining insight in the 

sleep structure, the cyclicity of sleep stages, is a key ele-
ment in the diagnosis of sleep disorders. A promising 
example of a surrogate sleep staging technique is the 
use of cardiorespiratory measures, most notably heart 
rate variability (HRV). HRV-based algorithms that allow 
sleep–wake detection, but also three- or four-class sleep 
stage classifiers reached promising performance com-
pared to PSG [1–5]. While the concept of HRV-based 
sleep staging has been recognized for quite some time, 
the approach is gaining increased attention, due to inno-
vations in neural network-based techniques combined 
with the availability of large sleep datasets.
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Most well-validated HRV-algorithms are developed 
on inter-beat intervals (IBIs) derived from ECG data. 
One obvious advantage of HRV-based methods is the 
potential to apply the algorithms on IBI-measurements 
obtained by non-obtrusive alternatives for ECG, such as 
reflective photoplethysmography (PPG) in wrist-worn 
devices. This technique is widely used in consumer 
devices, intended to gain insight in physical activity, 
energy expenditure and sleep. However, in many of these 
devices it is impossible to access the raw PPG data, which 
limits current applicability in clinical and research set-
tings [6].

Retraining an HRV-model on PPG data requires large 
prospective studies, whereas ECG data can be obtained 
retrospectively from clinical PSGs routinely performed 
in sleep centers. To our knowledge, only two studies have 
been published that incorporate raw PPG signals for the 
development of automatic sleep staging algorithms. Both 
studies were performed in healthy participants [1, 7]. 
While it is tempting to consider HRV-based methods as 
‘sensor agnostic’, the performance effects of direct appli-
cation of ECG-based algorithms to PPG-derived data 
should be specifically studied.

We recently described an HRV-based automatic 
sleep staging algorithm, trained and validated on ECG 
data from a broad cohort of unselected sleep disor-
dered patients [3]. Here, we apply this algorithm to IBIs 
obtained by a wrist-worn PPG sensor, to assess per-
formance of the algorithm on raw PPG data and inves-
tigate the effect of direct application of a machine 
learning approach on a different type of raw data without 
re-training.

Methods
Algorithm and dataset
Previously, we developed a machine learning approach 
for automatic ECG-based sleep staging with ECG-
derived HRV, based on long short-term memory (LSTM) 
recurrent neural networks [8]. We retrained the algo-
rithm on a separate dataset including healthy sleep-
ers and sleep disordered patients, and validated it on an 
independent broad cohort of unselected sleep disordered 
patients [3]. Here, we directly apply the ECG-based algo-
rithm on HRV-data obtained by wrist-worn PPG in the 
same validation set.

Data was derived from the Sleep and OSA Monitor-
ing with Non-Invasive Applications (SOMNIA) database 
containing a prospective cohort of patients with various 
sleep disorders from a tertiary sleep center [9]. The study 
was approved by the medical ethical committee of the 
Maxima Medical Center (Veldhoven, The Netherlands, 
N16.074), and all participants provided written informed 
consent. Here, we used the first 389 recordings which 

included PSG and time-synchronized data from a wrist-
worn sensor measuring reflective PPG and accelerometry 
(Royal Philips, Amsterdam, The Netherlands) [9].

Patient demographics are listed in Table 1. Sleep stages 
were scored in 30s epochs according to the 2015 AASM 
criteria [10]. The resulting ground-truth reference classes 
were obtained by combining N1 and N2 in a single “N1/
N2” class while the remaining classes (Wake, N3 and 
REM) were used without changes. For details on sleep 
staging and clinical diagnosis of the patients, see Fonseca 
et al. [3].

To compute the HRV features as described in previous 
research [3, 8], individual heartbeats were first detected 
from the raw PPG signal using a template-based beat seg-
mentation algorithm [11]. The time difference between 
each pair of heartbeats was calculated and implausible 
IBIs with a duration lower than 0.3 s or higher than 1.5 s 
were excluded. Gross body movements were quantified 
as activity counts for each 30 s of the recording based on 
the three-axial accelerometer signal (see [3]).

Performance measures and statistics
Sleep staging performance using PPG data was com-
pared to gold standard PSG using measures previously 
described [3, 8]. In short, epoch-per-epoch agreement 
between the predicted classes and PSG sleep stages was 
assessed using two quality metrics: accuracy and Cohen’s 
kappa coefficient of agreement (or κ). Agreement was 
computed for four classes, three classes (merging N1/
N2 and N3 in a single non-REM “NREM” class), and 
two classes (merging all sleep stages in a single “Sleep” 
class). For the latter, we calculated sensitivity, specificity 
and positive predictive value (PPV), all in respect to the 
detection of the positive class, i.e. Wake. To test the algo-
rithm’s capacity to detect specific sleep stages, a similar 

Table 1 Patient demographics

a Patients could be diagnosed with more than one sleep disorder

Parameter

N 389

N Female (%) 145 (37.3%)

Age (years) 51.1 ± 14.8

BMI (kg/m2) 27.7 ± 5.0

Primary sleep diagnostic categorya Total prevalence (%)

 Sleep disordered breathing 224 (57.6)

 Insomnia 110 (28.3)

 Movement disorder 48 (12.3)

 Behavioral 33 (8.5)

 REM parasomnia 19 (4.9)

 Non-REM parasomnia 13 (3.3)

 Other 23 (5.9)
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analysis was performed for the remaining classes (N1/
N2, N3, and REM), considering each class in comparison 
with the merged remaining classes.

The effect of demographic characteristics on four-class 
performance was examined using the Wilcoxon rank-
sum test to assess influence of sex, and Spearman’s cor-
relations to evaluate effects of age and BMI.

The performance of the algorithm using PPG data was 
compared to the performance of the algorithm using 
the ECG signal, as originally presented in [3]. We used 
the same participants in both studies, enabling us to 
make a paired performance comparison. A Wilcoxon 
signed-rank test was applied to compare both kappa 
and accuracy from both four-class sleep staging results. 
Furthermore, we compared the coverage of the ECG 
and PPG signal, defined as the percentage of the record-
ing where we could detect valid IBIs from the signals of 
each sensor. Spearman’s correlation was used to assess 
whether the difference in coverage could explain the 
difference in performance between ECG and PPG data 
input. Differences in performance were also evaluated 
with respect to age and sex using Spearman’s correlation 
and Wilcoxon signed-rank tests respectively.

All data are represented as mean ± SD unless otherwise 
stated.

Results
Sleep staging performance
Table 2 shows the agreement for each classification task, 
between the predicted sleep stages and the sleep stages 
classified using PSG. The classifier performs the best 
for the REM class, with an average κ of 0.64 and a sen-
sitivity of 79.8%. The worst performing class is N3, with 
an average κ of 0.51 and an average sensitivity of 50.7%. 
Two-class (wake/sleep) sleep stage prediction shows an 
average κ of 0.57, a sensitivity of 67.8% and a specificity 
of 91.9%. Significant (p < 0.001) but weak Spearman’s rank 
correlation coefficients were found between age and κ 

(ρ = − 0.25), BMI and κ (ρ = − 0.12) and age and accuracy 
(ρ = − 0.21).

Performance comparison PPG‑ versus ECG‑based HRV
The algorithm performed worse when using PPG-derived 
versus ECG-derived IBIs. There was a significant differ-
ence in four-class sleep staging performance between 
the PPG- and ECG-based results on both kappa (PPG 
κ = 0.56 ± 0.15; ECG κ = 0.60 ± 0.14; p < 0.001) and accu-
racy (PPG 73.0 ± 9.4%; ECG 75.9 ± 8.5%; p < 0.001). The 
correlation between performance difference (ECG-
PPG) to the difference in signal coverage throughout 
the night showed a small but significant correlation with 
both kappa (ρ = 0.25, p < 0.001) and accuracy (ρ = 0.25, 
p < 0.001). No significant correlations were found 
between the differences in performance and age or sex. 
The drop in performance was similar across all sleep 
disorders.

Discussion
Recently, we developed, trained and validated a sleep 
staging algorithm based on HRV derived from ECG data 
[3, 8]. In the current study, we applied this algorithm 
directly, without re-training, to IBIs derived from raw 
PPG in 389 subjects with varying sleep disorders. Over-
all, the classifier achieved moderate agreement with gold 
standard PSG, with an average κ of 0.56 and accuracy of 
73.0%. However, performance of the algorithm on PPG-
data was significantly lower than using ECG. This indi-
cates that a direct application of HRV-based sleep staging 
algorithms on a different source of measurement data is 
not trivial and may hamper reliability.

Several mechanisms may lead to changes in perfor-
mance when using PPG- instead of ECG-derived IBIs. 
Performance differences correlated with a difference 
in coverage of detectable IBIs between ECG and PPG 
throughout the night, although the explained variance 
was very low  (r2 = 0.063). In our assessment of signal cov-
erage, we only checked whether IBIs were physiologically 

Table 2 Epoch-per-epoch agreement between  predicted sleep stages based on  PPG  and ground-truth for  different 
classification tasks

PPV positive predictive value
a Binary classification tasks were evaluated in a one vs. rest strategy, where one single class (wake, N1–N2, or N3, or REM) was considered the ‘positive’ class, and the 
remaining classes were merged in a single ‘negative’ class. All results are presented as mean ± SD

Task kappa (–) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%)

Wake/N1–2/N3/REM 0.56 ± 0.15 73.0 ± 9.4 n/a n/a n/a

Wake/NREM/REM 0.62 ± 0.16 81.4 ± 8.5 n/a n/a n/a

Wake/sleepa 0.57 ± 0.18 87.7 ± 8.1 67.8 ± 19.9 91.9 ± 8.4 68.4 ± 19.6

N1–2a 0.49 ± 0.16 75.1 ± 8.3 77.1 ± 10.9 72.6 ± 13.6 75.9 ± 12.3

N3a 0.51 ± 0.24 91.2 ± 5.2 50.7 ± 26.4 97.6 ± 3.2 75.5 ± 26.6

REMa 0.64 ± 0.22 91.9 ± 4.5 79.8 ± 21.8 93.6 ± 4.1 64.6 ± 21.0
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plausible, but not whether they actually correspond to 
the actual distance between consecutive heart beats. For 
example, under certain conditions such as during peri-
odic limb movements, and given the susceptibility of this 
sensor modality to motion artifacts, the signal morphol-
ogy might resemble pulse amplitude changes typical of 
heart beats thus yielding invalid IBIs. In such situations, 
the difference between ECG and PPG might be even 
larger.

In general, the PPG signal is more susceptible to motion 
artifacts because of larger movements in the extremi-
ties (as compared to the thorax) and worse coupling 
between the sensor and the skin. This can further impair 
the extraction of HRV features [12]. Motion artifacts may 
be present to a varying degree depending on sleep stage 
and thus differentially affect staging performance com-
pared to ECG-based data. The pressure between the pho-
tosensor and the skin can also affect PPG signal quality. 
For example, too little pressure can lead to displacement 
of the sensor. On the other hand, too much pressure 
between the photosensor and skin (e.g. when lying on 
the sensor) can cause increased constriction of the arte-
rioles perfusing the skin. As a consequence, both signal 
amplitude and signal-to-noise ratio decrease, complicat-
ing accurate localization of individual heartbeats [13]. 
Artifacts can also be a result of large changes in venous 
blood due to limb movements, especially in case of low 
perfusion at the sensor site. The pulsatile components in 
the signal are then composed of more than just arterial 
blood, leading to a false derivation of heartbeats [14].

Several other mechanisms may contribute to differ-
ences in beat-to-beat intervals measured with ECG and 
from the pulse-wave signal. Pulse transit time (PTT), 
the time for the pulse pressure wave to travel between 
the heart to the peripheral circulation, may be affected 
by blood pressure [15]. Blood pressure may vary differ-
ently across sleep stages and by influencing PTT thus 
have an effect on PPG-derived beat intervals. Sleep-stage 
dependent variations in peripheral artery constriction 
and dilation may differently affect pulse wave velocity 
[16].

Our data supports the notion that HRV-based sleep 
staging is a promising tool with various advantages, most 
notably the ability to do long-term monitoring of sleep in 
an unobtrusive way. However, the measurement princi-
ple is not completely sensor-agnostic and performance 
can be influenced by the measurement modality. Most 
large datasets comprising gold standard PSG only con-
tain ECG as a means to obtain HRV, so it is likely that 
the best performing algorithms will be developed on 
this data source. However, it is not sufficient to directly 
apply ECG-based algorithms to other modalities such as 
wrist-worn PPG. At the least, performance needs to be 

validated by comparison with the gold standard. More-
over, re-training of the algorithm on the specific data 
source should be considered whenever possible. Alter-
natively, or in addition, methods for domain adaptation 
such as teacher-student paradigms [17] or transfer learn-
ing [18, 19] could be used to increase performance for the 
new sensor. To do so, there is a need for large prospective 
datasets containing new methods of acquiring physiolog-
ical data in combination with polysomnography, not only 
in healthy subjects but in clinical populations as well.

Limitations
In this study we evaluated only one sleep staging algo-
rithm. For other algorithms the difference between ECG- 
and PPG-based scoring might be smaller. However, as 
shown in the discussion, there are several physiological 
aspects to be taken into account when detecting HRV 
features from different data sources. Therefore algo-
rithms should always be re-validated when using a new 
sensor modality.
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