
COVID-19 and Asthma: Reflection During the Pandemic

Shuang Liu1,2
& Yuxiang Zhi1 & Sun Ying3

# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic infectious disease caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), and abnormal, overactivated innate immunity and “cytokine storms” have been proposed as
potential pathological mechanisms for rapid COVID-19 progression. Theoretically, asthmatic patients should have increased
susceptibility and severity for SARS-CoV-2 infection due to a deficient antiviral immune response and the tendency for
exacerbation elicited by common respiratory viruses. However, existing studies have not shown an expected prevalence of
asthmatic individuals among COVID-19 patients. Certain aspects of type 2 immune response, including type 2 cytokines (IL-
4, IL-13, etc.) and accumulation of eosinophils, might provide potential protective effects against COVID-19. Furthermore,
conventional therapeutics for asthma, including inhaled corticosteroids, allergen immunotherapy (AIT), and anti-IgEmonoclonal
antibody, might also reduce the risks of asthmatics suffering infection of the virus through alleviating inflammation or enhancing
antiviral defense. The interactions between COVID-19 and asthma deserve further attention and clarification.
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Introduction

Coronaviruses (CoVs) are the largest known positive-sense
RNA viruses, with a wide range of hosts, and have seriously
affected human and animal health. CoVs known to infect
humans include low-pathogenicity CoVs (CoV-229E, CoV-
NL63, CoV-OC43, and CoV-HKU1) usually causing mild to
moderate illness and high-pathogenicity CoVs that can lead to
severe, potentially lethal diseases. In the twenty-first century,
outbreaks of infections with severe acute respiratory syn-
drome coronavirus (SARS-CoV) and Middle East respiratory

syndrome coronavirus (MERS-CoV) have caused massive
impacts on public health as well as socioeconomic aspects.
Notably, the pandemic of coronavirus disease 2019
(COVID-19) caused by the novel CoV severe acute respirato-
ry syndrome coronavirus 2 (SARS-CoV-2) has posed a seri-
ous threat to global health since December 2019. According to
the World Health Organization, there are 3,090,445 reported
cases and 217,769 deaths up to 30 April 2020, 08:00 GMT+8.
The numbers are still rising rapidly.

Virologically, SARS-CoV-2, sharing 79.6% sequence
identity with SARS-CoV and 96% with a bat CoV [1], be-
longs to the beta-coronavirus family, which also includes
SARS-CoV and MERS-CoV. It has been believed that
SARS-CoV-2 spreads predominantly by droplets, aerosols,
and contact transmission and can also be detected in stool,
urine, and blood [2, 3], although how the virus gets there
remains a mystery. The majority of infected people have mild
or no symptoms, but a proportion of patients display severe
and rapid progression of the disease, leading to acute lung
injury/acute respiratory distress syndrome and/or multiple or-
gan failure [4, 5]. The median incubation period is estimated
to be 5.1 days, with 97.5% of symptomatic infections becom-
ing evident within 11.5 days [6]. The most common symp-
toms include fever (88.5%), cough (68.6%), myalgia or fa-
tigue (35.8%), expectoration (28.2%), and dyspnea (21.9%)
[7]. Laboratory examinations have shown that severe COVID-
19 patients have decreased numbers of neutrophils,
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lymphocytes, and eosinophils and neutrophil-to-lymphocyte
ratios, suggesting that abnormal, overactivated immune im-
munity might be a possible mechanism.

Although their exceptionally large genomes enable CoVs to
optimize the environment for replication by interacting with
host cells [8], host factors are essential in the pathogenesis of
CoV infection. It is recognized that compared with others, peo-
ple with underlying diseases, including hypertension, diabetes
mellitus, and cardiovascular and cerebrovascular diseases, more
easily develop severe illness and have a worse prognosis [9]. In
contrast, asthma, with a high prevalence (estimated 4.2% in the
Chinese population [10] and 8.4% in the USA [11]) and poten-
tially pathological changes in the respiratory system, has not
been adequately documented in people suffering from COVID-
19. Considering the relatively high prevalence of asthma, it is
reasonable to hypothesize that asthmatic individuals are rela-
tively resistant to COVID-19 because of the features of the
disease and/or the conventional treatment for asthma. The fol-
lowing discusses how asthma patients protect themselves from
the virus infection pandemic and how asthma affects COVID-
19 susceptibility and the disease course. All of these aspects
should be carefully examined.

However, the current understanding of the interactions be-
tween CoVs and asthma is still in the early stages, while ob-
servational and experimental data are still awaited to elucidate
the relationship between COVID-19 and asthma. The purpose
of this review is to summarize the current understanding of the
possible interactions between these disease entities and to dis-
cuss the potential protective effects of asthma therapeutics in
the context of COVID-19.

The Pathophysiology of COVID-19

SARS-CoV-2 enters the host cell through targeting
angiotensin-converting enzyme II (ACE2), the same receptor
as SARS-CoV [1], which might further trigger host immune
responses based on previous knowledge of CoVs. After enter-
ing the cytoplasm, SARS-CoV releases genomic RNA and
begins replication in the host cell. The presence of double-
stranded RNA (dsRNA) can elicit an innate immune response
through sensitizing Toll-like receptor (TLR)-3 and then acti-
vating type 1 interferon (IFN) production by signalling path-
way cascades [12]. Type 1 IFNs are important antiviral cyto-
kines that can induce the expression of interferon-stimulated
genes (ISGs) [8]. On the other hand, the spike protein (S
protein) of the virus might be recognized by TLR-4 and lead
to activation of pro-inflammatory cytokines through the
MyD88-dependent signalling pathway, recruiting lympho-
cytes and leukocytes to the infection site [8]. Regarding adap-
tive immune responses, CoV antigens are presented to T cells
by antigen-presenting cells (APCs), which leads to T cell ac-
tivation and differentiation [12]. This process, which may be

accompanied by massive release of pro-inflammatory cyto-
kines, is vital for viral clearance but has the potential to induce
overactivated inflammation.

Orchestration between the innate and adaptive immune
systems is essential in antiviral responses. If adaptive immune
responses are insufficient to eliminate the virus, innate im-
mune responses are likely to be reinforced, which may lead
to uncontrollable inflammation [13]. Accumulating evidence
derived from COVID-19 patients leads to a putative mecha-
nism of a cytokine storm, which is based on an elevated pro-
inflammatory cytokine profile resembling a cytokine storm,
especially in severe patients [14]. In a study, Huang et al.
measured multiple cytokines in 41 COVID-19 patients (in-
cluding 13 ICU patients and 28 non-ICU patients) and found
that there were higher levels of interleukin (IL)-1β, IL-1Rα,
IL-7, IL-8, IL-9, IL-10, basic fibroblast growth factor (FGF),
granulocyte-colony stimulating factor (G-CSF), granulocyte-
macrophage colony stimulating factor (GM-CSF), IFN-γ,
interferon-γ-inducible protein (IP-10), monocyte
chemoattractant protein (MCP-1), macrophage inflammatory
protein 1 alpha (MIP-1α), macrophage inflammatory protein
1 beta (MIP-1β), platelet-derived growth factor (PDGF), tu-
mor necrosis factor (TNF-α), and vascular endothelial growth
factor (VEGF) in COVID-19 patients than in healthy controls
[4]. The same authors have also noted that there were higher
concentrations of IL-2, IL-7, IL-10, G-CSF, IP-10, MCP-1,
MIP-1α, and TNF-α in ICU patients than in non-ICU patients
[4]. In addition, significant elevation of IL-6 levels, especially
in severe patients, has been reported in several studies
[15–19]. Cytokines reported to be altered in COVID-19 pa-
tients are summarized in Table 1.

It has been proposed that severe COVID-19 patients have a
cytokine profile resembling secondary hemophagocytic
lymphohistiocytosis (sHLH), accompanying rapid progres-
sion of lung injury and multiorgan damage [20]. Moreover,
there are notable signs showing immune system damage man-
ifesting as extreme lymphopenia and spleen and lymph node
atrophy in severe COVID-19 patients [14]. Currently, some
anti-inflammatory drugs, including glucocorticoids, toci-
lizumab (TCZ, an anti-human IL-6 monoclonal antibody),
and Janus kinase (JAK) inhibitors, have been applied in
COVID-19 therapy but await additional clinical evidence to
evaluate safety and efficacy.

The pathological understanding of COVID-19 is still grow-
ing. The first published pathological report generated in 2
patients from Wuhan, China, showed edema, proteinaceous
exudate, focal reactive hyperplasia of pneumocytes with
patchy inflammatory cellular infiltration and multinucleated
giant cells, suggesting early phase pulmonary changes [21].
Investigation of a patient who died of severe COVID-19 re-
vealed evident desquamation of pneumocytes and hyaline
membrane formation, which are similar to what was observed
in SARS and MERS [22]. Other pathological examinations
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derived from 2 fatal COVID-19 cases in Wuhan, China,
showed that there were mucous plugs with fibrinous exudate
in the alveoli and activation of alveolar macrophages because
these macrophages had strong expression of IL-10 and pro-
grammed death-ligand 1 (PD-L1) and moderate expression of
IL-6 and TNF-α [23].

The Pathophysiology of Asthma

Asthma is a common respiratory disease characterized by air-
way chronic inflammation, mucus overproduction,
hyperresponsiveness, and remodelling. Normally, the majori-
ty of the disease is predominantly mediated by type 2 immune

Table 1 Cytokine profiles
reported in COVID-19 patients Cytokines or chemokines Changes in COVID-19 References

IL-1β Increase in COVID-19 patients [4]

Undetectable in COVID-19 patients [16]

IL-1Rα Increase in COVID-19 patients [4]

IL-2 Increase in severe COVID-19 patients [4]

No significant change [17]

IL-2R Increase in severe COVID-19 patients [15]

IL-4 Increase in severe COVID-19 patients [4]

No significant change [17, 20]

IL-5 No significant change compared to healthy controls [4]

IL-6 Increase in severe COVID-19 patients [4, 20]

Increase in COVID-19 patients, higher in severe patients [15–18]

IL-7 Increase in COVID-19 patients, higher in severe patients [4]

IL-8 (CXCL8) Increase in COVID-19 patients [4]

Within normal range [15]

IL-9 Increase in COVID-19 patients [4]

IL-10 Increase in COVID-19 patients, higher in severe patients [4, 17]

Increase in severe COVID-19 patients [15]

Within normal range [20]

IL-12 (p70) No significant change [4]

IL-13 Increase in severe COVID-19 patients [4]

IL-15 No significant change [4]

IL-17 Increase in severe COVID-19 patients [4]

Within normal range [20]

Eotaxin (CCL11) No significant change [4]

Basic FGF Increase in COVID-19 patients [4]

G-CSF Increase in COVID-19 patients, higher in severe patients [4]

GM-CSF Increase in COVID-19 patients [4]

IFNγ Increase in COVID-19 patients [4]

No significant change [17]

IP10 (CXCL10) Increase in COVID-19 patients, higher in severe patients [4]

MCP-1 (CCL2) Increase in COVID-19 patients, higher in severe patients [4]

MIP-1α (CCL3) Increase in COVID-19 patients, higher in severe patients [4]

MIP-1β (CCL4) Increase in COVID-19 patients [4]

PDGF Increase in COVID-19 patients [4]

RANTES (CCL5) No significant change [4]

TNF-α Increase in COVID-19 patients, higher in severe patients [4]

Increase in severe COVID-19 patients [4, 15, 17]

VEGF-α Increase in COVID-19 patients [4]

IL, interleukin; CXCL, chemokine (C-X-C motif) ligand; CCL, C-C motif chemokine; FGF, fibroblast growth
factor; G-CSF, granulocyte-colony stimulating factor; GM-CSF, granulocyte-monocyte colony-stimulating fac-
tor; IFN, interferon; IP10, interferon-γ inducible protein 10;MCP-1, monocyte chemo-attractant protein 1;MIP1-
α, macrophage inflammatory protein 1-α; MIP1-β, macrophage inflammatory protein 1-β; PDGF, platelet-
derived growth factor; RANTES, Regulated upon Activation, Normal T Cell Expressed and Presumably
Secreted; TNF-α, tumor necrosis factor α; VEGF, vascular endothelial growth factor
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responses. The type 2 immune response involves T helper
(Th) 2 cells, type 2 B cells, group 2 innate lymphoid cells,
type 2 macrophages, IL-4-secreting nature killer (NK) and
natural killer T (NKT) cells, basophils, eosinophils, and mast
cells [24]. A variety of cytokines produced by immune system
and epithelial cells contribute to the regulatory network. For
example, IL-4 and IL-13 have essential roles in allergen-
specific immunoglobin (Ig) E production and accumulation
of Th2 cells and eosinophils in local tissues, as well as epithe-
lial barrier regulation, while IL-5, IL-9, and IL-13 contribute
to eosinophilia and mucus production [25].

Pre-existing Asthma and COVID-19

Deficient Antiviral Response in Asthmatic Patients

It is generally acknowledged that antiviral and allergic re-
sponses are two distinct arms in immunity and are reciprocally
regulated, involving a comprehensive interaction network
[26]. IFNs, a family of important antiviral cytokines, play a
central role in this regulatory network. It has been proposed
that individuals with asthma are predisposed to allergic re-
sponses that might override the antiviral response, manifesting
as elevated susceptibility and a deficient immune response to
viral infection [26].

Previous studies have shown that IFN production by bron-
chial epithelial cells and plasmacytoid dendritic cells (pDCs)
is impaired in asthmatic individuals [27–30]. It has also been
shown that there is reduced production of IFN-β in asthmatic
bronchial epithelial cells, accounting for impaired apoptosis
and increased rhinovirus (RV) replication [27]. Deficient
IFN-α/β expression by bronchial epithelial cells has also been
noted in asthmatic patients after RV infection, which is asso-
ciated with increased viral load and adverse clinical outcomes
[28]. In addition, deficient induction of IFN-λ by RV in bron-
chial epithelial cells and alveolar macrophages has also been
observed in vivo, which is highly correlated with the viral load
and severity of asthma exacerbations [29]. Upon exposure to
influenza A, pDCs from asthmatic patients produce less
IFN-α than those from healthy controls [30].

Furthermore, IgE cross-linking, a hallmark of allergic dis-
eases, is able to dampen antiviral immune responses through
abrogating the IFN-α response, diminishing TLR-7 upregula-
tion, and interrupting pDC maturation [30], while concentra-
tions of serum IgE are inversely correlated with a reduction in
IFN-α secretion [30]. These observations collectively suggest
a possible mechanism of the impaired antiviral response in
asthmatic patients. Although most experimental studies are
performed in RV or influenza infection models, which are
the most common respiratory viruses in asthma exacerbations,
these findings still display a general pattern of antiviral re-
sponses. Another thing worth noting is that the expression of

IFNs is comparable to that in healthy controls when atopic
diseases are mild or easily controlled [30], indicating the im-
portance of controlling disease activity.

It should also be noted that CoVs can shield themselves
from cytosol sensors and actively counteract host innate im-
mune responses [8]. For example, the dephosphorylation and
deubiquitination ability of SARS-CoV is able to inhibit IFN
signalling [31, 32]. It is difficult to estimate to what degree the
innate immune response would be reduced during CoV infec-
tion in asthmatic individuals. However, considering that the
pathogenesis of SARS is often associated with abnormal,
overactivated innate immunity [32], the influence of an atten-
uated immune response on the disease course of SARS-CoV-
2 infection may be comprehensive and individualized.

CoV Infection and Eosinophil Inflammation

It is well known that eosinophils play a central role in allergic
diseases, including asthma. The potential effects of eosino-
phils on CoV are also noteworthy. Previous experimental
studies have indicated a potential role of eosinophils in pro-
moting viral clearance and antiviral host defense, although this
phenomenon is not observed in all circumstances [33]. In vitro
studies have shown that recombinant eosinophil-derived neu-
rotoxin (a major eosinophil ribonuclease) is capable of reduc-
ing the infectivity of respiratory syncytial virus (RSV), which
can be reversed by a ribonuclease inhibitor [34], suggesting
the possibility that eosinophils are able to target the single-
stranded RNA (ssRNA) genome of respiratory viruses (such
as RSV) with their secretory ribonucleases. In addition, eosin-
ophils can be activated with ssRNA through triggering the
TLR-7-MyD88 signalling pathway, which might result in
RSV clearance and limitation of virus-induced lung dysfunc-
tion [35]. The capacity of eosinophils to protect against viral
infection [36] might therefore account for a low prevalence of
asthmatic individuals among patients with COVID-19.

Interestingly, some studies have shown eosinopenia in
COVID-19 patients, which is more prominent in severe pa-
tients than in mild patients [15, 37]. The eosinophil count
returns to normal after sustained usage of lopinavir, suggest-
ing that an increase in eosinophils may serve as an indicator of
COVID-19 improvement [38]. In addition, eosinopenia has
also been reported in SARS-CoV [39, 40] and MERS-CoV
infections [41]. However, whether such eosinopenia is the
result of generally impaired immunity (including Th2 cells
and Th2 cytokine production) or whether it is the result of
direct virus targeting still needs to be clarified. Nevertheless,
it would be intriguing to explore the role of eosinophils in
SARS-CoV-2 infection and the potential influence of
allergy-elicited eosinophilic inflammation on the course of
COVID-19. For example, we need to know whether pre-
existing eosinophilia in asthmatic patients counteracts the re-
duction of eosinophils during the disease course of COVID-
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19. Whether tissue infiltration of eosinophils promotes viral
clearance and antiviral host defense in asthmatic patients
needs to be explored. Further observations, of course, are
needed to verify this theoretical protective role of eosinophils
in SARS-CoV-2 infection and the potential influence of
allergy-elicited eosinophilic inflammation on COVID-19 dis-
ease course.

Viral-Induced Asthma Exacerbations

Respiratory virus infection accounts for up to 80% of acute
exacerbations of asthma in children and half of such episodes
in adults, among which RV is the most common cause [42,
43]. Message et al. have shown that in response to RV infec-
tion, asthmatic individuals have increased clinical severity,
impaired lung function, bronchial hyperreactivity, and eosin-
ophilic inflammation, which affect the virologic and clinical
outcomes, possibly related to augmented Th2 or impaired Th1
or IL-10 responses [44]. CoVs are also detected at a mean
prevalence of 8.4% in asthma exacerbations [45]. Most inter-
estingly, there are no reports regarding asthma exacerbation
due to COVID-19. Correspondingly, there are few reports on
asthma exacerbations during the SARS and MERS epidemics
[46]. These phenomena, notably, still need to be well
documented.

Are Asthma Patients at an Increased Risk of COVID-
19?

Considering that asthmatic patients have impaired immune
responses against virus infection and that respiratory viral in-
fections have the potential to trigger or worsen asthma symp-
toms, the management of asthma patients becomes more com-
plex during the COVID-19 pandemic. Theoretically, it seems
that pre-existing asthma has a potential influence on SARS-
CoV-2 susceptibility and disease course. However, existing
studies have not indicated a high prevalence of asthma among
COVID-19 patients. Throughout the published studies on
COVID-19, few studies have listed asthma as a comorbidity,

which is insufficient to support any solid conclusion.
According to the China Centers for Disease Control (CDC),
only 2.4% of 44,672 patients had chronic respiratory disease
(including asthma) [47]. Another study reported no physician-
diagnosed asthma among 1590 patients in China [48]. Gao
et al. reported on 140 COVID-19 patients in Wuhan, China,
among whom 11.4%were hypersensitive to certain drugs, and
1.4% had urticaria, but no patients had asthma or other allergic
diseases [37]. In another case series reported by the same
team, patients with common allergic diseases (1 child with
allergic rhinitis, 1 child with atopic dermatitis, and 1 adult with
chronic urticaria) did not have symptoms distinct from those
of other COVID-19 patients and did not develop severe
courses [49]. To support this result, the authors also men-
tioned that they did not find asthma history among pediatric
COVID-19 patients (number not known, data unpublished)
[49]. A study from Lombardy, Italy has also shown relatively
low prevalence of asthma [50]. Only statistics fromNewYork
City, USA, shows a 9% prevalence of asthma [51], although
there is no clear identification of the precise clinical pheno-
types and treatments of the patients included. However, asth-
ma is absent from the top 10 comorbidities according to the
fatality statistics of the New York State [52]. These results
collectively suggest that allergic diseases may not be a predis-
posing or aggravating factor for COVID-19. Table 2 summa-
rizes the prevalence of asthma reported in patients with
COVID-19.

Some type 2 cytokines, such as IL-4, IL-13, and IL-9, also
have anti-inflammatory effects [53]. For example, IL-4 can
not only suppress development of Th1 cells from the Th0
activated stage but also inhibit production of multiple pro-
inflammatory cytokines, including IL-1β, TNF-α, IL-6, and
IL-12 [54, 55]. It has been also shown that IL-13 has immu-
noregulatory effects through inhibiting the secretion of pro-
inflammatory cytokines (IL-1α, IL-1β, IL-6, and TNF-α) and
chemokines (IL-8, MIP-1α and MIP-1β, and monocyte che-
motactic protein-3) [56]. Furthermore, IL-9 reduces the secre-
tion of TNF-α and IL-10, but increases the secretion of
transforming growth factor beta (TGF-β) on LPS-activated

Table 2 Prevalence of asthma in
patients with COVID-19 Population Number of

patients
Mean or median
age (years)

Prevalence (%) Reference

China 44,672 NA 2.4% for chronic respiratory disease (not
specified for asthma)

[47]

China 1590 48.9 0% [48]

Wuhan, China 140 57 0% [37]

Lombardy,
Italy

1591 63 < 3% (not specified)* [50]

New York
City, USA

5700 63 9% [51]

COVID-19, coronavirus disease 2019. *Comorbidities with prevalence no less than 3% were listed as separate
items, while asthma was counted as “others” with unspecified prevalence
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monocytes [57]. It is possible, therefore, that predominance of
type 2 cytokines might counteract the accumulation of pro-
inflammatory cytokines to some extent, including the patho-
genesis of COVID-19.

On the other hand, the expression of ACE2, which is the
entry receptor for SARS-CoV-2, might be affected by asthmatic
conditions. Through examining the RNA-seq data in airway
cells from 3 different cohorts, a recent study has reported that
respiratory allergy and controlled allergen exposures are asso-
ciated with significant reductions in ACE2 expression [58].
Another study has also shown that type I IFNs, and to a lesser
extent type II IFNs, upregulate the expression ACE2, indicating
that SARS-CoV-2 might exploit host antiviral defense to facil-
itate its entry into target cells [59]. Considering that higher
ACE2 expression increases in vitro susceptibility to SARS-
CoV, the general deficient IFN responses in asthmatic patients
might reduce the virus invasion, at least partially through lim-
iting the ACE2 expression on the target cells.

Currently, it is still not known whether a distinct type 2
immune response contributes to certain protection of allergic
patients from COVID-19. Clearly, wide and large-scale inves-
tigations are expected to further elucidate the interactions be-
tween COVID-19 and asthma.

Asthma Therapeutics and COVID-19

Additional major concerns are whether therapeutics for asth-
ma (including corticosteroids, allergen-specific immunothera-
py (AIT), monoclonal antibodies, leukotriene antagonists,
bronchodilators) affect the immune system, which in turn re-
duces COVID-19 infection, and whether these medications
would influence the biological behavior of SARS-CoV-2 in
the human body.

Inhaled Corticosteroids

High-dose corticosteroids have been used α during the SARS
and MERS outbreaks and in COVID-19 to suppress lung in-
flammation during critical illness of infected patients. Despite
association with delayed viral RNA clearance and increased
risks of secondary infections [60], corticosteroid usage has
been supported by some studies for benefits that likely out-
weigh the adverse effects [14, 61]. Since the clinical evidence
for the usage of corticosteroids in COVID-19 is still insuffi-
cient, the corticosteroids given to COVID-19 patients, only if
necessary, should be cautiously administered, with strict re-
strictions on indications and dosage [62].

However, low-dose inhaled corticosteroids are routinely
used by a considerable proportion of asthma patients on a
daily basis. One important question is whether inhaled corti-
costeroids, often along with beta2-agonists and/or muscarinic
antagonists, would affect the disease course and severity of

COVID-19. Previous studies have indicated that inhaled cor-
ticosteroids can reduce pro-inflammatory cytokine levels (in-
cluding MIP-1α, GM-CSF, TNF-α, and IL-1Rα) and in-
crease anti-inflammatory cytokine levels (IL-10) in asthma
patients [63, 64]. It is, therefore, very possible that the low-
dose, inhaled corticosteroids exert protective effects on asth-
ma patients by reducing airway inflammation, if any, in the
early stage of SARS-CoV infection. In addition, an in vitro
experimental study has shown that glycopyrronium,
formoterol, and a combination of glycopyrronium, formoterol,
and budesonide are capable of reducing HCoV-229E replica-
tion, partly by inhibiting receptor expression and/or
endosomal function [65]. Considering the difference in the
features of the viruses, the results for HCoV-229E should be
interpreted cautiously. However, the potential anti-
inflammatory and antiviral effects of low-dose, inhaled corti-
costeroids on asthmatic patients certainly deserve further
investigation.

In addition, it has been known that glucocorticoid receptors
are essential in determining glucocorticoid responsiveness,
while alterations in number, splicing pattern, and epigenetic
changes of the receptors may play a role in glucocorticoid-
resistant asthma [66]. It is reasonable to speculate that there
might also be a difference in severity and disease course of
COVID-19 between asthmatic patients who are sensitive or
non-sensitive to steroids. Are there any changes in the gluco-
corticoid receptors which might account for less effectiveness
in the treatment with steroids in COVID-19? Whether gluco-
corticoid receptors play a role in the effectiveness of steroid
treatment in COVID-19 deserves to be further clarified.

AIT

AIT has been used in allergic diseases for more than
100 years, and many new therapeutic advances have been
introduced in recent years. The underlying mechanisms of
AIT include the very early desensitization effect, modula-
tion of T and B cell responses, and prevention of tissue
homing and degranulation of allergy effector cells (mast
cells, basophils, and eosinophils) [67]. An essential pro-
cess of AIT is the generation and maintenance of function-
al allergen-specific regulatory T (Treg) cells and regulatory
B (Breg) cells [68]. Treg cells, together with their inhibi-
tory cytokines, such as IL-10 and TGF-β, suppress Th2
immune responses and control allergic inflammation [68].
In addition, it is recognized that Treg cells play a role in
preventing cytokine storms and limiting tissue damage [69,
70]. Considering the putative pathomechanism of cytokine
storms in severe COVID-19 patients, it is possible that the
immune tolerance induced by AIT might have a protective
role. Of course, this concept is putative and it necessitates
further examination.
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After SARS-CoV-2 enters the host cell, the activation of innate immune system leads to release of proinflammatory cytokines
(IL-6, TNF-α, etc.), which recruits effector cells (neutrophils, macrophages, etc.) and activates the cascade cytokine release. As for
the adaptive immune response, antigen-presenting cells (APCs, referring to dendritic cells in this figure) present CoV antigen to T
cells, eliciting the differentiation of Th0 cells into Th1, Th2, and Th17 subsets. Cytotoxic T cells, natural killer cells (NK), and natural
killer T cells (NKT) might also participate in killing the virus-infected cells (the cells not shown in the diagram). These cell
mediate cellular and humoral immunity, respectively. Orchestration between the innate and adaptive immune systems is
essential in the antiviral responses. If adaptive immune responses are insufficient to eliminate the virus, innate immune
responses are likely to be reinforced, which may lead to uncontrollable release of proinflammatory cytokines (i.e., the“cytokine
storm”), which is supposed to be a potential pathological mechanism for rapid progression of this disease. In asthma,
environmental allergens are uptaken by dendritic cells and then presented to Th0 cells. With the presence of IL-4, Th0 cells
differentiate into Th2 subsets and produce Type 2 cytokines (IL-4, IL-5, IL-13, etc.). Epithelium-derived IL-33, IL-25, and TSLP
also contribute to the accumulation of Type 2 cytokines through stimulating ILC2, and possibly acting on DC. All these lead to
type 2 immune responses causing pathophysiological changes in asthma, including IgE production, local eosinophilia, mucus
production, and activation of effector cells, such as eosinophils, basophils, and mast cells. Type 2 immune responses and
conventional asthma therapeutics (red dashed or solid lines) might provide potential protective effects against infection with
SARS-CoV-2. Some type 2 cytokines can inhibit the production of pro-inflammatory cytokines. Mucus lining the epithelium
might serve as the physical barrier blocking invasion of the virus. Ribonucleases released by activated eosinophils might act on viral
clearance. The routine usage of low-dose inhaled corticosteroids might attenuate early airway inflammation caused by virus
infection, while regulatory T cells (Tregs) induced by allergen immunotherapy might also suppress inflammation and limit tissue
damage by downregulating the induction and proliferation of other T cell subsets. Treatment with anti-IgE monoclonal antibody
normally provides benefits in asthma through blockade of binding free form of IgE to FcεRI (IgE high affinity receptor) on
effector cells (such as mast cells and basophils). Anti-IgE monoclonal antibody has a synergistic effect on allergen immuno
therapy through inducing development of Treg cells. Furthermore, treatment with anti-IgE antibodies might also enhance produc
tion of IFNs through prevention of cross-linking of IgE-FcεRI on dendritic cells. CTL, cytotoxic T lymphocyte; DC, dendritic cell;
Ig, immunoglobulin; IL, interleukin; ILC-2, group 2 innate lymphoid cell; pCTL, precursor cytotoxic T lymphocyte; SARS-CoV-2,
severe acute respiratory syndrome coronavirus-2; Th0, naïve T cell; Th1, T helper 1 cell; Th2, T helper 2 cell; Th17, T helper 17 cell;
Treg, regulatory T cells; TSLP, thymic stromal lymphopoietin

Fig. 1 The schematic presentation of putative interactions between COVID-19 and asthma
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As stated earlier, cross-linking IgE-FcεRI (its high affinity
receptor) dampens antiviral responses in asthmatic patients,
which has led to research on anti-IgE monoclonal antibodies.
Since 2003, omalizumab, a monoclonal antibody against hu-
man IgE, has been approved for the treatment of severe, per-
sistent asthma. As expected, recent studies have shown that
blocking IgE could reduce susceptibility to respiratory virus
infection through enhancing IFN-α signalling in pDCs
[71–73]. In the Preventative Omalizumab or Step-up
Therapy for Severe Fall Exacerbations (PROSE) study,
omalizumab treatment was able to decrease RV infection du-
ration, viral clearance, and RV illness frequency [72]. In a
randomized, multicentre clinical trial, omalizumab improved
IFN-α signalling in response to RV infection, which was as-
sociated with reduced asthma exacerbations [71]. Another
study has also shown the effect of omalizumab on increasing
pDC IFN-α responses but reducing the expression of pDC
FcεRIα in children with asthma [73]. In addition, IL-33 levels
decrease after omalizumab treatment [74, 75], which induces
the production of pro-inflammatory cytokines (including IL-6,
IL-1β, TNF-α, MCP-1, and prostaglandin D2) [76]. Taken
together, these observations suggest a potential effect of
omalizumab on antiviral responses. It would be intriguing to
explore whether previous or concurrent use of omalizumab
has potential protective effects on COVID-19 infection, on
either duration or severity or both. A putative diagram show-
ing the potential mechanisms by which asthmatic individuals
“escape” from COVID-19 is shown in Fig. 1.

Considering the potential protective effects of asthma ther-
apeutics, and the increased risk of nosocomial infections with
exacerbations, we recommend that asthmatic patients contin-
ue taking the prescribed medications during the pandemic.

Conclusion

Despite deficient antiviral immune responses and the tendency
for acute exacerbation, there is little evidence showing that asth-
ma patients have increased susceptibility or severity of SARS-
CoV-2 infection than others. It is particularly intriguing to ex-
plore whether features of the disease, type 2 immune response,
asthma therapeutics, or all of them are capable of providing
certain protective effects against COVID-19. Notably, further
clinical and basic studies are expected to explore the relationship
between COVID-19 and asthma and/or other allergic diseases.
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