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Acid-sensing ion channels (ASICs) ASIC3 expressed mainly in peripheral sensory
neurons play an important role in pain perception and inflammation development. In
response to acidic stimuli, they can generate a unique biphasic current. At physiological
pH 7.4, human ASIC3 isoform (hASIC3) is desensitized and able to generate only a
sustained current. We found endogenous isoquinoline alkaloids (EIAs), which restore
hASIC3 from desensitization and recover the transient component of the current.
Similarly, rat ASIC3 isoform (rASIC3) can also be restored from desensitization (at
pH < 7.0) by EIAs with the same potency. At physiological pH and above, EIAs at high
concentrations were able to effectively activate hASIC3 and rASIC3. Thus, we found
first endogenous agonists of ASIC3 channels that could both activate and prevent or
reverse desensitization of the channel. The decrease of EIA levels could be suggested
as a novel therapeutic strategy for treatment of pain and inflammation.
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INTRODUCTION

Acid-sensing ion channels (ASICs) are voltage-independent ligand-gated cation channels related to
the superfamily of amiloride-sensitive degenerin/epithelial Na+ channels (Kellenberger et al., 2002).
In mammals, four genes encode six different subunits, four of which assemble into functional
homomeric channels ASIC1a, ASIC1b, ASIC2a and ASIC3 (Wemmie et al., 2006). ASICs are
localized on the postsynaptic membrane and can be activated by a rapid pH drop below 6.0, which
in turn can lead to a membrane depolarization and trigger bursts of action potential (Mamet et al.,
2002). ASIC3 channels expressed mainly in peripheral sensory neurons (Waldmann et al., 1997;
Poirot et al., 2006) are of particular interest due to their biophysical and physiological properties.
ASIC3 channels are able to generate a biphasic current containing a transient component followed
by a non-desensitizing sustained current in response to acidic stimuli (Osmakov et al., 2014) and
can integrate different inflammatory or ischemic stimuli (Immke and McCleskey, 2001; Allen
and Attwell, 2002; Deval et al., 2008). Among such stimuli are compounds such as arachidonic
acid, which, at a 1–10 µM range, increases the amplitude of both the transient and sustained
components of the acid sensing ion channel (ASIC) current (Smith et al., 2007); serotonin,
which increases the ASIC3-sustained current (Wang et al., 2013); and FMRFamide-related
neuropeptides, potentiating the proton-gated current (Askwith et al., 2000). Some neuropeptides
affecting opioid receptors (dynorphins) were also reported to potentiate ASIC channels (Sherwood
and Askwith, 2009). Polyamine agmatine, as well as lysophosphatidylcholine and arachidonic
acid, was shown to evoke a constitutive depolarizing ASIC3 current at resting physiological pH
7.4 at millimolar and micromolar concentrations, respectively (Li et al., 2010; Marra et al., 2016).
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For a long time, endogenous isoquinoline alkaloids (EIAs)
were considered biological active molecules although their
function was not completely understood. Representatives of this
group of compounds, such as tetrahydropapaveroline (THP) and
reticuline, are precursors of endogenous morphine biosynthesis
in mammals (Weitz et al., 1987). High circulating levels of
THP (also known as norlaudanosoline) are associated with
pathological states such as Parkinson’s disease and alcoholism
(Sango et al., 2000; McCoy et al., 2003). It was shown that
THP inhibits mitochondrial respiration and increases reactive
oxygen species production (Surh and Kim, 2010), decreases
dopamine biosynthesis by inhibiting tyrosine hydroxylase (Kim
et al., 2005; Yao et al., 2010; Nowicki et al., 2015), and inhibits
dopamine uptake by acting on its plasma membrane transporter
(Okada et al., 1998). Reticuline, which differs from THP by three
methyl groups, was detected in rat brains (Zhu et al., 2003), in
the animal’s neural tissue (Zhu et al., 2002), and in cultured
human cells (Poeaknapo et al., 2004). Reticuline demonstrated
anti-platelet aggregation activity (Chen et al., 2000), showed
butyrylcholinesterase inhibitory activity (Hošt’álková et al.,
2015), and elicited peripheral vasodilation via reduction of
the voltage-activated peak amplitude of L-type Ca2+-channel
(Dias et al., 2004; Medeiros et al., 2009). Examination of
the reticuline ability to mimic opioids exhibited low binding
affinity to µ-opioid receptors in living cells (Zhu et al., 2004;
Nikolaev et al., 2007). As a result, the role of THP and
reticuline as neuronal receptor ligands has not been discovered
to date.

ASIC3 channels significantly contribute to the perception
and development of pain conditions, acid-mediated and
inflammatory pain (Deval et al., 2008; Yen et al., 2009),
and development of primary and/or secondary mechanical
hypersensitivity in muscles (Sluka et al., 2009); participate in
the perception of pain from mechanical stimuli (Jones et al.,
2005); and are involved in the perception of pain signals from the
lungs and gastrointestinal tract (Wultsch et al., 2008). However,
it is unknown if the acidification (proton concentration rise) or
release of unidentified endogenous ligands should be considered
as a pathological impact (Krishtal, 2015). Here, we demonstrated
the ability of two endogenous molecules—THP and reticuline
(PubChem CID 18519 and 10233, respectively) to activate
human and rat ASIC3 (rASIC3) channels at physiological
pH, as well as prevent a steady-state desensitization of the
channels.

EIAs SELF-SUFFICIENTLY ACTIVATE
HUMAN AND RAT ASIC3

The ability of EIAs to activate ASIC3 channels was studied in
whole-cell configuration on oocytes of Xenopus laevis. THP and
reticuline caused slowly activated sustained inward currents both
in human (Figures 1A,B) and rat (Figures 1C,D) homomeric
ASIC3 channels at resting pH 7.4 and above.

THP (Figure 1E) dose-dependently activated the channels
at pH 7.8, and the activation did not reach a maximal value
at the highest accessible concentration (10 mM). In the case

of human ASIC3 channels (hASIC3), the activating effect
was greater and even exceeded the response of the cell to
pH drop of 7.8–5.5 in control experiments (Figure 1A). The
maximal effect reached about 30% of Imax (a maximal amplitude
predicted by the logistic equation fitting of dose-dependence of
EIA-induced current). According to steady fitting by a logistic
equation, the half-maximal effective concentration (EC50) and
the Hill coefficient (nH) for THP were 24.86 ± 1.61 mM
and 0.99 ± 0.05, respectively (n = 5; Figure 1F). THP
shown the same potency on the rASIC3 channel (rASIC3;
Figure 1C). The activating effect under the same conditions
reached about 30% of Imax. The calculated EC50 and nH values
were 17.23 ± 0.75 mM and 0.95 ± 0.04, respectively (n = 5;
Figure 1F).

Reticuline (Figure 1E) is a hydrophobic substance that
does not have a high solubility in physiological solutions for
electrophysiology. Consequently, a maximal concentration of
1 mM was used in experimentations. The maximal effect on
hASIC3 reached about 60% of Imax. Steady fitting by a logistic
equation gave EC50 and nH values of 0.56 ± 0.04 mM and
0.85± 0.05, respectively (n = 5; Figure 1F).

The same activation effect was produced by ligands when the
channels were in the steady- state desensitization (Figures 2A,B).
The decrease of conditioning pH produced reduction in
the ligand effect both on human and rASIC3 channels
(Figures 1G,H). Thus, an increase of proton concentration in
conditioning solution attenuated a channel sensitivity to THP.

PHARMACOLOGICAL DIFFERENCE OF
hASIC3 AND rASIC3

We found an important relationship of the rat and human
ASIC3 channels’ responses to proton stimuli from different
resting states. Response from bath pH 7.8–5.5 exhibited a
‘‘normal’’ biphasic current (i.e., with a transient component
followed by a sustained one), whereas at physiological resting
pH 7.3–7.4 (Street et al., 2001), hASIC3 responded to the pH
drop to 5.5 by a sustained component of the current only
while the transient component of the current was completely
desensitized. In contrast, for rASIC3, resting pH 7.3–7.4 did not
desensitize the transient component of the current. Therefore,
rat and human ASIC3 channels need different pH values
for transient component desensitization. We characterized this
difference as the level of transient current amplitude evoked by
pH 5.5 stimulation from variable resting pH for both channels
(Figure 2C). The calculated pH50 of steady-state desensitization
(the value of H+ concentration in an extracellular solution at
which the transient current amplitude of response to pH stimulus
is half-maximal) for hASIC3 was 7.67± 0.01 (nH = 4.9± 0.4) and
for rASIC3 was 7.20 ± 0.01 (nH = 7.5 ± 0.7). Thus, the biphasic
response of hASIC3 is almost impossible at normal physiological
pH and below since channels are in the desensitized state.
Limitations of the hASIC3 functioning in normal conditions
appear to be abnormal. Therefore, we hypothesized the presence
of an additional regulation mechanism in normal conditions.
We checked if EIAs were able to change channel status from a
desensitized to a closed state.
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FIGURE 1 | Activating effect of endogenous isoquinoline alkaloids (EIAs) on Acid-sensing ion channels (ASIC3) channels. Action of tetrahydropapaveroline (THP;
A,C) and reticuline (B,D) shown together with response to control stimulus for human (A,B) and rat (C,D) channels expressed in oocytes using whole cell
configuration. Currents were measured at a holding pH 7.8 and were compared to control currents (H+ induced response by pH drop to 5.5) on the same cell.
(E) Chemical structure of THP and reticuline. (F) Dose-response curves for the EIAs’ activation effect on human and rat ASIC3 (rASIC3) channels. Data were fitted by
the logistic equation. Imax is a maximal amplitude predicted by the logistic equation fitting of EIAs’ induced currents data. (G) Activation effect of THP (10 mM) on
human ASIC3 (hASIC3) channels at conditioning pH 7.8 (gray column) and 7.3 (red column). (H) Activation effect of THP (10 mM) on rASIC3 channels at conditioning
pH 7.8 (gray column) and 6.8 (red column). Each point is presented as mean ± SE of 4–5 measurements.

EIAs REVERSE STEADY-STATE
DESENSITIZATION

EIAs cause both the channel activation and transient component
of hASIC3 current restoration from a desensitization at pH

7.3 (Figures 2A,D). For THP, the restoration effect was more
pronounced. This effect was dose-dependent and reached a
maximal possible value at the highest applied concentration of
THP (10 mM). One major experimental problem was to choose
an appropriate control for the dose dependence calculation since
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FIGURE 2 | Transient current recovering effect of EIAs on ASIC3 channels. (A,B) Dual effect of THP preincubation reflected in sustained current generation together
with inhibition of steady-state desensitization. Whole-cell currents recorded from human (A) or rat (B) ASIC3 channels held at pH 7.3 and 6.8, respectively were
measured with pH 5.5 stimulus at different THP concentrations. (C) ASIC3 steady-state desensitization of human and rat channels by increasing proton
concentrations in the conditioning period. Each point is presented as mean ± SE of seven measurements. (D,E) Traces for human (D) and rat (E) ASIC3 currents
measured for non-desensitized channel state at resting pH 7.8 (left) and for desensitized channel state in the presence of reticuline (in the center) and THP (on the
right). (F) Dose-response curve for THPs’ transient current recovering effect on hASIC3 and rASIC3. Imax was predicted by the fitting of dose dependences by a
logistic equation independently for each cell. Each point is presented as mean ± SE of 4–5 measurements. (G) Comparative chart for calculated maximal amplitude
of transient currents (recovered by THP from desensitization) to measured transient currents in the control by a pH drop of 7.8–5.5. Data for rASIC3 (n = 4) and
hASIC3 (n = 5) are presented as mean ± SE.

the transient current was completely desensitized at pH 7.3,
and the transient current induced at a pH drop of 7.8–5.5 was
significantly lower than one recovered by THP at a pH drop
of 7.3–5.5. For this reason, the maximal amplitude of the
transient current recovered by THP from desensitization (Imax)
was predicted by the fitting of the dose dependence by a logistic
equation for each experimental cell. Finally, all data for THP
were assembled together and fitted by a logistic equation with
EC50 = 2.30 ± 0.04 mM and nH = 2.09 ± 0.05 (n = 4–5, for each
point; Figure 2F).

The same effect has been demonstrated on rASIC3 channels
under mild acidic conditions (pH 6.8) when the transient
component of rASIC3 current is desensitized completely
(Figures 2B,E). Values of EC50 and nH for THP were

4.6± 0.1 mM and 1.68± 0.05, respectively (n = 4–5; Figure 2F).
Therefore, the THP reversed steady-state desensitization of
rASIC3 was equally potent to that of hASIC3, but overall, the
amplitude of the recovered transient current was significantly
greater in the case of hASIC3 (when compared to the control
transient current amplitude evoked by a pH drop of 7.8–5.5;
Figure 2G).

PERSPECTIVES FOR THE PAIN
TREATMENT

We discovered the EIAs to be potent ligands of the
ASIC3 channel. As it was shown earlier, EIAs’ blood levels
increase under pathological conditions such as infection or
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FIGURE 3 | The simple representation for the endogenous pathway of morphine biosynthesis in mammals. Pain relief could be induced by inhibition of the
reticuline/THP biosynthesis or by enhancement of their conversion to the morphine.

inflammation (Glattard et al., 2010; Laux-Biehlmann et al.,
2012). Increases in EIAs’ concentration may contribute to
pain symptoms in people suffering from Parkinson’s disease,
as evidenced by the correlation between reduced content
of EIAs and pain relief (Laux-Biehlmann et al., 2013). In
mammalian brain tissues, the EIAs concentration was estimated
on 10–100 nanomolar level (Sango et al., 2000; Yao et al., 2010)
and electron microscopy imaging detected these compounds
only in presynaptic terminals in the cerebellum and postsynaptic
terminals of the other brain regions (Laux et al., 2011). Therefore,
we can expect that the concentration in synaptic cleft could reach
hundreds of micromoles. However, molecular targets for these
compounds were not identified.

The ability of EIAs to directly affect ASIC3 channels indicates
that the functioning of acid-sensing channels is definitely
controlled in the organism by ligands other than protons.
EIA may produce positive regulation of nociception via ASICs
opposite to analgesic action of other opioids via metabotropic
opioid receptors (Cai et al., 2014). This possible bidirectional
action could be an important goal for the nearest investigations.
Rat and human ASIC3 channels shown a difference in responds
to EIA application as well as these channels did not equally
responded to acidification. This may be a reason for analgesic
prodrug overestimating in preclinical trials.

We assume that the regulation of ASIC sensitivity by
endogenous non-proton ligands could be a part of the mutual
regulation process of nociception and anti-nociception. The
role for THP and (S)-reticuline as endogenous precursors

of morphine in mammalian cells was reported (Poeaknapo
et al., 2004) and cells most probably have a controlled
system of alkaloid biosynthesis from tyrosine. Under certain
conditions, neuronal cells can release pro-nociceptive and
pro-inflammatory molecules (including THP and (S)-reticuline)
causing initiation of pain and inflammation. To discontinue the
process, the production of these molecules should be stopped.
Additionally, THP and (S)-reticuline could be transformed
to endogenous morphine that has the analgesic effect (Zhu
et al., 2003). Consequently, the pathway of the endogenous
morphine biosynthesis inmammals produces both pro- and anti-
nociceptive molecules. Therefore, regulation of this pathway
could be used as a target for therapeutic intervention. A decrease
of EIA level by the inhibition of ways of their biosynthesis or/and
activation of their further conversion could be proposed for the
treatment of pain and inflammatory conditions (Figure 3).

MATERIALS AND METHODS

Chemical Reagents Reticuline and THP were obtained from
Toronto Research Chemicals (Canada). Fresh solutions of
reagents were made directly before testing.

Electrophysiological Study on Xenopus
Laevis Oocytes
Oocytes expressed hASIC3 and rASIC3 homomeric channels
were prepared as described (Dubinnyi et al., 2012). After
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injection, the oocytes were kept for 2–3 days at 19◦C and then
up to 7 days at 15◦C in an ND-96 medium containing (in
mM): 96 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2 and 10 HEPES
titrated to pH 7.4 with NaOH supplemented with gentamycin
(50 µg/ml). Two electrode voltage clamp recordings were
made using a GeneClamp500 amplifier (Axon Instruments),
and data were filtered at 20 Hz and digitized at 100 Hz
by an AD converter L780 (L-Card, Moscow, Russia) using
homemade software. A computer-controlled valve system for a
fast solution switch was used. Microelectrodes were filled with
3 M KCl solutions. All solutions of the testing compounds
were supplemented with 0.1% BSA. To induce currents, we
employed ND-96-modified solutions in which 10 mM of HEPES
was substituted for 5 mM MES pH 5.5. A set of external
ND-96 solutions with pH 6.8–7.0 (buffered with 10 mM of
MOPS), pH 7.1–8.0 (buffered with 10 mM of HEPES) was
prepared.

Data Analysis
The analysis of electrophysiological data was performed using
the program OriginPro 8.6. The curve-fitting analysis was
carried out with the following four-parameter logistic equation:
F(x) = A/(1+ (x/x0)n), where x is the concentration of
the ligand, F(x) is the response value at a given ligand
concentration, A is the response value at maximal activation

(% of control), x0 is the EC50 value and n is the Hill
coefficient (slope factor). All data are presented as the
mean± SE.
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