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Introduction: Patients with end-stage kidney disease (ESKD) represent a vulnerable group with multiple

risk factors that are associated with poor outcomes after severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2) infection. Despite established susceptibility to infectious complications and the

importance of humoral immunity in protection against SARS-CoV-2, few studies have investigated the

humoral immune response to SARS-CoV-2 within this population. Here, we evaluate the seropreva-

lence of SARS-CoV-2 in patients awaiting renal transplantation and determine whether seroconverted

patients with ESKD have durable and functional neutralizing activity against SARS-CoV-2.

Methods: Serum samples were obtained from 164 patients with ESKD by August 2020. Humoral immune

responses were evaluated by SARS-CoV-2 spike S1 subunit and nucleoprotein semiquantitative enzyme-

linked immunosorbent assay (ELISA) and SARS-CoV-2 spike pseudotype neutralization assay.

Results: All patients with ESKD with reverse-transcriptase polymerase chain reaction (RT-PCR)–confirmed

infection (n ¼ 17) except for 1 individual seroconverted against SARS-CoV-2. Overall seroprevalence (anti-

S1 and/or anti-N IgG) was 36% and was higher in patients on hemodialysis (44.2%). A total of 35.6% of

individuals who seroconverted were asymptomatic. Seroconversion in the absence of a neutralizing

antibody (nAb) titer was observed in 12 patients, all of whom were asymptomatic. Repeat measurements

at a median of 93 days from baseline sampling revealed that most individuals retained detectable re-

sponses although a significant drop in S1, N and nAb titers was observed.

Conclusion: Patients with ESKD, including those who develop asymptomatic disease, routinely serocon-

vert and produce detectable nAb titers against SARS-CoV-2. Although IgG levels wane over time, the

neutralizing antibodies remain detectable in most patients, suggesting some level of protection is likely

maintained, particularly in those who originally develop stronger responses.
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SARS-CoV-2 infection.1–3 Data from the UK Renal Reg-
istry have revealed that by the end of the first wave of
the pandemic, 23% of patients receiving incenter he-
modialysis (ICHD) and infected with SARS-CoV-2
have died.4

Dialysis units are recognized as potential centers for
the rapid spread of SARS-CoV-2,5,6 and some of the key
questions pertaining to infection in patients with
ESKD, in particular those receiving ICHD as they
comprise more than 70% of the incident renal trans-
plant population, include quantifying the frequency of
asymptomatic infection and determining whether
1799
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seroconversion is protective against further infec-
tion.7,8 Moreover, many of the commercially available
assays do not give information on comparable antibody
titer, the variety of different antigenic targets that
anti–SARS-CoV-2 antibodies (nucleocapsid and spike)
are raised to,9,10 or their viral neutralizing ability,
which is considered the gold standard for measuring a
functional antibody that can inhibit SARS-CoV-2
infection.11–16 Allied to an overall increased risk of
infections, patients with ESKD have impaired
cell-mediated and humoral immune responses, leading
to lower seroconversion rates and quicker decline
of antibody levels as compared with healthy sub-
jects.17–21 Whether patients on hemodialysis mount an
effective nAb response against SARS-CoV-2 is
currently unknown. A more detailed evaluation of the
humoral response to SARS-CoV-2 in ESKD is thus
required.

Here, we set out to quantify IgG antibody levels to
spike S1 subunit (S1) and nucleocapsid (N) proteins of
SARS-CoV-2 and evaluate how well these responses
correlate with nAb activity.22–24 Determining the
neutralizing ability of SARS-CoV-2 spike antibodies is
critical to understanding protection from reinfec-
tion14,15,25 in patients awaiting transplantation and as a
consequence likely to receive immunosuppression—a
significant risk factor for poor prognosis in SARS-CoV-
2 infection.3

METHODS

Patient Selection

A total of 217 patients affiliated with The Royal Free
London NHS Trust (London, UK) and, as of 30 May
2020, listed on the National NHS Blood and Trans-
plant waiting list for renal transplantation were
included. Clinical and routine pathology data were
obtained from electronic and dialysis records. The
study was approved by The Royal Free London NHS
Foundation Trust—UCL Biobank Ethical Review
Committee (RFL B-ERC; reference NC.2018.010). Pa-
tients were followed up until 15 January 2021. A
total of 57 patients (26 seropositive and 31 sero-
negative) had received a kidney transplant by this
date.

Data Collection

Demographic information, clinical presentations, chest
computed tomography results, laboratory tests, and
treatment and outcome data were collected from patient
medical records. COVID-19 severity was classified as
previously described by Seow et al.26 Laboratory data
collected for each patient included complete blood
count, coagulation profile, serum biochemical tests
(including renal and liver function, electrolytes, lactate
1800
dehydrogenase, and C-reactive protein), serum ferritin,
and biomarkers of infection. Relative measures of so-
cioeconomic deprivation were evaluated using the In-
dex of Multiple Deprivation, defined by patient home
address postcode using UK government statistics
(https://www.gov.uk/government/statistics/english-
indices-of-deprivation-2019) and presented as deciles
(1 ¼ most advantaged; 10 ¼ most disadvantaged).27

Frailty was evaluated using the Rockwood Clinical
Frailty Scale (1–2: very fit, well; 3–4: managing well,
vulnerable; 5–6: mildly to severely frail; 8–9: very
severely frail, terminally ill).28,29

Diagnosis of COVID-19 Infection

A confirmed diagnosis of COVID-19 was based either
oro- or naso-pharyngeal throat swabs for SARS-CoV-2
by RT-PCR after either routine screening or acute
presentation.

A confirmed case of COVID-19 was defined as an
individual with oro/nasopharyngeal swabs that were
positive for SARS-CoV-2 using the laboratory-based
PCR test. Symptomatic patients were defined as those
with laboratory-confirmed COVID-19 infection with
symptoms such as fever, cough, sore throat, and
sputum. An asymptomatic case was defined as an in-
dividual with a positive PCR test result but without
any relevant clinical symptoms in the preceding 14
days or those who were pauci-symptomatic on the basis
of the COVID-19 questionnaire survey during the
study period and did not undergo a PCR test. Routine
asymptomatic swabbing was not performed in the first
peak of the pandemic; from October 2020 onward, a
weekly SARS-CoV-2 PCR screening practice was insti-
tuted for all patients with ICHD.

Patients with a negative IgG antibody assay were
considered to be at risk of infection from their first
antibody assay to either the end of the study or their
first PCR-positive test, whichever occurred earlier.
Those with a positive antibody assay result were
considered to be at risk of reinfection 60 days after
their first positive antibody result to either the end of
the follow-up period or their next PCR-positive test,
whichever occurred earlier, irrespective of subsequent
seroreversion.

SARS-CoV-2 Antibody Detection

As validated and described previously,22,24,30 9 col-
umns of a half-well 96-well MaxiSorp ELISA plate
(VWR, Lutterworth, UK) were coated with purified
SARS-CoV-2 spike S1 or N protein (Peter Cherepanov,
Francis Crick Institute, London, UK) in phosphate-
buffered saline (PBS) (Sigma Aldrich, Gillingham,
U.K) (3 mg/ml per well in 25 ml) and the remaining 3
columns were coated with 25 ml goat antihuman F(ab)’2
Kidney International Reports (2021) 6, 1799–1809
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(Sigma Aldrich) diluted 1:1000 in PBS to generate the
internal standard curve. After incubation at 4 �C
overnight, the ELISA plate was blocked for 1 hour in
assay buffer (PBS, 5% milk, 0.05% Tween 20). Sera
were diluted in assay buffer in the ratios 1:50 to 1:5000,
and 25 ml was added to the ELISA plate. Serial dilutions
of known concentrations of IgG standards (Sigma
Aldrich) were applied to the 3 standard curve columns
in place of the sera. The ELISA plate was then incu-
bated for 2 hours at room temperature and then washed
4 times with PBS and 0.5% Tween 20. Alkaline
phosphatase-conjugated goat antihuman IgG (Stratech
Scientific, Cambridge, U.K) at a 1:1000 dilution was
then added to each well and incubated for 1 hour. The
plates were then washed 6 times with PBS and 0.5%
Tween 20, and 25 ml of colorimetric alkaline phospha-
tase substrate (Sigma Aldrich) was added. Absorbance
was measured at 405 nm. Antigen-specific IgG serum
concentrations were then calculated based on interpo-
lation from the IgG standard results using a 4-
parameter logistic regression curve fitted model.

Neutralization Detection Using Pseudovirus

Neutralization Assay

HIV-1 particles pseudotyped with SARS-CoV-2 spike
(Wuhan-Hu-1) were produced in a T75 flask seeded the
day before with 3 millionHEK293T cells (ATCC, Man-
assas, VA) in 10 ml complete Dulbecco’s modified Ea-
gle’s medium (Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal bovine serum, 100 IU/ml
penicillin, and 100 mg/ml streptomycin) (Sigma
Aldrich). Cells were transfected using 60 mg of PEI-
Max (Polysciences, Inc., Warrington, PA) with a
mixture of the following 3 plasmids: 9.1 mg HIV-1
luciferase reporter vector,30 9.1 mg HIV p8.91 pack-
aging construct, and 1.4 mg WT SARS-CoV-2 spike
expression vector.30 Supernatants containing pseudo-
typed virions were harvested 48 hours after trans-
fection, filtered through a 0.45-mm filter, and stored
at �80 �C. Neutralization assays were conducted by
serial dilution of the serum in complete Dulbecco’s
modified Eagle’s medium and incubated with the
pseudotyped virus for 1 hour at 37 �C in 96-well plates.
HeLa cells stably expressing angiotensin-converting
enzyme 2 (provided by J.E. Voss, Scripps Research
Institute, La Jolla, CA) were then added to the assay
(10,000 cells per 100 ml per well). After 48 to 72 hours,
luminescence was evaluated as a proxy of the infection
by lysing the cells with the Bright-Glo luciferase kit
(Promega, Madison, WI), using a GloMax plate reader
(Promega). Measurements were performed in duplicate
and used to calculate 50% inhibitory dilutions (ID50)
in GraphPad Prism software (GraphPad, San Diego,
CA).
Kidney International Reports (2021) 6, 1799–1809
Statistical Analysis

The 95% confidence interval of seroprevalence was
calculated using theb Wilson method. All continuous
characteristics are described as either means and SDs or
medians and interquartile ranges (IQRs), and categori-
cal characteristics are described as numbers (%). Nor-
mally distributed variables were compared using t
tests, and nonparametric data were compared using the
Mann–Whitney U test. The Fisher exact tests or chi-
square tests were used for proportional assessments.
Pairwise correlations were evaluated using nonpara-
metric two-tailed Spearman correlation tests. P < 0.05
was considered significant. Statistical analyses were
carried out using GraphPad Prism 7.0.
RESULTS

We obtained a total of 164 individual serum samples
from 217 waitlisted patients; 113 (68.9%) were ob-
tained by June 2020, corresponding to the end of the
first peak of infectivity,4,31 and the remainder by
August 2020. Of the patients with serum samples, 111
(67.7%) were tested for symptomatic SARS-CoV-2
infection by RT-PCR and 17 individuals were diag-
nosed with COVID-19, representing 10.4% of the study
population (Figure 1).

The overall observed seroprevalence (anti-S1 and/or
anti-N IgG) in the population was 36% (n ¼ 59 of 164)
and was higher in patients receiving ICHD (44.2%).
Seroconversion was not detected in 1 RT-PCR–positive
patient (6%). There was no difference in the timing of
the tests with a serum sample obtained by June 2020 in
67.8% and 62.9% of SARS-CoV-2 antibody-positive
and -negative patients, respectively (P ¼ 0.53).
Compared with SARS-CoV-2 antibody-negative pa-
tients, seroconverted patients were more likely to be
from a black, Asian, or minority ethnic background
(P ¼ 0.08), receive ICHD as opposed to being pre-
dialysis or on peritoneal dialysis (P ¼ 0.006), have a
higher clinical frailty score (P ¼ 0.02), and with a
significantly fewer proportion on immunosuppression
(P ¼ 0.001) (Table 1). Indications for immunosuppres-
sion and details of the classes of therapy used are found
in Table S1.

A total of 21 patients who seroconverted (35.6%)
were either asymptomatic with a positive PCR test or
were pauci-symptomatic during the study period and
did not receive a PCR test. Symptomatic seroconverted
patients predominantly had features of cough (30.5%),
fever (28.8%), and myalgia (13.6%) on acute presen-
tation, with 10 individuals (13.6%) admitted to hos-
pital. Median titers of both anti-S1 and anti-N IgG were
higher in symptomatic compared with asymptomatic
patients (S1: 60.3 mg/ml, [IQR ¼ 7.6–234.1] vs. 3.75 mg/
1801



Figure 1. Study flow diagram. A total of 217 patients were eligible for inclusion in the study and 164 were included in the analysis. Flowchart
indicates the number of patients in each group by SARS-CoV-2 viral RNA status detected by reverse-transcriptase PCR. ICHD, incenter he-
modialysis; N, nucleocapsid; nAb, neutralizing antibody; PCR, polymerase chain reaction; PD, peritoneal dialysis; Pre, predialysis; S1, spike;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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ml, [IQR ¼ 0–14.2], P < 0.001 and N: 55.9 mg/ml,
[IQR ¼ 19.2–96.7] vs. 6.5 mg/ml, [IQR ¼ 0.9–34.1], P ¼
0.0005, respectively; Figure 2), in agreement with
previous observations.22,26 Apart from a history of
smoking, there were no significant demographic dif-
ferences between symptomatic and asymptomatic pa-
tients (Table 2). Predialysis patients in the
seroconverted group had better renal function than
equivalent patients who were SARS-CoV-2 antibody
negative (median estimated glomerular filtration rate of
16 ml/min [10.5–21.5] vs. 9 ml/min [8–15], P ¼ 0.06,
respectively). A comparison of antibody titers between
patients with seroconverted predialysis and ICHD is
found in Table S2.

The S1 subunit contains the receptor-binding
domain, which mediates viral binding to angiotensin-
converting enzyme 2 (ACE2) receptors on susceptible
cells and is the main target for SARS-CoV-2 nAbs.32 We
tested the neutralizing activity using a luciferase-
encoding–attenuated HIV-1 pseudotyped with the
spike protein. A total of 12 patients (20.3%) had low
(ID50: 50–200), 7 (11.9%) medium (ID50: 201–500), 17
(28.8%) high (ID50: 501–2000), and 11 (18.6%) potent
(ID50: >2001) neutralizing titers. Levels of anti–S1- and
-N IgG antibodies correlated strongly with ID50
1802
(Figure 3a and b). Absence of neutralizing activity
(ID50 < 50) was found in 12 seroconverted patients
(20.3%), which was consistent with their lower anti-S1
and anti-N levels compared with patients who had
detectable neutralizing activity (anti-S1 IgG: 0.6 mg/ml,
[IQR ¼ 0.53–0.6] vs. 10.5 mg/ml, [IQR ¼ 4.1–92.1], P <
0.0001, and anti-N IgG: 0.9 mg/ml, [IQR ¼ 0.5–1.4] vs.
29.2 [IQR ¼ 9–70.3], P < 0.0001, respectively). All
seropositive patients with no neutralizing activity had
asymptomatic infection and were slightly older than
those with detectable nAb (median age: 60 years,
[IQR ¼ 52.8–75] vs. 54.7 [IQR ¼ 45.2–63.1], P ¼ 0.37,
respectively). Accordingly, symptomatic patients had
higher titers of nAbs, with levels strongly correlated
with peak serum ferritin and CRP levels (Figure 4).

Where possible, we obtained repeat sera and measured
S1, N, and neutralizing antibodies from seroconverted
patients at a median of 93 days from baseline sampling.
There were significant reductions in anti-S1 IgG (P <
0.0001), anti-N1 IgG (P < 0.0001), and nAb titers (P ¼
0.05) (Figure 5). Of the seroconverted cases with samples
at least 40 days from baseline, 2 of the 30 patients seror-
everted for anti-S1 IgG and lost nAb activity; both had an
initial weak nAb titer (ID50 < 200) and had been trans-
planted in the intervening period.
Kidney International Reports (2021) 6, 1799–1809



Table 1. Patient characteristics in serologically proven (anti-N and/
or anti-S1 SARS-CoV-2 IgG antibody) infection compared with anti-
body (anti-N and anti-S1)-negative patients

Variables
Antibody positive,

n [ 59
Antibody negative,

n [ 105 P value

Age (yr), mean (SD) 54.5 (11.9) 53.6 (12.7) 0.67

Male sex, n (%) 40 (67.8) 63 (61.1) 0.43

Ethnicity, n (%) 0.08

BAME 45 (76.3) 65 (61.9)

Caucasian 14 (23.7) 38 (36.2)

Index of multiple deprivation decile,
median (IQR)

3 (2–5) 4 (3–6) 0.04

Dialysis modality 0.006

ICHD, n (%) 50 (84.7) 63 (60)

PD, n (%) 4 (6.8) 17 (16.2)

Predialysis, n (%) 5 (8.5) 24 (22.9)

Clinical frailty scale, median (IQR) 3 (3-4) 3 (2-3) 0.02

Obesity (body mass index >30 kg/
m2), n (%)

14 (23.7) 26 (24.8) 0.85

Current or exsmoker, n (%) 18 (23.7) 31 (29.5) 0.97

Cause of ESKD, n (%) 0.003

APKD 6 (10.2) 12 (11.4)

Diabetic nephropathy 16 (27.1) 13 (12.4)

Glomerulonephritis 3 (5.1) 25 (23.8)

Hypertensive 14 (23.7) 11 (10.5)

Urologic 8 (13.6) 11 (10.5)

Immunosuppression therapy, n
(%)

8 (13.6) 31 (29.5) 0.01

COVID-19 severity classification
>1, n (%)

9 (15.3) 3 (2.9) 0.002

Lymphocyte nadir (median), 109/l 0.71 (0.45–1.19) 0.96 (0.51–1.41) 0.09

CRP peak (median), mg/l 47 (14.5–134.8) 14.5 (3–55.5) 0.0007

Ferritin peak (median), mg/l 517 (246.5–891.5) 417 (224–612) 0.05

APKD, autosomal-dominant polycystic kidney disease; BAME, black, Asian, and minority
ethnic background; ESKD, end-stage kidney disease; ICHD, incenter hemodialysis; IQR,
interquartile range; PD, peritoneal dialysis; SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2.

Table 2. Comparison of patient demographics between
symptomatic and asymptomatic anti–SARS-CoV-2 N and/or S1 IgG-
positive patients

Variables
Symptomatic,

n [ 21
Asymptomatic,

n [ 38
P

value

Age (yr), mean (SD) 54.8 (11.1) 54.4 (12.6) 0.89

Male sex, n (%) 13 (61.9) 26 (68.4) 0.61

Ethnicity, n (%) 0.20

BAME 14 (66.6) 31 (81.5)

Caucasian 7 (33.3) 7(18.4)

Index of multiple deprivation decile,
median (IQR)

3 (2.75–5) 3 (2–5.5) 0.81

Dialysis modality 0.26

ICHD, n (%) 20 (95.2) 31 (81.6)

PD, n (%) 1 (4.8) 3 (7.9)

Predialysis, n (%) 0 4 (10.5)

Clinical frailty scale, median (IQR) 3 (3–4) 3 (3–4) 0.67

Type I or II diabetes, n (%) 10 (47.6) 14 (36.8) 0.58

Obesity (body mass index >30 kg/m2),
n (%)

3 (14.3) 11 (52.4) 0.21

Current or exsmoker, n (%) 9 (42.9) 19 (50) 0.60

Immunosuppression therapy, n (%) 3 (14.3) 5 (13.2) 0.90

BAME, black, Asian, and minority ethnic background; ICHD, incenter hemodialysis; IQR,
interquartile range; PD, peritoneal dialysis; SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2.
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Clinical data were obtained from patients at a median
of 195 days (IQR ¼ 123–217) after baseline negative
anti-S1 and -N IgG and for 202 days at risk (IQR ¼
109.3–216) after a positive S1 and/or N IgG. There were
3 deaths in the seronegative group; none were related
to COVID-19. Of the 105 seronegative patients, 12
subsequently had a positive PCR result (8.58 per 10,000
days at risk), 7 during asymptomatic screening and 5
while being symptomatic. Of the 59 seropositive pa-
tients at baseline, one had a positive PCR test 202 days
later (overall ¼ 1.26 per 10,000 days at risk); the patient
was asymptomatic and had weak baseline (ID50–194)
and repeat (ID50–177 at 110 days) neutralizing activ-
ities. The incidence rate ratio for positive PCR tests in
seroconverted patients was 0.15 (95% confidence in-
terval, 0.003–0.98, P ¼ 0.04).
DISCUSSION

Only a few studies, predominantly conducted with
commercial serologic assays, have investigated SARS-
CoV-2 prevalence in patients on maintenance
Kidney International Reports (2021) 6, 1799–1809
dialysis,33–37 with some of them having failure of sero-
conversion after documented COVID-19 infection33,38

which could be related to the lower sensitivity of the
assays used.39,40 Although S1 and receptor-binding
domain antibodies can provide information on func-
tional immunity given reported correlations with
neutralizing activity,16,26,41,42 this has not yet been
found for patients on dialysis. To address this, we used
an inhouse high-throughput serum neutralization assay
directed at the spike protein that is well correlated both
with inhibition of infection in live SARS-CoV-2 as-
says43–45 and with ID50 titers that are associated with
protective immunity against secondary infection.15,46–49

We found that patients with ESKD routinely sero-
converted and produced neutralizing antibodies after
SARS-CoV-2 infection, including a large number of
individuals who were asymptomatic and receiving
maintenance hemodialysis between 2 and 3 times per
week in the high-exposure setting of dialysis facilities,
where maintenance of effective social distancing from
other patients or health care workers is logistically
challenging. Although titers of the IgG antibody in
patients on dialysis decline significantly by 90 days,
there is still detectable neutralizing activity, in keeping
with reports in non-ESKD individuals that primary
infection can provide up to 85% protection against
reinfection for at least 6 months.16,26 The only cases in
which there was reduction in neutralizing activity to
below the threshold of detection included 2 patients
who had been transplanted and were receiving main-
tenance immunosuppression.
1803



Figure 2. Comparison of virus-specific (a) anti-S1 and (b) anti-N IgG levels (mg/ml) in symptomatic patients (n ¼ 21) and asymptomatic patients
(n ¼ 38). The plots reveal medians (black middle line) and first and third quartiles (gray lines). The dashed line indicates the limit of quanti-
fication. Comparisons conducted using unpaired, two-sided Mann–Whitney U test; P values are depicted in the plots.
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Patients who developed antibody responses to
SARS-CoV-2 had higher clinical frailty scores, which
would be in keeping with previous work revealing that
increased frailty is associated with the severity of
COVID-19 and durable SARS-CoV-2 spike antibody
responses.3,50–52 Nevertheless, this is also a reflection of
the very high proportion of seroconverted patients
comprised those with ICHD, a population that is well-
known to be at higher risk of accelerated aging and
frailty.53,54 Accordingly, we found a lower, albeit
nonsignificant, titer of antibodies in predialysis patients,
a group who are able to shield more effectively and thus
would likely have had a lower number of exposures
compared with patients with ICHD, in which attendance
of regular dialysis sessions in a hospitalized setting is
associated with a higher risk of nosocomial acquisition of
Figure 3. Correlations between S1 and N IgG antibodies with SARS-CoV-2–
axis). The dotted line indicates the limit of quantification (ID50 < 50), mediu
samples from seropositive patients were titrated in duplicate and preincuba
spike for 1 hour before the addition of HeLa cells expressing human ACE2.
by two-tailed Spearman’s test. Asymptomatic and symptomatic individual
converting enzyme 2; ID50, 50% inhibitory dilutions; nAb, neutralizing antib

1804
SARS-CoV-2 infection.6,55–57 Our dialysis centers have
since used numerous strategies, such as changing
nursing practice, reducing the number of patients in
waiting rooms, limiting shared patient transport, and
carrying out regular PCR screening, to minimize the risk
of COVID-19 transmission.58,59

Infections are the second leading cause of death
among dialysis-dependent patients with ESKD mainly
owing to the impairment of both innate and acquired
immunities, related to both uremia and concomitant
immunosuppression therapy.60 Specific uremia-related
disturbances in acquired responses include reduced
expression of costimulatory molecules on CD4þ T cells
and impaired proliferative responses.61–64 Moreover, our
previous work has revealed that changes in adaptive
immunity in ESKD can be identified before
specific nAbs. Plots of ID50 (y axis) against (a) S1 or (b) N IgG titer (x
m (ID50 < 500), and potent (ID50 > 5000) activities. Sequential serum
ted with luciferase-encoding HIV pseudotyped with the SARS-CoV-2
The R and P values for the correlations in a and b were determined
s are revealed in black and green, respectively. ACE2, angiotensin-
ody; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Kidney International Reports (2021) 6, 1799–1809



Figure 4. Biochemical and hematological correlates of SARS-CoV-2–specific nAb titers. Correlation of nAb titers with nadir lymphocyte, peak
CRP, and peak ferritin levels either at time of positive PCR testing or at time of serum sampling if no or negative PCR test. The R and P values for
the correlations were determined by two-tailed Spearman’s test. Asymptomatic and symptomatic individuals are revealed in black and green,
respectively. nAb, neutralizing antibody; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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transplantation, such as alterations in the cytokine
profiles of regulatory B cells, which are associated with
subsequent likelihood of allograft rejection.65–67

Furthermore, immunosuppression therapy for manage-
ment of autoimmune renal disease or prevention of hu-
man leukocyte antigen sensitization in patients with
previously failed transplants,68 (the latter was common
in our cohort) has effects on humoral, cell-mediated
immunity and neutrophil function.69,70 As cognate
CD4þ T cell help is critical for the differentiation of
antigen-specific B cells (by extrafollicular responses or
germinal center reactions) into memory B cells,
antibody-secreting plasmablasts, and plasma cells,71–80

the deleterious consequences of B cell lymphopenia in
ESKD81 are compounded by impaired T-cell–dependent
activity of B cells and are reflected in poor serologic
responses to T-cell–dependent vaccines.63,82–84 Accord-
ingly, although only 1 patient failed to seroconvert after
PCR-confirmed SARS-CoV-2 infection, in keeping with
the test sensitivity of 92.1%,24 we found a higher pro-
portion of patients on maintenance immunosuppression
in the group that did not seroconvert. The latter patients
Figure 5. Changes in virus-specific IgG levels and nAb titers of seroposit
median of 92.5 days (IQR ¼ 70.8–111) for anti-S IgG (n ¼ 27), at 92 days (IQR
neutralizing antibodies (n ¼ 26). Asymptomatic and symptomatic individu
cance was determined using Wilcoxon-matched pair signed-rank test. IQR
baseline; T1, repeat samples.

Kidney International Reports (2021) 6, 1799–1809
were also receiving more intense therapy, in particular, a
triple combination of steroid, antimetabolite, and calci-
neurin inhibitors, compared with their seroconverted
counterparts. It is possible therefore that the durability
of anti–SARS-CoV-2 antibody responses, especially in
response to mild infections, is poorly sustained on a
background of immunosuppression therapy and might
have accounted for the lack of detectable antibody in
some patients by the time serum samples were acquired
after the first peak of the pandemic. In support, the 2
patients in our cohort who lost neutralizing activity
after 40 days, had initial weak titers and had been
transplanted in the intervening period, having received
induction immunosuppression with basiliximab and
having been maintained on triple therapy. Of note, up to
one-third of renal transplant recipients fail to serocon-
vert after RT-PCR–confirmed SARS-CoV-2 infection35,85

and thus point to the major role of immunosuppres-
sion abrogating protective anti–SARS-CoV-2 antibody
responses.

With the accelerated spread of new variants (B.1.1.7,
B.1.351, and P.1) containing mutations in the spike
ive patients. Each line represents 1 individual. T0 and T1 taken at a
¼ 69.5–111) for anti-N IgG (n ¼ 28), and at 93 days (IQR ¼ 73–111) for
als are revealed in black and green, respectively. Statistical signifi-
, interquartile range; N, nucleocapsid; nAb, neutralizing antibody; T0,
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protein, concerns have been raised on the ability of
humoral responses induced by the original Wuhan-Hu-
1 strain to neutralize these variants.86–88 Recent anal-
ysis of serum neutralization of the UK variant B.1.1.7
has revealed comparable titers for samples from both
mild and severe diseases, with a substantial decrease in
the titer (3–10 fold) in <10% of individuals.89,90

Nevertheless, despite this drop in titer in a few cases,
neutralization against B.1.1.7 pseudotypes remains
detectable, and so it seems likely that the antibody
levels observed in this study would also protect from
B.1.1.7 infection, although without a numerically
defined correlation of protection, this is not absolute.
In contrast, most serum samples tested to date91,92 have
lost all activity against the South African variant
B.1.351.91 Therefore, it is likely that individuals would
similarly have reduced activity against B.1.351 in the
absence of a vaccine boost.93,94

The limitations of our study include the use of a
SARS-CoV-2 spike pseudotype neutralization assay to
determine neutralization titer rather than a live virus
neutralization assay. Nevertheless, previous work has
revealed that there is little difference in the neutraliza-
tion titers determined by the live virus and pseudotyped
neutralization assays, suggesting both assays allow for
informative determination of the SARS-CoV-2 serum
neutralization titer.44 Although the correlates of pro-
tection from SARS-CoV-2 have not been definitively
identified, we know that a neutralization titer as low as
1:50 determined by the pseudotype neutralization assay
has been linked to protection in nonhuman primate
studies.46,49 Furthermore, the results of vaccination trials
to date (using spike-only antibody-targeted vaccines)
strongly suggest that antispike antibodies play a major
role in protection from infection, which is consistent
with the results for many other viruses. Therefore, we
are confident that the neutralization titer determined in
this study will be linked to some form of protection from
SARS-CoV-2. Nevertheless, for the general population,
only longitudinal reinfection studies will be able to
confirm this. A further limitation is that our spike-
reactive IgG titers were evaluated using the spike S1
subunit and not the whole spike protein. This is largely
owing to the inherent instability of the native spike
protein and the presence of cross-reactive epitopes to
seasonal coronaviruses within other spike subunits. The
S1 ELISA has been extensively validated and found to
be highly specific when tested against >200 prepan-
demic controls including >100 samples from recent
viral/bacterial infections and, importantly, revealed to
have no reactivity when tested against 16 seasonal
coronavirus infection samples.24 One final limitation of
the study is the heterogeneity in the PCR testing of
patients for SARS-CoV-2 infection. Although screening
1806
at ICHD units became a regular practice after the first
peak of the pandemic, it is possible that we missed in-
fections in asymptomatic patients during this phase,
especially if they were either on predialysis or peritoneal
dialysis. Therefore, there might be a higher proportion
of patients with PCR-confirmed SARS-CoV-2 infection
who failed to seroconvert that we did not detect.
Nevertheless, the overall seroprevalence (anti-S1 and/or
anti-N IgG) of 44% in our ICHD cohort is almost double
the rate of laboratory-confirmed (by positive SARS-CoV-
2 swab) COVID-19 cases in London reported to the UK
Renal Association,95 confirming that asymptomatic dis-
ease in patients on dialysis is common and highlights the
limitations of early diagnostic screening strategies. We
have been using a weekly swab test of all patients in our
dialysis centers since the latter half of last year.

Our findings could be applied in risk stratifying
patients on dialysis awaiting transplantation and have
important implications when considering the potential
durability of protection from reinfection.38 As the
rollout of COVID-19 vaccination programs has
commenced in many countries, our results can be used
for evaluating the comparative magnitude, durability,
and degree of protection of patients on dialysis, a group
not represented in any vaccination studies thus far.96,97

Teleologically, waitlisted patients with ESKD who have
mounted a robust nAb response to SARS-CoV-2,
whether as a result of primary infection or vaccina-
tion, might be better protected against reinfection if
and when transplanted. Serologic monitoring with
neutralizing activity after vaccination will be critical
for these patients and is the subject of current work.
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