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Highlights
d A novel flap attention module is proposed for segmenting

type B aortic dissection

d A cascaded network structure with feature reuse and a two-

step strategy is presented

d Evaluation was performed on a multicenter dataset including

with or without thrombus

d The proposed method outperforms previous state-of-the-art

deep learning methods
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In brief

The post-processing of computed

tomography angiography (CTA) images

of an aortic dissection is a time-

consuming and laborious process that

requires extensive manual refinement,

which can delay urgent clinical decisions.

More automated methods have recently

been developed to segment the true and

false lumen of an AD, but they are limited

in accuracy and performance. Herein, we

propose ADSeg, a module that utilizes

deep learning and is based on the flap

attention mechanism, which is able to

accurately segment the dissection lumen

regardless of the dissection state. The

effectiveness and generalizability of our

model have been validated with a

multicenter dataset.
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THE BIGGER PICTURE An aortic dissection (AD) is a serious condition in which the inner layer of the aorta
tears, causing the inner andmiddle tissue layers to split as blood surges through the tear. Image processing
to segment and visualize the anatomy of an AD is essential for disease diagnosis, surgical planning, and
postoperative follow-up. In this study, we propose a deep learning method to improve the accuracy of im-
age processing when segmenting the true and false lumen of an AD. When compared with the current
optimal methods, our method more accurately discerns the anatomic features of AD, which may increase
the likelihood for successful surgery and reduction of postoperative complications. Our overarching goal is
to develop an intelligent platform for accurate diagnosis of AD, individualized surgical planning, and prog-
nosis prediction, which will improve the survival of patients with AD. Given the highmortality rate of AD, any
improvement in diagnosis and treatment efficiency could have substantial benefits for the healthcare sys-
tem and patient well-being.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Accurate and rapid segmentation of the lumen in an aortic dissection (AD) is an important prerequisite for risk
evaluation and medical planning for patients with this serious condition. Although some recent studies have
pioneered technical advances for the challenging AD segmentation task, they generally neglect the intimal
flap structure that separates the true and false lumens. Identification and segmentation of the intimal flap
may simplify AD segmentation, and the incorporation of long-distance z axis information interaction along
the curved aorta may improve segmentation accuracy. This study proposes a flap attention module that fo-
cuses on key flap voxels and performs operations with long-distance attention. In addition, a pragmatic
cascaded network structure with feature reuse and a two-step training strategy are presented to fully exploit
network representation power. The proposed ADSeg method was evaluated on a multicenter dataset of 108
cases, with or without thrombus; ADSeg outperformed previous state-of-the-art methods by a significant
margin and was robust against center variation.
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INTRODUCTION

Aortic dissection (AD) is a life-threatening cardiovascular disease

characterized by sudden onset, rapid progression, and high mor-

tality.1 A dissected aorta is often initiated on account of a tear in

the aortic intima by which a surge of blood flows into the intima

andmedia layersof theaorticwall, splitting theoriginal single lumen

of the aorta into the true lumen (TL) and false lumen (FL).2 The thin

intimal layer that separates the TL and FL is known as the intimal

flap, which is a distinctive boundary between the TL and FL (Fig-

ure 1). Based on the segment involved in the dissection, the Stan-

ford classification categorized AD into types A and B.3 Type A AD

involves the ascending aorta and requires urgent open surgery to

replace theascendingaortaunderdirect vision. TypeBAD involves

only the descending aorta and is commonly treatedwith endovas-

cular repair to implant a stent-graft to cover the intimal tear, which

relies heavily on image guidance.4,5 For untreated AD, mortality in-

creases by 1%–2% per hour during the first 24 h, with reported

mortality ratesof 80%at2weeks.1,6,7 For ADafter treatment, close

imaging follow-up is routinely required to detect possible severe

postoperative complications in a timely manner.

Currently, computed tomography angiography (CTA) is the

modality of choice for the diagnosis, risk evaluation, surgery/en-

dovascular repair planning, and imaging follow-up of AD.8 Based

on the original CTA and reconstructed 3D images, the anatomic

features of AD, including the extent of dissection, size and loca-

tion of the tear, and diameter and geometrical morphology of the

TL and FL, can be displayed intuitively and accurately. This is of

great importance for surgeons in evaluating the risk of AD and

making individualized surgical plans. Furthermore, thrombus

formed by blood coagulation in the FL, which has been shown

to be significantly associated with the prognosis of AD,9 appears

relatively hypodense on CTA images and is a challenging situa-

tion for TL and FL segmentation.10 Aortic lumen segmentation

is a necessary and difficult step in performing 3D visualization,

accurate measurement, and creation of volumetric models for

hemodynamic simulations.

Traditionally, commercial post-processing workstations for

threshold-based segmentation and rendering have been semi-

automatic and require extensive manual refinement by surgeons

and radiologists. This process is complex and time-consuming,

as the aortic CTA contains hundreds of slices, which may conflict
2 Patterns 4, 100727, May 12, 2023
with urgent clinical decisions. Accurate segmentation can be seen

as a prerequisite step for perfect rendering. Because the blood

flow in the FL is relatively slow and often accompanied by

thrombus formation, threshold-based segmentation and

renderingmethods cannot effectively display a relatively low-den-

sity FL and thrombus. At the same time, the image reconstructed

by this method is a 3D rendering of the entire aorta and cannot

be saved as TL and FL segmentation maps. The 3D rendered im-

ages cannot be used for 3Dvisualization of lumens, hemodynamic

simulation, andaorticdiametermeasurement.11 Therefore, aneffi-

cient and automatic segmentation method is highly desirable.

Deep learning (DL) is a class of machine learning techniques

that usesmultilayered artificial neural networks for the automated

analysis of signals or data. In recent years, convolutional neural

networks (CNNs) have been widely used for medical image seg-

mentation.12–15 CNNs, composed of a convolution layer and

nonlinear operator, are a high-performance embodiment of the

DL technique. The CNN fits nonlinear equations using machine

learning rather than manually providing equations for traditional

image processing methods.15 CNNs are very accurate in image

recognition and classification and also minimize computation in

comparison with a regular neural network. A few studies have at-

tempted to automatically segment typeBADbyusingCNNs.Cao

et al.16 proposed a serial multi-task CNN model for automated

segmentation of type B AD with the first network segmenting

the entire aorta and the second network separating the TL and

FL. Chen et al.17 also followed this multi-stage learning frame-

work and added an aorta straightening method between the

two stages to alleviate the impact of the curved shape of the aorta

and simplify the segmentation. Instead of using 3D modules,

Hahn et al.18 explored only 2D modules. They used the aortic

lumen predicted by the first network to derive themultiplanar ref-

ormations (MPRs) orthogonal to the aortic centerline and input

theseMPRs into the second network to predict the final segmen-

tation results. Lyu et al.19 used both a 3D network for aorta parti-

tion and a 2D network for segmentation. They also applied an in-

dividual boundary detection network to extract boundary

information. Furthermore, Wobben et al. developed three seg-

mentationmodels using a 3D residualU-Net for the segmentation

of TL, FL, and FL thrombosis.20 Krissian et al. developed a semi-

automatic segmentation tool based on a multi-step strategy to

extract the AD wall and flap.21
Figure 1. Schematic of aortic dissection

(A) Spatial distribution of aortic dissection in sagittal,

transverse, and coronal planes on the CT image.

(B and C) The true lumen, false lumen, and intimal

flap of aortic dissection in the axial (B) and sagittal

slice (C).

(D) The cross-section and longitudinal-section

views of the normal aorta and dissected aorta. The

aortic wall is composed of intima, media, and

adventitia. When the intima is torn, the intimal flap

moves into the aortic lumen and separates it into the

true and false lumens.
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These methods have contributed to improving the segmenta-

tion accuracy of type B AD, but there have been some important

limitations: (1) none of the above studies have regarded the seg-

mentation of the characteristic intimal flap structure of AD as the

guide of segmenting TL and FL. The intimal flap is a thinmembra-

nous structure between the TL and FL formed by tearing the in-

tima of the arterial wall and is an anatomically clear dividing line

between the TL and FL. Therefore, identification and segmenta-

tion of the intimal flap may be beneficial for more rapid and pre-

cise segmentation of the TL and FL. (2) Further, previous

learning-based methods have depended only on the convolu-

tional layers to aggregate the local Z-direction information.

Considering that the aorta is typically approximately five times

longer than the length of the x/y axis,22,23 3D local convolution

layersmay not be sufficient to capture the long-distance z axis in-

formation of the dissected aorta. It is very difficult to distinguish

the TL and FL only by observing several adjacent slices; there-

fore, the interaction of long-distance Z-direction information

across slices is necessary for the accurate segmentation of AD.

(3) Although nearly all previous learning-based methods16–19

used the cascaded network structure, limited by the multi-stage

paradigm, none of them reused the features learned by the first

network in the secondone,which led to the strong representation

power of the cascaded structure not being fully exploited. (4)

From a data perspective, none of the previous studies have eval-

uated the multicenter performance of models trained with only

one center, nor have they examined the respective performance

of cases with and without thrombus. Therefore, the generaliz-

ability of these AD segmentation methods has not been effec-

tively verified, potentially hindering clinical applications.

In this study, we aimed to develop aDL approach based on the

flap attention module around the above four points and finally

achieve accurate segmentation of the TL and FL. In summary,

our main contributions are 3-fold.

(1) We propose a flap-attention-based AD segmentation

method, termed ADSeg, which can automatically

segment the TL, FL, and branch vessels (BR) of AD in

an end-to-end manner. At the core of ADSeg is a flap

attention mechanism that was specifically designed

for the AD segmentation task. This mechanism can

simplify the segmentation task and enhance the seg-

mentation performance of the whole network by using

key flap voxels with high confidence scores in the inter-

face information predicted by the first network and inte-

grating the long-distance z axis information and classi-

fying the TL and FL from the upper and lower slicers

over long distances (nearly 1,000 slicers per patient).

We fully exploit the representation power of the

cascaded network structure by further leveraging the

obtained features of the first U-Net and adopting a

two-step training strategy.

(2) We conduct extensive AD segmentation experiments with

a multicenter dataset. Upon testing, ADSeg is found to

outperform the previous methods by 5%–10%. Experi-

ments further show that ADSeg trained with one-center

cases can also perform well on cases from other centers,

which demonstrates that our method has a strong gener-

alizability and is robust to center variation. In addition, by
evaluating the performance of the methods on cases with

andwithout thrombus, we analyze the impact of thrombus

and prove that ADSeg can improve AD segmentation per-

formance, regardless of the presence of thrombus.

(3) Prior to this publication, there were no open-source

datasets, so AD segmentation methods could not be

directly compared. Here, we address this need by

providing a high-performance codebase and a manually

annotatedmulticenter dataset for the challenging AD seg-

mentation task.
RESULTS

Study design
Weproposed a flap-attention-basedDLmethod, termed ADSeg,

to segment the TL, FL, andBRof the dissected aorta. As shown in

Figure 2, ADSeg takes a 3D CT volume as input and uses a two-

step training strategy. After pre-processing, ADSeg uses two

cascaded neural networks to extract the segmentation features,

in which the first network is the classic U-Net24 and the second is

the proposed flap attention network (Figures 3 and 4), which are

described in detail in the section on ‘‘flap attention.’’ Each

network is followed by a 33 33 3 convolution layer to generate

the segmentation masks of the dissected aorta.

Comparison with previous methods
Given that no code of recent AD segmentation methods had

been published, for a fair comparison, we re-implemented

several existing methods16,17,19 and compared their perfor-

mance with that of ADSeg on our dataset. We provide the

source code and trained models from the compared methods

and our ADSeg method (https://doi.org/10.5281/zenodo.

7703732). As shown in Table 1, by leveraging the specifically

designed flap attention and two-step training strategy, ADSeg

outperforms all existing methods by a large margin in terms

of TL and FL segmentation. For example, compared with the

previous top-performing method,17 ADSeg results in improve-

ments of 4.1% (91.1% vs. 87.0%) and 5.9% (88.4% vs.

82.5%) in the dice coefficient score of TL and FL, respectively,

which demonstrates the effectiveness of ADSeg. The smaller

standard deviation of ADSeg in TL and FL segmentation also

indicates that ADSeg can generate more stable segmentation

results for patients.

Among these methods, the results of Lyu et al.19 are compro-

mised because of the lack of Z-direction information. We also

observe that themethods of Lyu et al. andChen et al.17 are signif-

icantly slower than other methods because of their complex and

time-consuming aorta straightening strategies. By contrast, our

proposed flap attention in ADSeg can naturally aggregate infor-

mation along the curved shape of the aorta, which avoids

the high time cost of the complex straightening method and en-

dows ADSeg with the ability to be performed in an end-to-end

manner.

Ablation study
To further prove the effectiveness of our proposed modules and

strategies, we conducted exhaustive ablation experiments; the
Patterns 4, 100727, May 12, 2023 3

https://doi.org/10.5281/zenodo.7703732
https://doi.org/10.5281/zenodo.7703732


Figure 2. Overview of the proposed ADSeg

The network takes a CT volume as input and directly outputs the segmentation mask of a dissected aorta. It is mainly composed of two networks in which the first

one is the classic U-Net and the second is further equipped with the specially designed flap attention module. More details regarding the network structure and

flap attention module are shown in Figures 3 and 4 and the ‘‘overview of ADSeg’’ and ‘‘flap attention’’ sections. ‘‘Conv’’ denotes convolution layer.
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results are presented in Table 2 and Figure 5. The first row in

Table 2 shows the traditional 3D U-Net without any augmenta-

tion. The second row shows the two cascaded U-Nets with

feature reuse but trained following the naive one-step training

strategy. The third row shows the Cascaded U-Net+ mechanism

trained using the two-step training strategy. Finally, the last row

shows the proposed ADSeg, which further uses the flap atten-

tion mechanism.

As shown in Table 2, directly replacing a single 3D U-Net

(first row) with two cascaded U-Nets (second row) without

any adjustment to the training strategy can result in a large

dice coefficient improvement of 3.2% (87.9% vs. 84.7%) for

TL and 4.4% (85.4% vs. 81.0%) for FL. Moreover, when

training with the two-step strategy (third row), the performance

is further improved by 1.8% (89.7% vs. 87.9%) and 1.0%

(86.4% vs. 85.4%) in terms of the TL and FL dice coefficients,

respectively. We believe that the reason for these remarkable

improvements is that with the two-step training strategy, the

features learned by the first pre-trained U-Net significantly

simplify the training of the second network. Based on the per-

formance of the strong Cascaded U-Net+ mechanism, it can be
Figure 3. Structure of the flap attention network

The ‘‘predicted flap’’ is predicted by the first U-Net, and the ‘‘input volume’’ is the

Figure 2. Please refer to ‘‘overview of ADSeg’’ and Table 6 for more details abou

attention module. ‘‘Conv 3 3 3 3 3’’ denotes a convolutional layer with a kernel

normalization layer.
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concluded that adding flap attention modules (last row) further

achieves a significant dice coefficient improvement of 1.4%

(91.1% vs. 89.7%) for TL and 2.0% (88.4% vs. 86.4%) for FL.

Benefiting from the two-step training strategy, the first pre-

trained U-Net can also provide reliable flap predictions to the

flap attention modules in the second flap attention network,

which can stabilize and smooth the training of the network.

The loss curves of the Cascaded U-Net with and without the

two-step strategy are depicted in Figure 6.

In addition, as described in the section ‘‘flap attention,’’ we

predicted the flap voxels with the first network and selected

the top-N voxels with the highest confidence score in each slice

as the key voxels. For the smallest input feature, the number of

key voxels per sliceNsmallestwas set to one by default. A compar-

ison of ADSeg using different key-voxel sampling strategies is

presented in Table 3. If we use the random sampling strategy,

the flap attention module does not improve the results, which

demonstrates the importance of the newly designed sampling

strategy with reference to flap predictions. In addition, sampling

more key voxels results in no additional improvement, and only a

small number of key voxels per slice is sufficient.
CT volume concatenated with the output feature of the first U-Net, as shown in

t the network structure and Figure 4 and ‘‘flap attention’’ for details on the flap

size of 3 3 3 3 3. ‘‘ReLU’’ represents rectified linear unit. ‘‘GN’’ means group



Figure 4. Pipeline of the flap attention mod-

ule

As illustrated in flap attention, using the pre-

dictions of the first U-Net as references, we sam-

ple a set of key flap voxels and input them to the

flap attention module. Subsequently, the sampled

key flap voxels in the input feature are replaced by

the enhanced voxels, while other voxels remain

the same. The green regions in the 2D axial slices

on the left are the flap segmentation results pre-

dicted by the first U-Net. The green points denote

the N sampled key flap voxels per CT slice. ‘‘FC’’

represents fully connected layer. ‘‘ReLU’’ means

rectified linear unit.
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We also stacked more U-Nets, and no further gain was ob-

tained regardless of whether the flap attention modules were

added. This demonstrates that the capacity of the two cascaded

U-Nets is sufficient for the AD segmentation task, and using

three or more U-Nets will only slow down the inference speed

with minor accuracy improvements.

Comparison with other attention mechanisms
We further demonstrate the effectiveness of the flap attention

mechanism in elevating segmentation performance by

comparing it with three other alternatives. The first option is

traditional global pixel-wise attention, which is also known

as the non-local operation.25 The second option is to replace

the flap attention with z axis attention, which only performs

attention along the z axis. We also tested crisscross atten-

tion26 as the third option, which exhibited excellent perfor-

mance in general segmentation tasks. The computational

complexity and AD segmentation performance of these three

alternatives and the flap attention mechanism are presented in

Table 4.

The dense attention operations of these three alternatives

lead to extremely high complexity in both space and time.

Limited by the high space complexity of 1 GPU with 16 GB

memory, the global attention module can only be applied to

the smallest feature map with stride S = 8, and the z axis

attention and crisscross attention modules can only be

applied to the feature maps with stride S R 2. By contrast,

the computational complexity of the flap attention module

is only O(H2), which is significantly lower than those of the

other three alternatives. This enables the flap attention mod-

ule to be performed on all features in the network and cap-

ture finer information. The efficiency and performance gap
Table 1. Comparison with previous AD segmentation methods

Model

Dice coefficient (%) [ Bound

TL FL AO BR TL

U-Net 84.7(7.6) 81.0(10.8) 92.7(2.6) 82.5(5.1) 1.83(1

Cao et al.16,a 85.4(7.2) 82.0(11.5) 92.7(3.2) 84.3(5.3) 1.72(1

Lyu et al.19,a 57.7(9.5) 62.8(13.3) 91.1(3.5) 72.8(7.2) 3.98(2

Chen et al.17,a 87.0(6.6) 82.5(8.0) 92.6(2.4) 78.5(6.1) 1.68(1

ADSeg

(Proposed)

91.1(3.9) 88.4(6.2) 93.2(2.6) 84.9(7.0) 1.47(0

[ indicates the larger the better and Y indicates the smaller the better.
aepresents re-implementation of the methods. The standard deviations are
between it and other alternatives increase remarkably with

input resolution.

Moreover, although the flap attention mechanism requires

negligible computational resources, it outperforms all other

alternatives, especially in terms of the FL segmentation perfor-

mance. Our interpretation is that the z axis and crisscross atten-

tion mechanisms struggle to handle the curved shape of the

aorta. In addition, global attention cannot aggregate textural

information that is limited by its high complexity. Further, they

do not fully exploit the flap information. The flap attentionmech-

anism focuseson the intimal flap and seamlessly performs infor-

mation interaction along the curved aorta,which leads to its high

performance.

Performance on cases with and without thrombus
Thrombus commonly exists in the FL of approximately 50% of

patients with AD. To test the impact of thrombus and perfor-

mance of ADSeg in handling thrombus, 40 cases in the entire

test set were divided into two groups: (1) the first group con-

tained 20 cases without any thrombus and (2) the second group

contained 20 cases with thrombus. The performance of ADSeg

on these two groups is shown in Table 5. As can be seen, ADSeg

can achieve remarkable performance improvements in both

groups, and the improvements in cases without thrombus are

larger.

Performance on cases from different centers
As described in the ‘‘study patients’’ section, to verify the general-

ization ability and robustnessof ADSeg and toprompt the applica-

tion of automatic AD segmentation in the future, the cases in our

test set were collected from four different centers with 10 cases

per center. The results of ADSeg and several baselines are
ary distance (mm) Y FLOPs

(G)

Params

(M)

Time

(s)FL AO BR

.6) 2.48(3.2) 1.07(0.9) 1.90(2.0) 1,000 4.08 0.20

.2) 2.85(1.8) 1.55(1.3) 1.79(1.4) 1,932 8.02 0.38

.2) 4.67(4.0) 1.56(1.4) 2.01(1.6) 2,033 46.92 173.30

.2) 2.74(1.7) 1.23(1.3) 1.73(1.4) 1,999 8.14 173.28

.8) 2.10(1.3) 1.06(0.6) 1.80(2.2) 2,194 8.29 0.53

also reported in brackets.
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Table 2. Ablation study of ADSeg

Model Cascaded

Two-

step

Flap

attn.

Dice coefficient (%) [ Boundary distance (mm) Y FLOPs

(G)

Params

(M)

Time

(s)TL FL AO BR TL FL AO BR

U-Net 84.7(7.6) 81.0(10.8) 92.7(2.6) 82.5(5.1) 1.83(1.6) 2.48(3.2) 1.07(0.9) 1.90(2.0) 1,000 4.08 0.20

U-Net with

flap attn.

O 87.6(5.4) 84.9(8.8) 92.6(3.2) 82.2(5.0) 1.64(1.2) 2.35(1.7) 1.05(0.7) 1.96(1.0) 20000 8.25 0.52

Cascaded

U-Net

O 87.9(5.6) 85.4(7.4) 92.4(2.6) 80.2(5.3) 1.65(1.0) 2.54(2.8) 1.04(0.6) 2.29(1.7) 2,194 8.20 0.46

Cascaded

U-Net+

O O 89.7(4.9) 86.4(8.0) 93.0(2.7) 84.9(6.8) 1.86(1.4) 2.50(2.5) 1.10(0.6) 1.76(2.1) 2,194 8.20 0.46

ADSeg

(Proposed)

O O O 91.1(3.9) 88.4(6.2) 93.2(2.6) 84.9(7.0) 1.47(0.8) 2.10(1.3) 1.06(0.6) 1.80(2.2) 2,194 8.29 0.53

‘‘Cascaded,’’ ‘‘Two-step,’’ and ‘‘Flap attn.’’ denote the cascaded structure, two-step training strategy, and flap attention mechanism, respectively.
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reported in Table 6. As can be seen, although the performances of

different centers vary significantly, ADSeg constantly outperforms

U-Net by a large margin of approximately 5%–10%.

Visualization of segmentation results
The testing results of the two cases are visualized in Figure 7 and

shown in Video S1. As shown in the figure, compared with tradi-

tional U-Net, the segmentation results of ADSeg are clearly su-

perior. Although Cascaded U-Net+ achieves similar segmenta-

tion results for the upper part of the aorta as ADSeg, its

segmentation results for the lower part of the aorta are usually

unsatisfactory. By contrast, benefiting from the long-distance z

axis attention along the intimal flap, ADSeg generates accurate

segmentation results for the entire aorta.

The detailed segmentation results for six other cases, with and

without thrombus, are shown in Figure 8.We can observe that by

paying more attention to the intimal flap, ADSeg can better

perceive the flap and accurately separate the TL and FL. Even

for challenging cases with partial and complete thrombosis in

the FL, ADSeg can recognize the coagulated FL by aggregating

information from other slices along the aorta.

Quantitative analysis of lumen volumes
Furthermore, we calculated the volumes of the segmented TL

and FL to evaluate the segmentation accuracy. TL and FL vol-

umes were among the most important morphological character-

istics for individual surgical planning and prognostic assess-

ment. The U-Net, Cascaded U-Net, Cascaded U-Net+, and

proposed ADSeg strategies were all compared with manual

quantification using Bland-Altman analysis, and the results are

shown in Figure 9. The Bland-Altman analysis results show

that TL and FL volumes segmented using the proposed ADSeg

are more consistent with manual segmentation.

Comparison between single-center and multicenter
training sets
In order toobserve theeffect of using single-center trainingset and

multicenter training set on the training results, we tried to train our

proposednetwork usingamulticenter trainingset.Specifically, the

single-center training set is the same as shown in the text. The

multicenter training set is also 68 cases, which is composed of

four centers, with 53 cases in center 1 and 5 cases in each of cen-

ters2 to4.The test set consistsof20cases,5cases ineachcenter.
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As shown in the Table 7, the networks trained on the new multi-

center training set performed slightly worse than those trained

on the original single-center training set. This may be due to the

small amount of data in centers 2 to 4, which leads to data imbal-

ance of the multicenter training set. Larger and more balanced

multicenter training data and additional test sets may help further

improve the segmentation performance of the network.
DISCUSSION

In this study, we proposed a flap-aware AD segmentation frame-

workcalledADSeganddemonstrated its effectiveness.Given the

CTA images of the dissected aorta, ADSeg automatically seg-

ments the TL, FL, BR, and intimal flaps in an end-to-endmanner.

At the core of ADSeg is the specifically designed flap attention

mechanism that focuses on the intimal flap and leverages long-

distance z axis information along the curved aorta. Furthermore,

an optimized cascaded network structure with a two-step

training strategywasdeveloped to fully exploit the representation

power of the networks. Upon comparing with other attention

mechanisms and recent AD segmentation methods, the flap

attention mechanism and ADSeg were found to be superior in

terms of TL and FL segmentation.

As the core of ADSeg, the flap attentionmechanism addresses

three key points of AD segmentation simultaneously:

d More attention is needed for the intimal flaps. As illustrated

above, intimal flaps require special attention for better sep-

aration of the TL and FL. The flap attention module is de-

signed to address this problem by specifically enhancing

the features of the flaps and enriching the semantics in

those flap voxels.

d Long-distance information interaction along z axis. As the

TL and FL can barely be distinguished by only observing

several adjacent slices, the long-distance inter-slice inter-

action is of great importance for the accurate segmenta-

tion of the TL and FL, especially for slices far from the

tear. Therefore, the flap attention module was designed

to use a transformer encoder layer to implement communi-

cation among the flap voxels from different slices.

d Feature extraction along the curved shape of the aorta. By

applying the transformer encoder layer only to flap voxels,

the flap attention mechanism naturally performs feature



Figure 5. Violin plots of TL and FL dice coefficient and boundary distance of different strategies

In themiddle of each density curve lies a small boxplot, with the rectangle showing the ends of the first and third quartiles and the central line showing themedian.

‘‘Cas’’ denotes Cascaded.
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interaction along the curved flap without the need for com-

plex aorta straightening algorithms.17,18 Moreover, the

removal of these straightening operations also enables

ADSeg to segment CT volumes in an end-to-end manner,

instead of using the two networks individually, as in most

recent works.17–19 The resulting straightforward cascaded

structure and newly proposed two-step training strategy

can also boost the performance of ADSeg.

The two distinctive properties of the flap attention mecha-

nism are (1) focusing on the key points (flap voxels in the AD

segmentation task) and (2) incorporating long-distance interac-
tion information. We believe that these two properties comple-

ment one another. As in the AD segmentation task, the

enhancement of flap voxel features requires long-distance z

axis information interaction. Correspondingly, long-distance z

axis attention along the curved aorta must be performed on a

set of key points along the aorta. Compared with other voxels

in a slice, flap voxels are more important for accurate AD

segmentation.

As shown in Tables 2 and 4, the specifically designed flap

attention mechanism achieves significant performance improve-

ment with respect to AD segmentation, especially for the seg-

mentation of the FL and TL. In addition, leveraging the features
Patterns 4, 100727, May 12, 2023 7



Table 3. Comparison between different sampling strategies of

key voxels in the flap attention module

Sampling strategy

Dice coefficient

(%) [

Boundary

distance (mm) Y

TL FL TL FL

Random 90.0 86.6 1.62 2.48

Nsmallest = 1 91.1 88.4 1.47 2.10

Nsmallest = 2 90.9 88.4 1.52 2.03

‘‘Random’’ setting indicates randomly sampling key voxels in the flap

attention modules. Nsmallest denotes the number of key voxels per slice

of the smallest feature map. ‘‘Nsmallest = 1’’ setting is our default setting,

and ‘‘Nsmallest = 2’’ setting performs an additional sampling of the key vox-

els per slice.

Table 5. Comparison on cases with and without thrombus

Group Model

Dice

coefficient

(%) [

Boundary

distance

(mm) Y

TL FL TL FL

Without thrombus U-Net 82.4 83.4 2.09 3.48

Cas U-Net 87.0 87.6 1.72 1.90

Cas U-Net+ 88.9 89.1 2.18 1.64

ADSeg 90.1 90.2 1.60 1.83

With thrombus U-Net 87.0 78.5 1.56 4.96

Cas U-Net 88.8 83.2 1.59 3.18

Cas U-Net+ 90.6 83.8 1.56 3.36

ADSeg 92.0 86.6 1.34 2.38

‘‘Cas’’ denotes Cascaded.

Table 6. Comparison on cases from different centers

Center Model

Dice

coefficient

(%) [

Boundary

distance

(mm) Y

TL FL TL FL

# 1 U-Net 81.5 80.2 3.06 2.67

Cas U-Net 85.1 84.9 2.30 1.96

Cas U-Net+ 87.5 87.1 2.37 2.12
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obtained by the first U-Net and adopting the two-step training

strategy led to complete exploitation of the representation power

of the cascaded structure, greatly improving the segmentation

performance.

In our experiments, to comprehensively test the performance

of themethods, the test setweusedconsistedof cases frommul-

tiple centerswith andwithout thrombus.As shown in Table 6, AD-

Seg trained with single-center data performs significantly well on

cases from other centers. As shown in Table 5, ADSeg outper-

forms other baseline methods by a large margin, regardless of

whether thrombus exists. These results demonstrate the strong

generalizability and robustness of ADSeg. Moreover, we also

observe (Table 5) that theTLsegmentationperformanceoncases

with thrombus is generally higher than that on cases without

thrombus. By contrast, the FL segmentation performance on

caseswith thrombus is generally lower than that on caseswithout

thrombus. This is because,with thrombus in the FL, the density of

the FL decreases. The density difference between the TL and FL

increases, making the boundary between the TL and FL clearer;

however, the density difference between the FL and the sur-

rounding tissueof theaortadecreases,making it difficult todistin-

guish the FL from the surrounding low-density tissue (e.g., fat).

Limitations and future directions
This study has several limitations, with several noteworthy issues

that can be further studied. (1) Considering that ADSeg has

shown significant improvement in the AD segmentation task,

we believe that its network design and certain flap attention
Table 4. Comparison between flap attention and other attention

mechanisms based on the Cascaded U-Net+

Attention mechanisms Complexity

Dice

coefficient

(%) [

Boundary

distance

(mm) Y

TL FL TL FL

None 0 89.7 86.4 1.65 2.35

Global attention O(H2W2L2) 90.5 87.3 1.64 2.32

z axis attention O(H2WL) 90.3 87.6 1.74 2.63

Crisscross attention O(HWL(H+W+L)) 90.2 87.3 1.57 2.28

Flap attention (ours) O(H2) 91.1 88.4 1.47 2.10

‘‘None’’ denotes the naive Cascaded U-Net+ without any attention mod-

ules. H, W, and L denote the length of the z, x, and y axes, respectively.
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characteristics may be further improved by augmentation. This

includes replacing the U-Net with more advanced basic net-

works such as PSPNet,27 replacing the automatically generated

flap annotations with human-annotated ground-truth data, or

further adopting a ‘‘boundary attention’’ mechanism28–30 that is

similar to flap attention to improve the segmentation accuracy

of aortic trunk (AO). (2) The AD segmentation performance of

cases with thrombus should be further improved. Effectively dis-

tinguishing between thrombus and other surrounding tissues re-

mains challenging for automatic AD segmentation tasks. (3) The

prognosis31 of AD, further leveraging these segmentation pre-

dictions, has not been explored in this study, which may have

important theoretical and practical significance. (4) The main

design philosophy of the flap attention mechanism, which fo-

cuses on the key component and performs feature interaction

among a set of sampled unstructured key points, may also
ADSeg 89.8 89.6 2.04 1.78

# 2 U-Net 89.1 82.2 1.56 2.21

Cas U-Net 90.4 84.4 1.41 3.94

Cas U-Net+ 91.7 85.4 1.26 2.71

ADSeg 91.8 86.7 1.40 2.20

# 3 U-Net 85.8 85.3 1.40 1.59

Cas U-Net 88.5 88.4 1.21 1.28

Cas U-Net+ 91.0 89.7 1.44 1.35

ADSeg 91.9 90.6 1.04 1.38

# 4 U-Net 82.4 76.1 2.63 4.94

Cas U-Net 87.5 83.9 1.69 2.97

Cas U-Net+ 88.8 83.6 2.40 3.85

ADSeg 90.7 86.7 1.40 3.07

‘‘Cas’’ denotes Cascaded.



Figure 6. Loss curves of Cascaded U-Net trainedwith the naive end-

to-end training strategy and Cascaded U-Net+ trained with the two-

step training strategy.
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benefit other related segmentation tasks (e.g., vascular segmen-

tation,30,32–34 and cell boundary segmentation35). Further explo-

ration of the application of this design philosophy in other

segmentation tasks may be meaningful.
Conclusions
Inconclusion,weexplored theeffectof leveragingflap information

and long-distance z axis information interactions on AD segmen-
tation. Benefiting from the specifically designed flap attention

moduleandoptimizedcascadednetwork structure, our proposed

ADSeg achieves higher performance than other AD segmentation

methods and our baselines and demonstrates strong generaliz-

ability on a complex multicenter test set. Therefore, we believe

that ADSeg has great potential to be deployed in clinical applica-

tions to assist in the diagnosis and individualized treatment of AD.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Chuansheng Zheng, hqzcsxh@sina.com.

Materials availability

This study did not generate new unique reagents.

Data and code availability

All of the original code and amanually annotatedmulticenter dataset with three

centers have been deposited at Zenodo under the https://doi.org/10.5281/

zenodo.7703732, which is publicly available as of the date of publication. All

publicly available data were anonymized, including the removal of patient in-

formation, center names, and scan parameters. One center’s data were not

approved for public release. Any additional information required to reanalyze

the data reported in this paper is available from the lead contact upon request.

Methods

Study patients

The multicenter dataset of this study was retrospectively collected from four

centers: theUnionHospital ofHuazhongUniversity ofScienceandTechnology,
Figure 7. 3D visualization of segmentation

results

(A and B) Based on different strategies, (A) and

(B) show aortas without and with thrombus in the

false lumen, respectively. ‘‘Cas’’ denotes cascaded.
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Figure 8. Segmentation details based on different strategies in patients with and without thrombus in the FL

The red areas represent the TL, and the yellow areas represent the FL. A0-5 and B0-5 show the cases with patent FL. C0-5 and D0-5 show the cases with partial FL

thrombosis. E0-5 and F0-5 show the cases with complete FL thrombosis. ‘‘Cas’’ denotes cascaded.

ll
OPEN ACCESS Article
Renmin Hospital of Wuhan University, Yichang Central People’s Hospital, and

Jingzhou First People’s Hospital. A total of 108 patients (mean age: 57.8 ± 12.9

years; 93 males) diagnosed with Stanford type B AD according to aortic CTA

between January 2010 and December 2020 were included in this study. Data

from 68patients from theUnionHospital of theHuazhongUniversity of Science

andTechnologywere used to train theproposedADSeg framework. Among the

68 patients in the training set, 35 (51.5%) had different degrees of thrombosis in

the FL. No thrombosis was observed in 33 (48.5%) patients. Data from an addi-
10 Patterns 4, 100727, May 12, 2023
tional 40 patients (10 cases per center) from the four centers were used for in-

ternal andexternal testing, including 20 caseswith and 20caseswithout throm-

bosis. All CTA data were obtained preoperatively, and the patients did not

receive surgery/endovascular interventions. The protocol of this multicenter

studywas approved by our institutional review board, and the local institutional

review board of each center approved the use of the CTA data. Written

informed consent was waived due to the retrospective nature of the enrolled

cohort.



Figure 9. Bland-Altman analysis of the TL and FL volumes of U-Net, Cascaded U-Net, Cascaded U-Net+, and proposed ADSeg strategies

The solid line represents the mean value of the difference from the manual, and the dashed line represents the 95% confidence interval of the difference.
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Image acquisition

CTA scanning was performed with various multidetector row spiral CT de-

vices, including the Discovery CT750 HD (GE Healthcare), Revolution CT

(GE Healthcare), SOMATOM Definition AS (Siemens Healthineers),

SOMATOM Definition Flash (Siemens Healthineers), Optima CT680 Series

(GE Healthcare), and Philips Ingenuity CT (Philips Healthcare). A tube voltage

of 100–120 kV was used for all patients, and the tube current ranged from 116
Table 7. Comparison of segmentation results between single-

center training set and multicenter training set

Training set

Dice

coefficient

(%) [

Boundary

distance

(mm) Y

TL FL TL FL

Single-center training set 91.2 90.7 1.60 1.86

Multicenter training set 90.4 90.0 1.68 1.96
mA to 656 mA. Aortic CTA scanning was performed from the level of the

thoracic inlet to the pelvic floor after the injection of intravenous contrast

material. The other relevant parameters are as follows: pixel spacing,

0.49–0.90 mm; reconstruction slice thickness, 0.625–1.25 mm; matrix,

512 3 512. The total number of CTA slices was 106,426 in all patients, with

an average of 985 ± 299.5.

Ground-truth label

All 108 CTA datasets were manually segmented by an experienced radiologist

(D.X., with 10 years of experience in cardiovascular imaging) using themedical

image processing software Mimics 21.0 (Materialise, Leuven, Belgium). Every

dataset was labeled slice by slice in axial view into TL, FL, BR, and back-

ground, and the entire aorta was the integration of TL and FL. If a thrombus

was present in the FL, it was included and labeled FL. BR consisted of the bra-

chiocephalic artery, left common carotid artery, left subclavian artery, celiac

trunk, superior mesenteric artery, double renal arteries, and iliac artery. The

endpoints of the BR were generally set at the first bifurcation of the branch

trunk according to the anatomic characteristics, and the endpoints of the left

common carotid artery and left subclavian artery were set at the same level

as the brachiocephalic artery.
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Table 8. Feature resolution and number of channels in ADSeg

Block Cinput Cinner Coutput Resolution

Encoder Block #1 1 (65) 32 (65) 64 240 3 96 3 96

Block #2 64 64 128 120 3 48 348

Block #3 128 128 256 60 3 24 3 24

Block #4 256 256 512 30 3 12 3 12

Decoder Block #5 1024 256 256 60 3 24 3 24

Block #6 512 128 128 120 3 48 3 48

Block #7 256 64 64 240 3 96 3 96

Cinput and Coutput denote the input and output channel numbers of the

block, respectively. Cinner denotes the output channel number of the first

convolution layer, which is also equal to the input channel number of the

second convolution and channel number of the optional flap attention

module. The numbers in the ‘‘Resolution’’ column are in the order of ‘‘z

axis length (number of slices) 3 x axis length 3 y axis length.’’ Most

numbers shown in the table are the same for the first and second net-

works. We report the values of the second network in brackets if they

differ from that of the first U-Net.
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The specific annotation process was briefly summarized as follows: first, the

CTA images were imported in Digital Imaging and Communications in

Medicine (DICOM) format, the window width was set to 700 HU and window

level to �150 HU, a new mask was created, the threshold was adjusted to

175 to 600 HU, and holes were checked; second, the Crop Mask tool was

used to narrow the volume of interest down, and the Split Mask tool was

then used to separate the aorta from other tissues; third, the Edit Mask tool

was used to erase a slice at the initiation site of BR, and the Split Mask

tool was used to segment the whole aorta and BR; finally, the Split Mask

tool was used to separate the TL and FL with the intimal flap as a boundary,

and the thrombus that could not be identified by the above threshold was

manually annotated. Manual annotation took approximately 2–3 h per dataset

depending on the extent of thrombosis.
Experimental details

The ADSeg software was developed based on the PyTorch framework36 using

an NVIDIA GeForce GTX 2080Ti GPU. The number of groups in group normal-

ization and number of heads in themulti-head self-attention module were eight

each. The dropout probability for all dropout layers in the flap attention mod-

ules was 0.1. For both training steps, the networks were trained for 50 epochs

using the Adam optimizer37 with an initial learning rate of 5e-4 and a weight

decay of 2e-4. The batch size was set to 1. Softmax and dice loss functions

were used to calculate the losses between the predictions and ground-truth

labels of the background, TL, FL, and BR. It is worth noting that as the gener-

ated flap category is not exclusive to other categories (e.g., background, TL,

and FL), the losses of flap predictions should be calculated individually with

the sigmoid and dice loss functions. The loss weights for the TL, FL, BR,

and flap were 0.3, 0.3, 0.3, and 0.1, respectively.

For the dataset, we split the 108 cases into two sub-sets: (1) the develop-

ment split with 68 cases from only one hospital, which was used to design

and evaluate the proposed methods and adjust the hyper-parameters; (2)

and the testing split with 40 cases from the four centers (10 cases per center)

for the final testing and comparison with other existing methods. Furthermore,

to adequately leverage the limited cases of the development split to explore

new methods, we adopted 4-fold cross validation in the development stage.

All results reported in this study were tested on our test set.

The main metric used was the dice coefficient between the predictions and

ground-truth masks.

Dice =
2 jMXGj
jMj+ jGj ;

where M denotes the predicted segmentation masks and G denotes the

ground-truthmasks. For each segmentation category (TL, FL, AO [aortic trunk,
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which is TLWFL], and BR), we calculated the dice score of each case indepen-

dently and then averaged them to obtain the final score of this category.

Because the segmentation of TL and FL is the most important part of AD seg-

mentation for diagnosis and repair planning, we mainly focused on the perfor-

mance of TL and FL segmentation. The segmentation results of AO and BR

were also reported for a comprehensive analysis. We also calculated the

average boundary distance between the predictions and ground-truth masks

to evaluate the segmentation performance of the methods from a boundary-

based perspective.

Overview of ADSeg

In ADSeg, the first network is a classical U-Net, with theCT volume as the input,

and outputs the predicted segmentation results. The second network is further

equippedwith flapattentionmodules and requires two inputs: (1) theCTvolume

concatenatedwith the output feature of the firstU-Net and (2) the predicted flap

segmentation result from the first U-Net. The input flap prediction is only used

by the flapattentionmodules for sampling key voxels, as shown inFigures 3and

4. Further, details regarding the proposed flap attention module are presented

in the next subsection. The detailed structure of the U-Net equipped with flap

attention is shown in Figure 3. It comprises an encoder with four basic blocks

and a decoder with three blocks. Each basic block is composed of two 3 3

3 3 3 convolution layers (followed by a rectified linear unit [ReLU] and group

normalization layer) and an optional flap attention module between them. Be-

tween the adjacent blocks in the encoder, a 2 3 2 3 2 max pooling operator

was applied for down-sampling. Correspondingly, before each block in the

decoder, the output feature maps of the previous block were first up-sampled

twice in resolution and then concatenated with the corresponding encoder

feature maps with the same resolution, to aggregate the more precise localiza-

tion information. The channel numbers were also doubled or halved when the

resolutions were halved or doubled, respectively. The detailed output resolu-

tions and numbers of output channels are listed in Table 8.

Flap attention

As the divider between the TL and FL, the intimal flap is of great importance for

the separation of the TL and FL. In contrast to previous AD segmentation

methods17–19 that only focused on the aortic lumen, we aimed to lead ADSeg

to explicitly perceive the intimal flap of AD. In addition to TL, FL, and BR super-

vision, we generated the flap annotation automatically to supervise the first

network, enabling it to predict the segmentation mask of the flaps. With the

predicted flap masks from the first U-Net, the specifically designed flap atten-

tion modules in the second network enhance the features of the flaps, aggre-

gate the information from the upper and lower portions of the aorta, and alle-

viate the interference caused by the curved shape of the aorta.

Flap prediction

Given the TL annotation MTL and FL annotation MFL, the flap annotation Mflap

can be automatically generated using the morphological dilation operator:

Mflap = (MTL 4 E) X (MFL 4 E)

where 4 denotes the morphological dilation operator and E denotes the 3 3

33 3 cubic structural element. With the generated flap annotation as supervi-

sion, the U-Nets can be trained to predict the flap masks. Specifically, we

added an additional output channel to the final convolution layer to predict

the intimal flaps. Subsequently, the losses between the predicted flaps and

generated flap annotations were calculated and back-propagated. Therefore,

during inference, the U-Net predicts the flaps together with TL, FL, and BR. It

should be noted that in ADSeg, the flap predictions generated by the first

network are used only to provide a reference for sampling key voxels in the

flap attention modules of the second network. The prediction of the intimal

flap is an intermediate target, instead of the final target.

Flap attention module

The pipeline of the flap attentionmodule is shown in Figure 4. As can be seen, a

group of flap voxels is sampled from different slices, which then communi-

cates with each other through the transformer encoder layer.

Specifically, with the flap voxels predicted by the first network, the voxels

with the top-N highest confidences for each slice were chosen as the key

flap voxels. These sampled key voxels were used by all flap attention modules

in the second network. TheseN3 L key voxels from all L slices are stacked and

input to the standard transformer encoder layer, which mainly contains a
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multi-head self-attentionmodule followed by amulti-layer perceptron with two

fully connected layers. The information encoded in these key voxels is fused

and refined through the transformer encoder layer. Finally, these refined key

flap voxels with richer semantics and contextual information are placed at their

original positions, and the following convolution layers in the U-Net propagate

the aggregated information from these key flap voxels to other adjacent voxels

in a step-by-step manner. Therefore, long-distance feature aggregation along

the curved aorta is naturally implemented using key flap voxels as messen-

gers. In our experiments, we set N to 1 for the input features with the smallest

resolution and doubled it for the cases of doubled resolution.

Data pre-processing and data augmentation

Before inputting the CT volumes to the network, several pre-processing oper-

ations were applied to reduce the computation cost and normalize the inputs.

First, the volumes were down-sampled by a factor of 0.5 and the z axis length L

was additionally resized to no more than 512. Subsequently, to crop the CT

volume parts that do not contain the aorta, we extracted all the voxels within

approximately �250 to 600 HU (including thrombus) and performed a 3 3

33 3 cubicmorphological opening operation on these voxels.17 The x-y center

of the maximum connected component can approximate the x-y center of the

target aorta region. Therefore, a 128 3 128 aorta square region around the

approximated x-y center with L % 512 slices can be extracted. Only voxels

in this region participated in the segmentation process, and all other voxels

were directly regarded as the background. Subsequently, we generated flap

annotations with the TL and FL annotations, as depicted in the section ‘‘flap

attention.’’ To reduce the GPU memory cost, the extracted aorta volumes

were further down-sampled to a fixed size of 240 3 96 3 96 (z axis length

(number of slices) 3 x axis length 3 y axis length). In practice, the volume

size can be adjusted according to the available computational resources.

Finally, the aorta voxels were standardized to establish a mean and standard

deviation of 0 and 1, respectively.

During training, to enrich the training set and alleviate over-fitting, we further

randomly jittered the aorta regions and rotated the volumes and labels by

[�10, 10] degrees around the z axis. To further introduce more randomness

to the voxel selection process and improve the robustness to some slight seg-

mentation errors of the first network, during training, the N key voxels for each

slice were randomly selected from the top-5N voxels with the highest confi-

dence scores, instead of directly selecting the top-N voxels, as in the inference

stage.

Training and testing procedures

To stabilize training, a pragmatic two-step training strategy was adopted for

ADSeg. In the first training step, only the first U-Net and its output convolution

layer were optimized to learn the segmentation masks of the flaps. The second

network and its output convolution layer were not run or updated. In the sec-

ond step, only the second network and its output convolution layer were

trained to obtain the final model. With reliable flap masks and features gener-

ated by the first pre-trained U-Net as input, the second network can be trained

more smoothly and effectively. Finally, during the testing procedure, only the

outputs of the second network and its output convolution layer are regarded

as the final predictions because the features captured by the flap attention

network are finer.
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