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Background
Protein signatures and InterPro. Enzyme function can 

be predicted using matches to sequence signatures based on 
models that classify proteins into families or predict the pres­
ence of characteristic domains or identifiable functionally rel­
evant sites. Here, we describe a set of searches that we have 
conducted using signatures from InterPro,1–3 an integrated 
database, which combines predictive protein signatures from a 
number of different databases (Gene3D,4 PANTHER,5 Pfam,6 
PIRSF,7 PRINTS,8 ProDom,9 PROSITE,10 SMART,11 
SUPERFAMILY,12 TIGRFAMs,13 and HAMAP14) into a 
single resource.

Each of the underlying databases contains sequence 
patterns that are biologically meaningful, for instance, cor­
responding to biochemical functions, homologous groups of 
proteins, or conserved domains. These are typically derived 
from models based on multiple sequence alignments, for 
example, hidden Markov models. The curators of InterPro 
identify those patterns, from the underlying source databases, 
that are considered sufficiently meaningful, informative, and 
reliable to be added as entries in InterPro. The process of inte­
gration involves curators identifying when signatures from 
different databases describe the same protein family, domain, 
or functional site. This is done by looking for multiple sig­
natures that match the same set of proteins in the same region 

of the sequence. These signatures are then combined into a 
single InterPro entry. Grouping signatures into single entries 
such as this has the benefit of standardizing signatures to an 
extent, giving them consistent names and annotation, as well 
as removing redundancy. With each source database focusing 
on a particular niche in signature development, using all 11 
databases together is extremely beneficial as it allows a diverse 
range of signatures to be combined.

An example is provided by the subclasses B1 and B3 of 
metallo-beta-lactamases, whose catalytic sites may well have 
evolved twice independently, but within the same evolutionary 
superfamily, to perform the same function by similar chemical 
mechanisms.15 Many, though not all, metallo-beta-lactamases 
of both subclasses B1 and B3 hit PROSITE pattern PS00743, 
which includes catalytically important zinc-binding residues; 
many B1 lactamases also match PS00744, which includes 
another significant zinc-binding residue. In InterPro, these 
patterns are combined into signature IPR001018: beta-lacta­
mase, class-B, and conserved site.

InterPro entries are of four kinds: families, domains, 
repeats, and sites. In the context of our work, we expect that 
most catalytic signatures in InterPro will be classified as 
sites, that is, short functional regions of sequence. However, 
the range of sites within InterPro, of which IPR001018 is an 
example, extends well beyond catalytic reaction centers to 
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include binding and posttranslational modification sites, as 
well as other conserved sets of residues.

The 11 underlying databases each have different but 
complementary methods of calculating protein signatures. In 
general, the constituent databases describe matches to their 
identified patterns in terms of scores, P-values or e-values. 
Naturally, these scoring systems differ among databases, and 
InterPro does not implement a single scoring or probability 
estimation scale. Instead, when we use InterPro, or more spe­
cifically its associated search tool InterProScan,3,16 we use the 
default thresholds of InterProScan to define a hit for each 
database, hence to simply identify whether signature matches 
are present or absent.

Enzyme Commission (EC) numbers and mechanisms. 
The long-established nomenclature for the classification of 
enzyme-catalyzed reactions is the EC number system.17 EC 
numbers allow data to be computationally processed, but EC 
numbers classify neither the enzymes themselves nor their 
chemical mechanisms, focusing instead on the overall chemi­
cal transformation catalyzed by the enzyme. Therefore, if two 
different enzymes catalyze the same overall reaction, they will 
have the same EC number, whether or not they are structur­
ally or evolutionarily related and regardless of the chemical 
mechanisms used. EC numbers classify enzyme reactions 
using a four-level system, with each succeeding digit giving a 
more detailed picture of the functionality of the enzyme. The 
first digit gives the class of the enzyme (eg, 4.-.-.- is a lyase). 
The second digit usually indicates the broad chemical nature 
of the reaction catalyzed (4.3.-.- is a lyase acting on a carbon–
nitrogen bond). The third digit generally specifies the chem­
istry more precisely (here 4.3.1.- is an ammonia lyase), though 
the precise roles of the second and third digits vary by class. 
Finally, the full four-digit EC number indicates a particular 
enzyme-catalyzed reaction usually specifying the substrate 
(eg, 4.3.1.3 is a histidine ammonia lyase with l-histidine as 
its substrate).

Previous studies have found that using protein signatures 
to predict the EC numbers of enzymes is extremely effec­
tive.18–20 Cai et al.18 found a subset accuracy in the range of 
50.0%–95.7% for the prediction of enzyme families. De Ferrari 
et al.20 achieved 87%–97% subset accuracy using InterPro sig­
natures to reannotate several proteomes; this work was based 
on using a k-nearest neighbors (k-NN) method on a very large 
set of around 300,000 proteins. The algorithm worked by 
identifying the closest neighbor(s) of a query sequence within 
this large set and making the reasonable assumption that the 
functional annotation, namely, the EC number, could safely be 
transferred between nearest adjacent sequences. Furthermore, 
a study by Tetko et al in 200821 showed that, using machine 
learning, the highest contributors to the performance of a 
number of protein function prediction models were descrip­
tors derived from InterPro signatures.

Here, however, we are interested in identifying the sig­
natures of catalytic machinery specific to a given chemical 

reaction mechanism, rather than an overall transformation. 
Hence, as in our previous work,22 we predict enzyme mecha­
nism rather than EC number. This also means, given the 
extensive effort required by experimentalists and annotators to 
confirm and record the exact mechanism of an enzyme, that we 
are limited by the size of the MACiE (Mechanism, Annota­
tion, and Classification in Enzymes)23,24 database from which 
our enzyme mechanism assignments were taken; this database 
contains 335 entries of fully annotated enzyme mechanisms, 
each with at least one corresponding protein that is known to 
use this mechanism. Each entry contains detailed information 
on the individual steps, amino acids, and cofactors involved in 
each mechanism, all annotated from the relevant literature. 
The entries in MACiE differ from enzyme reactions as anno­
tated by EC, because MACiE is able to differentiate between 
two reactions that share the same substrate and product but 
transform one into the other using a different chemical mech­
anism, whereas annotation by EC would indistinguishably 
describe such pairs of reactions with the same four-digit code. 
For instance, MACiE23,24 contains six separate β-lactamase 
mechanisms, all of which correctly correspond to the EC 
number 3.5.2.6. Nonetheless, the differences between these 
mechanisms, and especially between the serine-based and 
metallo-beta-lactamase mechanisms, are essential to under­
standing and countering antibiotic resistance.15,25,26

Homology and catalytic machinery. Matches to 
sequence signatures for enzymes contain two kinds of infor­
mation. The first is that we can safely infer, from the shared 
sequence pattern or patterns, that the query sequence has 
common ancestry with enzymes whose functions are known 
or at least are sufficiently confidently asserted to be annotated 
in a database. The second is that the query protein sequence 
contains certain key residues positioned, in the sequence and 
presumably also spatially in the protein structure, to act as 
catalytic machinery. In most bioinformatics and function pre­
diction contexts, these two types of information are mutually 
complementary and add weight to one another. Here, however, 
we want to separate them in order to understand the relative 
contribution to the overall predictivity that is made by each 
type of information.

Methods
Catalytic and non-catalytic signatures. Data were 

taken from MACiE 3.0, the protein data bank (PDB),27 
UniProtKB,28 and InterPro v43.116 in September 2013. The 
raw dataset is made up of 540 proteins corresponding to 
335 different MACiE mechanisms, 321 EC numbers, and 
2,160 sequence signatures.

We want to distinguish between those (more numerous) 
sequence signatures whose matching corresponds to inference 
of homology and those (relatively few) representing a specific 
constellation of catalytic residues. While there is no perfect 
way of doing this, we identify catalytic and non-catalytic 
signatures by adopting MACiE’s set of annotated sequence 
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positions containing catalytic residues. These are defined as 
any residue that undergoes a change in electronic charge or 
covalent bonding or exerts an electrostatic or steric effect that 
facilitates the reaction.29

We need to be able to identify the positions in our set 
of sequences that correspond to those annotated as catalytic 
by MACiE. Depending on the experimental method used to 
obtain the sequence, there can be slight differences between 
the type or number of amino acids found in what should be the 
same sequence. This usually appears at the start of sequences 
where one method has, for example, hydrolyzed off the initia­
tor methionine, and so the final sequence is one amino acid 
shorter than in another version. For example, an entry in 
MACiE may state that the catalytic amino acids for mecha­
nism X will be found at positions 3, 10, 25, and 67, but in the 
corresponding protein they are in fact found with an offset of 
+1 at positions 4, 11, 26, and 68. This offset is usually small, 
but in some cases, it was found to be as large as 90 residues. 
Allowing an automated process to search for a set of amino 
acids in offset positions is reasonable when there are three or 
more amino acids, and hence, the set is likely to be unique in 
the sequence, but when there are only one or two catalytic res­
idues, this technique becomes somewhat unreliable. The issue 
with allowing variable offsets is ultimately a probabilistic one 
in the sense that as the allowed offsets become more generous, 
the probability of accidental matches increases. Therefore, we 
see it as, essentially, a trade-off between false positives (identi­
fying a meaningless match because we used an offset too gen­
erously) and false negatives (missing a real match because we 
defined our offset criteria too tightly).

Having the gap between two residues as the only fac­
tor distinguishing these amino acids from hundreds of oth­
ers in the sequence means that there is a possibility that the 
same amino acid combination may be found by chance (such a 
chance occurrence being unlikely to represent a viable instance 
of the catalytic machinery). To solve this problem, the offset 
was limited to 10 times the number of catalytic amino acids. 
This allowed the offset to be large when there were more cata­
lytic residues but limited it to reduce errors when the number 
of catalytic residues was small.

In some cases, however, the amino acids were not found 
even when an offset was allowed. For example, in structure 
1QDL30 from the PDB27, the amino acids are expected to be 
in positions 57 (glycine), 84 (leucine), 85 (cysteine), 169 (histi­
dine), and 171 (glutamic acid) in chain B. Leucine and cysteine 
are indeed found at positions 84 and 85, respectively, but the 
remaining three amino acids are not found in their expected 
positions. Glycine is found in position 56 with an offset of −1, 
while histidine and glutamic acid are found with an offset of 
+6  in positions 175 and 177, respectively. Examples such as 
these, which show conflicting offsets on manual inspection, 
were left out of the dataset. This was the case for only four 
proteins, so exceptions such as these did not have a significant 
impact on the dataset.

For the catalytic signatures, once the catalytic amino 
acids were located correctly, the next step was to create in silico 
mutated sequences, changing each of the catalytic amino 
acids to glycine. In rare cases where the catalytic residue was 
already glycine, it was changed to alanine. Sequences of the 
original and in silico mutated proteins are respectively given 
in Supplementary Files 1 and 2. Both the original sequence 
and the mutated sequence were then scanned using the pub­
licly available InterProScan3,16 algorithm, and the protein 
signatures found were collated in MySQL (Version 5.6), an 
open source database management system, for analysis. The 
outputs of these scans are given in Supplementary File 3  
for the original sequences and in Supplementary File 4 for 
the mutated sequences. Those signatures that were only 
matched by the original sequences, and not by the in silico 
mutants, were said to be catalytic signatures. These signatures 
are present only when the sequences contain catalytic amino 
acids; therefore, we assume that they rely on this catalytic 
information and are linked to the catalytic function of the 
protein. The non-catalytic signatures that still matched the 
mutated sequences are considered not to rely on the catalytic 
information; therefore, we ascribe to them more general 
homology information relating to which family the protein 
belongs to or a particular domain that it contains. The raw 
dataset contained 2,160 signatures, of which 300 were found 
to be catalytic and 1,860 non-catalytic.

The dataset was then refined for use in machine learning. 
Only the data corresponding to MACiE mechanisms that 
have two or more associated proteins were usable for machine 
learning. This is because a minimum of one protein is needed 
for training and another one for the test set; in the case of 
a k-NN method (see below), this can be understood as one 
sequence in the role of the query and another in the set that is 
searched. If there is only one such protein, machine learning 
cannot be utilized for this mechanism. The resulting usable 
dataset is summarized in Table 1, with 78 catalytic and 519 
non-catalytic signatures. The total number of signatures in 
this set is 556, which is unequal to the sum of 78 and 519, 
since some signatures are variously catalytic and non-catalytic 
in different sequence contexts. This dataset corresponds to 249 
protein sequences.

While the proportion of signatures identified as cata­
lytic was around 14% overall in both the raw and refined 
datasets, this proportion varied considerably depending on 
the source of the signatures. PROSITE signatures are of 
two kinds: profiles and patterns. A profile is one of the lon­
ger sequence features, usually identifying homology over a 
substantial section of sequence, whereas a pattern indicates 
the occurrence of particular conserved clusters of residues, 
considered to be functionally important, and typically 10–20 
amino acids in length. Many catalytic site signatures are of 
this kind, and indeed, among the subset of our InterPro sig­
natures that originated as PROSITE patterns, .50% appear 
as catalytic in our work. Among other sources of signatures, 
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the proportion that is catalytic typically hovers around or 
below 10%.

As might be expected since they are typically sites rather 
than domains, families, or repeats, the catalytic signatures are 
generally much shorter. The average length for consistently 
catalytic signatures is 28 residues; for those signatures that 
are sometimes catalytic, it is 111 residues; and for consistently 
non-catalytic signatures, it is 226 residues.

Class labels. An instance in our datasets is composed of a 
protein identifier (a UniProt accession number), a set of attributes 
(matched InterPro signatures), and one or more class labels rep­
resenting the MACiE mechanism(s) of the enzyme. A MACiE 
mechanism identifier corresponds to a detailed enzyme mecha­
nism entry in the MACiE database modeled on one PDB struc­
ture and its associated literature. Figure 1 shows the sequences 

represented by InterPro signature sets, together with the asso­
ciated MACiE mechanism labels. We also illustrate the closely 
related relevant information such as PDB codes, EC numbers, 
and domain names that can easily be associated with our data.

Algorithm. Calculations were performed using the 
Mulan binary relevance k-NN (BR-k-NN) multi-label 
algorithm,31 with a leave-one-out cross-validation design. 
Mulan32 is an open source library for multi-label learning 
methods based on the Weka33 framework. In multi-label 
learning, the training set consists of a set of instances each 
associated with a set of class labels, and the task is to pre­
dict the label sets of an unseen set of instances. In this case, 
the instances are protein sequences and the class labels are 
MACiE mechanisms. A multi-label classification design 
allows proteins to be assigned multiple enzymatic mecha­
nisms. This could be due to the presence of multiple catalytic 
sites on the enzyme, or due to the regulation of a single cata­
lytic site.

Multi-label learning methods can be split into two groups: 
problem transformation methods and algorithm adaptation 
methods. The first group of methods is algorithm indepen­
dent and works by transforming the multi-label classification 
problem into multiple single-label classification tasks. The sec­
ond group of methods alters the existing learning algorithms 
to allow them to handle multi-label data directly. BR-k-NN,31 
which has been used in this work, is a multi-label adaptation 
of the traditional k-NN using binary relevance (BR). The BR 
method transforms the original dataset into multiple datasets, 
one for each label, with each dataset containing all examples of 
the original dataset. BR and k-NN could be utilized separately, 

Table 1. The numbers of catalytic and non-catalytic signatures, 
both in the raw data and in the refined set suitable for machine 
learning. This refined set had to contain at least two instances of 
each mechanism to permit training and testing, so all singleton 
mechanisms were removed in the refinement process. The total 
number of signatures is 556, which is unequal to the sum of 78 and 
519 since some signatures are both catalytic and non-catalytic in 
different sequences.

Dataset Raw total  
signatures

Signatures 
for ML

Catalytic 300 78

Non-catalytic 1860 519

Total 2160 556
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Figure 1. Illustration of the data, attributes, and labels used in this work. The sequences represented by InterPro signature sets, together with the 
associated MACiE mechanism labels, and also the illustration of the closely related relevant information such as PDB codes, EC numbers, and domain 
names that can easily be associated with our data.
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with BR as a problem transformation method, but this would 
require the k-NN calculations to be performed multiple times; 
therefore, the process would be longer and computationally 
more expensive.

The k-NN algorithm, where k is a positive integer, 
classifies instances based on similarity or proximity. Thus, 
we require a training set of proteins that have already been 
matched to their associated InterPro signatures and assigned 
their correct MACiE mechanism labels. For a given test 
enzyme, the InterPro signatures it matches are compared to 
the InterPro signatures in the training data. The training set 
enzymes with patterns of signature occurrence most similar 
to those from the query proteins are used to predict the que­
ry’s MACiE mechanism(s). The number of nearby training 
sequences to be used for making the prediction is determined 
by k. In this work, we used k = 1, which was found to be opti­
mal in the previous work,22 that is, only the closest neighbor 
instance or ring of equidistant NN is used when predicting 
the label of a query sequence.

Thus, each sequence is represented by the set of Inter­
Pro signatures that are present within (ie, matched by) it. The 
distance between two sequences depends on the number of 
signatures that are present in one, and absent from the other 
sequence. Instances with exactly the same set of signatures will 
have the distance of 0. If the instances differ in one attribute, the 
distance will be 1; if the instances differ in x attributes, they will 
have a Euclidean distance of √x. Since we are using the BR-k-
NN multi-label version of the k-NN algorithm, more than one 
mechanism label may be applied to a given query sequence.

Sequences with zero signatures present could be problem­
atic, as the algorithm described would see them as neighbors 
of the instance with the fewest attributes, though transferring 
the mechanism labels does not seem scientifically reasonable 
in such a case. To avoid this difficulty, two attribute-free and 
unlabelled dummy instances were added to the training data. 
Since MACiE annotated data are scarce, we use a leave-one-
out cross-validation experimental design, where each predic­
tion run is done using one enzyme as the test set and all other 
enzymes as the training set. Supplementary File 5 contains 
the Java source code to run the multi-label machine learning 
experiments and save the results.

Measures of classification success. We also use micro-
averaged precision P and sensitivity S computed as averages 
over all instances and not weighted by the class,34 as measures 
of the success of the leave-one-out cross-validation predic­
tions. These are calculated by taking
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where TP, FP, and FN represent true and false positives and false 
negatives, respectively. A true positive is a correctly assigned 
mechanism label, a false positive is the incorrect assignment of 
a label, and a false negative is when the predictive method fails 
to assign a mechanism label that experimentally is in fact asso­
ciated with the enzyme. The precision P gives the proportion 
(or percentage) of all predicted labels that are correct, while 
the sensitivity S, also known as recall, gives the proportion (or 
percentage) of all actual labels in the data that are correctly 
predicted. We do not explicitly consider true negatives in this 
work (a wrong label that is, correctly, not applied), since they 
would be very numerous and largely trivial.

Results
MACiE mechanisms were predicted using the following:  
(1) only catalytic signatures, (2) only non-catalytic signatures, 
and (3) all available signatures, where catalytic signatures are 
those which disappeared under the in silico mutation procedure 
described earlier, see Table 2 and Figure 2. Again the num­
bers of attributes in each group were unbalanced: 519 non-
catalytic and 78 catalytic signatures. The non-catalytic group 
gave a precision of 0.991 and a sensitivity of 0.970, which were 
indistinguishable from the results for the full combined set of 
signatures. The catalytic signatures alone gave less impressive 
predictivity, with precision and sensitivity of 0.791 and 0.735, 
respectively. Although the performance of the catalytic signa­
tures was thus weaker, they formed only 14% of the total sig­
natures in comparison to 93% for the non-catalytic signatures 
(this does not sum to 100%, as some signatures can be in both 
sets for different proteins).

An analysis of all these results suggests that the prediction 
of enzyme mechanism is mostly by homology, as the sets of 
relatively long non-catalytic signatures containing homology 

Table 2. Micro-averaged precision and sensitivity for catalytic and non-catalytic signatures.

Signatures Precision Sensitivity TP FP FN Attributes

Catalytic 0.791 0.735 125 33 45 78

Non-catalytic 0.991 0.970 228 2 7 519

All 556 from study 0.991 0.970 228 2 7 556
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information perform equally well as the full set, whereas the 
sets of short catalytic signatures perform markedly less well.

Thus, the homology clearly dominates the predictivity of 
our model, though it may well do so simply because evolution­
ary signatures are much more numerous and cover more of the 
dataset than catalytic ones and need not indicate that non-
catalytic signatures are individually more powerful.

Discussion
We consider the short signatures to be likely to contain infor­
mation about catalytic machinery, while long signatures con­
tain information mostly concerning the evolutionary history 
of the sequence and also its possible homology with the query. 
We find that the 78 catalytic signatures taken alone do make 
some useful predictions. Nonetheless, the 519 non-catalytic 
signatures collectively do much better, their performance 
being identical to the values achieved by the full combined 
set of all signatures. Thus, adding the catalytic signatures 
would not improve the results obtained by the non-catalytic 
ones, and the non-catalytic signatures dominate the predictiv­
ity. The coverage of the catalytic signatures, that is sequences 
where catalytic signatures were present, in principle, could 
have been sufficient to correctly predict 170 mechanisms. Of 
these, 125 were correctly identified and 45 missed, while in 
addition 33 incorrect mechanisms were predicted. In contrast, 
the non-catalytic signatures correctly found 228 out of a pos­
sible 235  mechanisms and made only two incorrect assign­
ments (Table 2).

Our previous paper on enzyme mechanism22 contained a 
detailed analysis of false positive predictions, a pictorial repre­
sentation of which was provided as supporting information with 
that work. The analysis of that study’s false positives and false 
negatives showed that at least some of the false positive mispre­
dictions involved closely related mechanisms or closely related 
protein families. For instance, our predictor confused anthra­
nilate synthase (EC 4.1.3.27) and aminodeoxychorismate lyase 

(EC 4.1.3.38), which differ only at the fourth level of the EC 
classification. Similarly, it could not distinguish subclasses B1 
and B3 metallo-beta-lactamases, which are usually considered 
distinct mechanisms, though they are similar and share EC 
number 3.5.2.6. In other cases, the similarities in EC num­
ber were less marked, but the mechanisms retained chemi­
cal features in common. We also looked at adding additional 
nonenzymes to the training data in that work, as expected the 
effect was to reduce the number of false positives at the cost of 
increasing the incidence of false negatives.

In the current work, both the full set and the non- 
catalytic set give a good balance between false positive and 
false negative predictions. The catalytic set, however, has sub­
stantially fewer signatures, and there is little surprise that in 
a significant number of cases it has insufficient information to 
make a correct identification, and hence records a false nega­
tive. What is less obvious is that there are nearly as many false 
positives, instances where the small sample of available signa­
tures causes the predictor to misidentify associations. Looking 
at specific examples of false positives throughout the current 
study, a number of them involve confusing similar proteins or 
reactions and are fairly easy to understand and explain.

UniProt sequence P07598, actually associated with ferre­
doxin hydrogenase (MACiE M0127, EC 1.12.7.2), is misiden­
tified as the adenylyl-sulfate reductase mechanism (M0123, 
EC 1.8.99.2). Both of these reactions are oxidoreductase pro­
cesses involving iron–sulfur clusters, and the misprediction 
appears to stem from correctly identifying the binding sites 
for these clusters, but making an incorrect inference as to the 
reaction involved. The erroneous prediction in this instance 
comes exclusively from catalytic signatures.

Sequence Q13126 is actually associated with the S-methyl-5′-
thioadenosine phosphorylase mechanism (M0244, EC 2.4.2.28), 
but our method misidentifies it as purine-nucleoside phosphory
lase (M0017, EC 2.4.2.1). Given the high level of similarity 
between these two phosphorylase reaction mechanisms, and the 

Non-catalytic signatures

Catalytic signatures

All signatures from study

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

Proportion of signatures Precision Sensitivity

Figure 2. Classification performance of catalytic and non-catalytic signatures. The micro-averaged precision and sensitivity achieved by using the 
catalytic and non-catalytic sets and the proportions of our InterPro signatures belonging to each group.
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structures which are both Rossmann folds, this is an understand­
able error resulting solely from non-catalytic signatures.

Another instance of our method by confusing two struc­
turally similar proteins occurs with the sequence Q60099, 
which is actually S-2-haloacid dehydrogenase (M0036, 
EC 3.8.1.2), being misidentified by catalytic signatures as 
β-phosphoglucomutase (M0206, EC 5.4.2.6). Here, both 
enzymes have both a Rossmann-fold domain and an α helical 
domain that is considered a putative phosphatase by CATH,35 
although, despite the clear structural similarity, the chemical 
reactions catalyzed by these enzymes are quite different.

Another case of misassignment by confusing two 
Rossmann-fold enzymes occurs with sequence Q9ZGH3, 
which is actually a dTDP-glucose 4,6-dehydratase (M0228, 
EC 4.2.1.46), being assigned as an alcohol dehydrogenase 
(M0255, EC 1.1.1.1). The misidentification is made by cata­
lytic signatures.

Although it is tempting to concentrate on the easily 
explicable errors in a case study approach, there are other mis­
assignments that lack such clear and convenient rationaliza­
tions. The sequences O28603 and O28604, actually associated 
with the abovementioned M0123, are misclassified as protea­
some endopeptidase complex (M0177, EC 3.4.25.1). There 
are some structural similarities between the adenylyl-sulfate 
reductase and proteasome endopeptidase complex, which 
are, respectively, 3- and 4-layer α–β sandwiches, though the 
reactions are not at all similar. The misidentification occurs 
through non-catalytic signatures alone.

Our method also misidentifies the same UniProt sequence 
O28603 of adenylyl-sulfate reductase (MACiE M0123, EC 
1.8.99.2) as being an amine dehydrogenase (MACiE M0013, 
EC 1.4.99.3). Although there are superficial similarities 
between the reactions, which are both oxidoreductases utiliz­
ing nucleotide-like organic cofactors, there is no significant 
overall similarity between the proteins and this misprediction 
lacks a convenient explanation. We note that the sequence 
involved, Q28603 from UniProt, also failed to match its correct 
mechanism M0123 in our previous work.22 All the signatures 
leading to this misprediction are non-catalytic and the false 
similarity is to the less catalytically important heavy domain of  
amine dehydrogenase.

In the current work, we look at the signatures indica­
tive of homology and catalytic machinery in the sequence data 
only. In our previous research, the sequence information has 
proven successful in identifying both EC number20 and mech­
anism, and in that case the addition of some three-dimensional 
information made little difference to the overall predictivity.22 

Nonetheless, it is interesting to consider how related studies 
operate using mainly or solely three-dimensional structural 
data. When present, homology can be readily detected from 
the three-dimensional structure, and indeed protein struc­
ture is widely believed to be more conserved than sequence 
for distant evolutionary relationships.36,37 However, such a 
study also has the capacity to detect the catalytic machinery 

through the location of three-dimensional templates38,39; this 
is a method that can identify mechanistic commonality even 
if the active sites are not related by homology, such as in the 
instance of the convergently evolved catalytic triads in sub­
tilisin and chymotrypsin.40 This kind of convergent evolution 
is the scenario in which it seems most likely that catalytic 
machinery information would be valuable for function predic­
tion. Such catalytic information would only be available from 
three-dimensional features, since independent evolutionary 
inventions of, essentially, the same spatial arrangement of res­
idues are not expected to recognizably leave similar sequence 
signatures.

It is also important to remember that the convergent 
evolution of catalytic function using, essentially, the same 
mechanism and machinery is the exception rather than the 
rule. Much more often, the convergent evolution to the same 
overall enzymatic function results in the development of a dif­
ferent chemical mechanism and the construction of quite dis­
tinct catalytic machinery.41

Conclusions
These results show that our successful prediction of enzyme 
mechanism is mostly driven by homology rather than by 
identifying specific catalytic machinery. Indeed, limiting the 
information available to homology alone does not change the 
overall predictivity.

However, we need to be aware of the different numbers of 
catalytic and non-catalytic signatures. Thus, the longer profile- 
like features are much more numerous than the shorter cata­
lytic site ones. In this situation, the sheer number and dataset 
coverage of the non-catalytic signatures allow them to con­
tribute most to the model’s predictive ability.
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is included.
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