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ABSTRACT
Genomic signal processing (GSP) methods which convert DNA data to numerical
values have recently been proposed, which would offer the opportunity of employing
existing digital signal processing methods for genomic data. One of the most used
methods for exploring data is cluster analysis which refers to the unsupervised
classification of patterns in data. In this paper, we propose a novel approach for
performing cluster analysis of DNA sequences that is based on the use of GSP methods
and the K-means algorithm. We also propose a visualization method that facilitates the
easy inspection and analysis of the results and possible hidden behaviors. Our results
support the feasibility of employing the proposed method to find and easily visualize
interesting features of sets of DNA data.

Subjects Bioinformatics, Computational Biology, Genomics
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INTRODUCTION
Cluster analysis is one of the most common and useful tools in pattern recognition,
statistical data analysis, and exploratory data mining. It has many applications such as
image segmentation, recognition of objects, document retrieval and others (Jain, Murty
& Flynn, 1999). The main advantage of employing clustering techniques is the possibility
of finding a hidden structure in the data without the requirement of prior information or
knowledge about it. A clustering task consists of dividing a dataset into groups (i.e., clusters)
that share common properties or that are related in some way, according to given criteria
and similarity metrics (Baikey, 1994).

The most popular method used to perform cluster analysis is the K-means
algorithm (Jain, 2010). K-Means clustering is an iterative partition technique which
finds mutual exclusive spherical groups (Joshi & Kaur, 2013). The main advantage of the
K-means algorithm is its ease of implementation and its linear time complexity (Jain,
Murty & Flynn, 1999). However, the K-means algorithm rely on the frequent computation
of similarity metrics between all of the elements to be clustered and the proposed centroids
of each of the k-clusters. Therefore, its application in practice is limited to the type of data
for which those similarity scores can be computed in a efficient way.

In bioinformatics, traditional methods for computing the similarity scores between
sequences consist of applying DNA and amino acid sequence alignment methods, whose
main objective is to identify portions of successive nucleotide or amino acids that are
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common in two or more sequences. They are then rearranged to easily visualize those
similar portions (White et al., 2010). The comparison of two sequences is known as
pairwise sequence alignment (PSA). When more than two sequences are compared, the
process is known as multiple sequence alignment (MSA) (Sharma, 2008).

One of the most popular applications of PSA is phylogenetic analysis. It consists of
establishing an evolutionary relationship among nucleic acid or protein families sequences.
It is generally depicted by the use of dichotomous trees, for which the branches represent
organism separations. Branches that are close to each other, suggest a similar organism.
By contrast, the farthest branches indicates large differences (Mount, 2004). Some of the
most popular algorithms for MSA are ClustalW (Thompson, Higgins & Gibson, 1994),
Muscle (Edgar, 2004), T-COFFEE (Notredame, Higgins & Heringa, 2000), MAFFT (Katoh
et al., 2005), and K-Align (Lassmann & Sonnhammer, 2005).

However, since these methods require large computational times for determining
similarity among sequences, the use of K-means is not feasible for this application.
Therefore, other approaches for DNA clustering have been proposed based on the use of
these similarity computation methods. Two of the most popular algorithms for clustering
biological sequences are the CD-HIT (Li & Godzik, 2006) and the UCLUST (Edgar, 2010).
Both algorithms use a greedy approach for identifying representative sequences that
can be used as a ‘‘seed’’ to group all of the sequences that have a similarity score above a
certain threshold. However, the computational resources necessary to perform the multiple
sequence alignments remain the main challenge which limits the number of sequences that
can be clustered.

More recently, an approach for the analysis of genomic data that has captured the
attention of researchers in recent years, is the use of genomic signal processing (GSP) which
is based on the use of digital signal processing (DSP) theory and algorithms to analyze DNA
or protein sequences. GSPmethods require the transformation ormapping of the biological
sequences, usually represented as a string of characters (i.e., A, T, G and C) to a numeric
representation (i.e., a signal) that can be processed using mathematical functions (Kwan
& Arniker, 2009). Examples of the use of GSP methods include the identification of
protein-coding regions in DNA sequences (Das & Turkoglu, 2017; Mabrouk, 2017; Das
& Turkoglu, 2015; Inbamalar & Sivakumar, 2012; Marhon & Kremer, 2011; Akhtar, Epps
& Ambikairajah, 2008; Akhtar, Epps & Ambikairajah, 2007; Rushdi & Tuqan, 2006; Yin
& Yau, 2005; Kotlar, 2003; Anastassiou, 2000), finding for genomic repeats (Sharma
et al., 2004), determining the structural, thermodynamic, and bending properties of
DNA (Gabrielian & Pongor, 1996), biological sequence querying (Ravichandran et al.,
2010), estimating of DNA sequence similarity (Mendizabal-Ruiz et al., 2017; Hoang, Yin &
Yau, 2016; Yin, Yin & Wang, 2014; Borrayo et al., 2014; Cheever et al., 1989), and sequence
alignment (Skutkova et al., 2015).

One of the main advantages of GSP methods is that the analysis of the genomic data
can be performed very quickly because of the optimal coding of the algorithms and the
processors that have been designed specifically for those tasks.

Cluster analysis of DNA signals through the use of GSP methods have been previously
proposed by Zhao, Duan & Yau (2011) and Hoang et al. (2015). However, these methods
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1For further details regarding the formal
definition of a PSD refer to Stoica & Moses
(2005).

are based on the computation of a number of features from the Fourier spectrumwhichmay
reduce the dimensionality of the data and perhaps its discriminative power as compared
with the use of the whole raw spectrum. Moreover, those works employed a hierarchical
clustering algorithm instead of the K-means. Comparatively, K-means properties allow us
to generate plots that are different from the traditional dendrograms and that facilitate the
exploration of the results.

In this paper, we propose an approach for performing cluster analysis of DNA sequences
that is based on the use of GSP methods and the K-means algorithm. We also present a
visualization method that allows us to easily inspect and analyze the results. Our results
indicate the feasibility of employing the proposed method to find and easily visualize
interesting features of sets of DNA data.

MATERIALS AND METHODS
DNA sequence to signal
In order to be able to employ the DSP methods in genomic data, it is necessary to first
perform a transformation or mapping of the DNA sequences to be analyzed into numerical
values representing the information contained by them. There are several proposed DNA
numerical representations. However, one of the most popular of this DNA to signal
mapping is the Voss representation, which employs four binary indicator vectors, each
meant to denote the presence of a nucleotide of each type at a specific location within the
DNA sequence (Voss, 1992).

Given a DNA sequence α (e.g., α = ATTCGCAT ...) we can employ the Voss
representation to compute its corresponding fourth-dimensional DNA signal X̂α by
applying Eq. (1)

X̂1(i)=

{
1 if X(i)=A
0 otherwise

X̂2(i)=

{
1 if X(i)=G
0 otherwise

X̂3(i)=

{
1 if X(i)=C
0 otherwise

X̂4(i)=

{
1 if X(i)=T
0 otherwise

(1)

By applying the Discrete Fourier transform to the DNA signal X̂α , it is possible to
compute the power spectral density (PSD) Ŝα which describes how power of a signal
or time series is distributed over frequency.1 In our case, the PSD is a descriptor of the
nucleotide patterns that may be present within the DNA sequence (Borrayo et al., 2014).

The relatedness or similarity score of any two given DNA sequences α and β, can then be
estimated by comparing the components of their PSDs d(Ŝα,Ŝβ) using a similarity metric
(Mendizabal-Ruiz et al., 2017).
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DNA signal clustering
K-means is a two step algorithm which performs the partitioning of a given set of
observations {O1,O2,...,Om} represented as a n-dimensional vector, into K ≤m clusters.
Each cluster is represented by a centroid Cj with j ∈ [1,2,...,k], which is defined as a
point in a n-dimensional space generated by computing the average of each element of the
vectors of the observations that belong to that cluster. In the first step, an observation is
assigned to the cluster Cj that scores the highest similarity to the point represented by the
observation’s vector, according to a specific metric. In the second step, the centroids of the
k clusters are updated, according to the observations assigned to them in the previous step.
The best groups and their centroids are obtained by the minimization of the total sum of
the distances between the observations and their corresponding centroids.

Consider a set of PSD �= [ω1,ω2,...,ωm] corresponding to a number m of different
DNA sequences. The K-means algorithm is applied to the data in � by considering the
power spectra as the vector that describes the DNA sequence in a n-dimensional space. In
this work, we chose the Euclidean distance between these vectors as the similarity metric to
be employed by the K-means algorithm. Since the K-means results depends on the initial
labels assigned to each entry, which are assigned randomly, we repeat the computation 50
times and keep the best convergence score. As a result, we obtain a label for each element
of � which defines the assigned cluster.

DNA clusters visualization
The raw results of the clustering procedure may be difficult to analyze and interpret.
Therefore, we propose to produce graphical representations of the results that can easily
provide an insight into the DNA sequence clustering results. The generation of the
proposed graphical representation (Fig. 1) from the K-means clustering result, consists of
the following steps:
1. Compute a main centroid point M in the n- dimensional space corresponding to the

geometrical center of the K centroids location computed as:

M [i] =
1
k

k∑
j=1

Cj[i] (2)

where i∈ [1,2,...,n].
2. For each cluster j, compute the Euclidean distance dj of its centroid Cj with respect to

the main centroidM :

dj =

√√√√ n∑
i=1

(Cj[i]−M [i])2. (3)

3. Each centroid of the k clusters is sorted according to its distance to the main centroid
and an angle is assigned to them, according to its index ι∈ [0,1,...,k] in the sorted
array:

θι= ι
2π
k
. (4)

4. The main centroidM and the clusters centroids Cι are mapped into a two dimensional
space φ, where the main centroid corresponds to the origin (i.e., the point with
coordinates (x = 0,y = 0)).
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Figure 1 Depiction of the DNA cluster visualization results structure proposed plot for a value of
k = 8.

Full-size DOI: 10.7717/peerj.4264/fig-1

5. Each centroid Cι is plotted as a point around the main centroidM point, according to
its distance and its angle as computed by:
xι= dιcos(θι) (5)

yι= dιsin(θι). (6)
6. We sort each set of DNA sequences in � assigned to a specific centroid Cι, according

to the distance δz of each sequence z , with respect to its assigned centroid. The angle
θz is also computed similarly to step 3.

7. Finally, each sequence z is then plotted into φ by computing their correspondent
coordinates as:
xz = δz cos(θz)+xι (7)

yz = δz sin(θz)+yι. (8)

Experimental data
To assess our DNA signal clustering method and the proposed visualization technique,
we employed a set of 141 DNA sequences corresponding to the Cytochrome c oxidase
I gene (COXI) marker belonging to 131 different species obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) K02256 (Kanehisa et al., 2017; Kanehisa
et al., 2016; Kanehisa & Goto, 2000). We selected the COXI marker because it performs
a fundamental role in the terminal oxidative step for energy metabolism (Adkins &
Honeycutt, 1994) and is a very well known marker commonly used for the identification
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of species (Patwardhan, Ray & Roy, 2014). In the selected set, a total of 112 organisms
have only one copy. However, there are some species represented by more than one
sequence. This is the case of the Yak, Bos grunniens (bom:102267288, bom:102278784,
bom:22161768), a Bat,Myotis davidii (myd:102771221, myd:22203924), the Spotted green
pufferfish, Tetraodon nigroviridis (tng:BAE79219, tng:GSTEN00036010G001), the Pacific
giant oyster, Crassostrea gigas (crg:109618508, crg:109618509, crg:808829), Yarrowia
lipolytica (yli:YalifMp03, yli:YalifMp05, yli:YalifMp06), Loa loa, the parasite responsible
for filariasis disease (loa:COX1, loa:LOAG_19059), the Castor oil tree, Ricinus communis
(rcu:10221395, rcu:8272741), and the Picoplanktons, Ostreococus tauri (ota:OstapMp24,
ota:OstapMp40), Bathycoccus prasinos (bpg:BathyMg00110, bpg:BathyMg00240), and
Micromonas commoda (mis:MicpuN_mit45, mis:MicpuN_mit7). It is important to note
that all gene copies were considered during the experiments and that the selected organisms
belong to the total spectrum of the Eukaryote domain.

The selected organisms were manually organized according to their respective taxon,
based on the Catalogue of Life (Roskov et al., 2017), and were divided into seven kingdoms,
17 phyla, and 35 classes. To easily identify the different categories, we employed different
colors and symbols as described in Fig. 2

RESULTS
We employed the proposed method to evaluate how the experimental dataset is clustered,
when using different values of k. While there may be many different criteria to select the
number of clusters to be employed, in this work, we examine the results that are obtained
employing three values that we consider interesting: (i) k = 6 which correspond to the
number of different kingdoms in the selected dataset, (ii) k= 17 which corresponds to the
number of different phyla in the dataset, and (iii) k = 35 which corresponds to the total
number of classes in the selected dataset. The length of the PSD of each sequence to be
compared was 4,100.

Figure 3 depicts the results obtained when the dataset was grouped into six clusters.
It can be noted that the majority of the Chordates (blue-edge squares) are grouped

together in C-2, a small proportion of them (the Bat Myotis davidii, two copies of the Yak
Bos grunniens and the second copy of the Spotted Green Pufferfish Tetraodon nigroviridis,
are grouped in C-4 along with a plant (the second copy of the Castor oil tree Ricinus
communis), and the rest are scattered in C-3 and C-6. It is remarkable that all of the
Tracheophytan plants (green-edge squares) with the exception of Castor Oil tree R.
communis are grouped in C-1 while the Chlorophyta plants (mostly Picoplanktons defined
by green-edge circles) are grouped in C-6 along with other organisms. The formation of
two separated groups for the plants may be explained by the fact that despite belonging
to the same kingdom, these phyla share very little morphology (Simpson, 2006). Note that
the all of the Ascomycota fungi (yellow-edge squares) are grouped together in cluster C-3,
while the single organism of the Basidiomycota phylum (yellow-edge circle) is clustered in
a separate group.

All Arthropods (blue-edge right oriented triangles) are contained in the cluster C-5.
Note that the length of all of the organisms with respect to the centroid of the cluster
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Figure 2 Depiction of the selected organisms and their correspondence in the Tree of Life. The respec-
tive hierarchic markings for each class is shown next to them. A detailed list of names and their KEGG
entries is in Table S1. *These two organisms Galdieria sulphuraria (gsl:JL72_p19) and Chondrus crispus
(ccp:ChcroMp03), a Cyanoalgae thermoacidophilic and Irish moss, respectively, do not have a reported
Kingdom in the Tree of Life and were reported with the same Kingdom label ‘Unknown’.

Full-size DOI: 10.7717/peerj.4264/fig-2
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Figure 3 DNA clustering for marker COXI with k = 6.
Full-size DOI: 10.7717/peerj.4264/fig-3

are smaller in comparison with the other organisms and their corresponding centroids,
which indicate that arthropods in the selected dataset are all very far away from every other
organism, something that is consistent with the Hebert, Ratnasingham & de Waard (2003)
findings on COXI divergence analysis.
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Figure 4 DNA clustering for marker COXI with k = 17.
Full-size DOI: 10.7717/peerj.4264/fig-4

Figure 4 depicts the results obtained when the dataset was grouped into 17 clusters.
Note that cluster C-6 is a refined version of C-5 in k= 6, since one of the Cnidarians the

Fresh-water Polyp Hydra vulgaris (red-fill star), the Branchipod Water Flea Daphnia pulex
(red-fill right-facing triangle), and the Hemichordate Acorn worm Saccoglossus kowalevskii
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(left-facing triangle) have moved to other clusters, leaving only insects in this group. The
two Cnidarians and the Hemichordate are now together in C-4, while the Branchipod is
in C-16

Note that for this value of k, fungi grouped into three well-defined clusters (C-1, C-2, and
C-15), with the exception of the Basidiomycota Corn smut Ustilago maydis (yellow-edge
circle) which keeps its grouping with other organisms. It is interesting that the twomembers
of C-1 are two of the copies of Yarrowia lipolytica (yellow-edge square), while the other
fungi in C-15 are of heterogeneous classes.

The Tracheophyta plants cluster C-7 remains with the same organisms of classes
Magnoliopsida (green-edge squares) and Liliopsida (green-edge red-fill square), while
the group of the Chlorophyta plants separated the two copies of the Picoplanktom
Bathycoccus prasinos (green-edge red-fill circle) that end up together in C-10, and the
Picoplankton Chlamydomonas reinhardtii (green-edge circle) which is grouped in C-4 with
other organisms. The second copy of the Castor oil tree remained with the same organisms
in C-14, which is exactly the same as C-4 in the k= 6.

The fact that the two copies of the Picoplankton B. prasinos (C-10) are both clustered
together apart from the other plants is because they are either very recent orthologue
duplications or have not been verified accurately, as they have both the same sequence
entry in NCBI database (SequenceID: NC_023273.1) reported at different loci in its
mitochondrial genome (GeneID: 18158061 and GeneID: 18158101).

Chordates are separated into four clusters (C-5, C-8, C-11, and C-13) with all Hominids
grouped together in C-5. C-8 is formed by two reptiles, one anfibious, and the fish, both
Actinopterygii (blue-edge yellow-fill square) and Sacropterygii (blue-edge cyan-fill square),
C-13 is formed with all the birds (blue-edge red-fill square), some reptiles (blue-edge blue-
fill square), and the Naked Mole-rat Heterocephalus glaber, and C-11 with the rest of the
Chordates in a very compact group. Note that the result of the birds grouped with the
reptiles may be explained by the evolutive theory that claim that the birds are descendant of
ancient saurid reptiles. It is also interesting that reptiles tend to group with other organisms
and not necessarily between them. This could be the result of high diversity of COXI among
reptiles, as reported by Vasconcelos et al. (2016).

Cluster C-9 contains two Secernentea patogens of the Onchocercidae order, Lymphatic
FilariaBrugia malay andEye FilariaLoa loa, both parasites of humans andother animals and
have a clear evolutive difference defined by the enviroment in which they live in, compared
with the other two Secernentea of the free-living Rhabditida order Caenorhabditis elegans
and Caenorhabditis briggsae. Our results agree with those of Prosser et al. (2013), where
successfull COXI operational taxonomic units were developed to differenciate between
parasitic and free-living taxa.

Note that one of the organisms with no assigned kingdom, the Cyanoalgae
thermoacidophillic Galdieria sulphuraria generated its own cluster C-12.

It is interesting that some clusters are more compact than others (e.g., C-11 and C-6,
vs. C-13 and C-7). The compactness of a cluster indicates the degree of relationship of the
organisms belonging to it with respect to a common reference (i.e., how similar they are
between them).
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Figure 5 DNA clustering for marker COXI with k = 35.
Full-size DOI: 10.7717/peerj.4264/fig-5

Figure 5 depicts the results obtained when the dataset was grouped into 35 clusters.
Note that with some exceptions, most of the data in k = 35 is more clearly clustered

together by their respective class and some were downright to their order or even lower
phylogenies. For the plants, new clusters were generated: C-12 with the two copies of
Pikoplanctom M. commoda, C-34 with the two copies of Picoplancton Ostreococcus tauri
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in the other, C-10 with the Japanese rice Oryza sativa japonica and the Moss Physcomitrella
patens, C-27 with the Picoplankton C. reinhardtii (which previously was the only plant
clustered in C-4 for k= 17). Originally in k= 6, Picoplanktons were grouped together with
other organisms, but isolated from the other plants. At this level of cluster decompositio,
we can observe that Picoplanktons are all separated, probably because they are unicellular
organisms and will present large variation in the COXI marker (Lin et al., 2009).

C-17 and C-33 are well defined clusters of birds. C-20 is a group of flies from the Diptera
class, the remaining non-fly Diptera, Lepidoptera and Hemiptera are grouped in C-3, while
C-32 includes the Red Flour Beetle Tribolium castaneum and the Red Fire Ant Solenopsis
invicta.

C-13 contains five out of the seven Artiodactylians, C-22 corresponds to the hominidies
which did not change since k= 6 and the first and closest compact cluster C-26 corresponds
to all of the remaining mammals.

A very interesting feature is that C-29 is the same multi-class cluster that appeared in
k= 17 and k= 6 conformed by the BatM. davidii, both Yak B. grunniens copies, the second
Castor oil tree R. communis copy, and the Spotted green pufferfish T. nigroviridis. When
we explored the characteristics of those gene sequences, we found that all of them are
significantly below the average gene size 1,545.8±124.5 bp. The NCBI database reported
that all of them are notmitochondrial genes, but the product of nuclear genomic sequencing
where scaffold primary assembly showed those fractions with alignment homology reported
to COXI, but not proven genetic activity. We also found that both the second and third
copies of Y. lipolytica in C-4 are significantly above the average COX1 gene size. These last
two genes correspond to coxI-i5 and coxI-i7 that contain unusually large exons 5 and 7
respecively (NCBI GeneID: 802596; Sequence entry: NC_002659.1), which gives them the
extra sequence length in the KEGG database.

The two Alligators A. sinensis and A. mississippiensis (blue-edge blue-fill squares)
generated their own cluster in C-16. The fellow Reptiles, the Green Sea Turtle Chelonia
mydas, the Burmese Python Python bivittatus and the Lizzard Anolis carolinensis, clustered
together with both frogs Xenopus laevis and Silurana tropicalis, the Zebrafish Danio rerio
and the cartilaginous fish Australian ghostshark Callorhinchus milii (blue-edge magenta-fill
square) in C-30, leaving C-19 as a better defined cluster with most ray-finned fish and only
the Gekko japonicus barging in the group. The Chinese Softshell Turtle Pelodiscus sinensis
created its own cluster in C-25.

Clusters C-18, C-6, C-11, C-27, C-2, C-9, C-25 and C-7 are one-organism clusters. That
may be explained because these organisms are the most external with respect to their classes
or phyla. For instance, in C-18 we find the Cyanoalgae thermoacidophillic G. sulphuraria,
while in C-6 we find the most outside group of the Metazoans that correspond to Porifera
phyla, the Sponge Amphimedon queenslandica. Moreover, k = 35 cluster distance spans
from 276 to 653; just before the second half of the average distance, at 448 lies all of the
lone clusters and most of the two-sequence cluster with the sole exception of the unpaired
COX1 gene sequence size C-29.
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Figure 6 K-means decomposition analysis.
Full-size DOI: 10.7717/peerj.4264/fig-6

An interesting property observed in our experiments is that as we increase the number
of groups, the data corresponding to the kingdoms are separated at different rates. Figure 6
depicts how the kingdoms are decomposed into a number of groups with respect to the
number of clusters. Note that Metazoans separate faster as compared to Fungi and Plants.
This may be explained by the large number of organisms belonging to this kingdom which
have a greater chance to group together due to their high class similarities. Note that
the second largest kingdom of Plants decompose faster than Fungi, which is the third
largest group.

To determine the validity of the results, we computed centroids for true kingdoms and
we compare these centroids to those discovered with our method. Figure 7 depicts the
mean square distances between each cluster centroid and the sequences assigned to that
cluster by the proposed method using K = 6, and the mean square distances between a
cluster centroid generated with the sequences corresponding to each of the six kingdoms
were compared. Note that the centroid of sequences belonging to the plant kingdom has
a large similarity with respect to C-1 which contains most of the plants. Similarly, the
Metazonans kingdom have a large similarity with C-2 which is conformed by the majority
of the Chordates. The Fungi kingdom depicts a large similarity with respect to C-3 which
contains most of the fungi. Moreover, note that the other kingdoms depict a larger distance
with respect to the all the clusters.
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2When analyzing the processing times of
the compared methods, it is important to
consider that the STARS was implemented
in MATLAB without any parallelization, in
comparison with the highly optimized
implementations of ClustalW and
parallelized UCLUST.
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Figure 7 Mean square distances between each cluster centroid and the sequences assigned to that clus-
ter by the proposed method using k = 6, and the mean square distances between a cluster centroid gen-
erated with the sequences corresponding to each of the six kingdoms.

Full-size DOI: 10.7717/peerj.4264/fig-7

Comparison with other cluster methods
We evaluated the performance of the MATLAB implementation of proposed algorithm
‘‘Signal Tool for the Analysis of the Relationship between Sequences’’ (i.e., STARS) in
terms of computational time with respect to ClustalW and UCLUST. While ClustalW is
not strictly a clustering method, we used it for comparison because it is one of the most
commonly used tools to evaluate the similarity of multiple sequences. We employed a CPU
Intel XEON E5-1650 at 3.50 GHz with 16 GB RAM.2 Table 1 list the processing time in
seconds for the three methods for sets of 8, 17, 35, 70, and 141 sequences of COXI. The time
required to transform the 141 sequences from strings of characters to their corresponding
PSDs was 0.921 s and it is not considered in Table 1 since this is performed only one time.
Note that the time required by STARS is significantly smaller with respect to ClustalW.
UCLUST is time-constant at 1 s for every experiment, however, note that the number of
clusters generated by this method was practically the same number of sequences (i.e., the
method assigns a cluster to each sequence). This is because UCLUST requires a sequences
identity range of at least 40% for amino acids and 65% for nucleotides (Edgar, 2010).

Table 2 list the processing times of five datasets of different number of sequences with
different length where UCLUST generated a number of clusters different from one cluster
for each sequence. Dataset A consisted of 31 sequences of Mammals with average length
of 16,695 nucleotides labeled into to seven groups; Dataset B consisted of 38 sequences
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Table 1 Performance comparison of STARS with respect to ClustalW and UCLUST on sets of different sizes of COXI sequences.

Number of
sequences

STARS
K = 6 (s)

STARS
K = 17 (s)

STARS
K = 35 (s)

ClustalW
(s)

UCLUST (s) / No. of
resulting clusters

8 0.034 – – 2.8 1 / 8
17 0.038 0.071 – 9.85 1 / 17
35 0.071 0.098 0.167 32.68 1 / 35
70 0.160 0.188 0.279 130.91 1 / 70
141 0.383 0.655 0.770 485.02 1 / 138

Table 2 Performance comparison of STARS with respect to UCLUST on sets of different sequences.

Dataset Number of
sequences

Average sequence
length

Number of
clusters

Sequence to PSD
transform (s)

STARS (s) UCLUST (s)

A 31 16,695 6 1.92 0.70 1
B 38 1,407 4 0.27 0.03 1
C 116 7,154 17 3.05 1.69 1
D 34 27,567 12 3.38 1.23 12
E 30 3,361,393 8 392.98 281.70 –

of Influenza A viruses with average length of 1,407 nucleotides labeled into to six groups;
Dataset C consisted of 116 sequences of Human Rhinovirus with average length of 7,154
nucleotides labeled into four groups; Dataset D consisted of 34 Coronavirus sequences
with average length of 27,567 nucleotides labeled into six groups; and Dataset E consisted
of 30 sequences of Bacteria with average length of 3,361,393 labeled into eight groups. Note
that the computational time required for performing the clustering of the sequences’ PSD
data is smaller when compared with UCLUST for the same number of clusters for datasets
A, B, and D. In the case of dataset E, we could not achieve a result using UCLUST (i.e., the
program throws a fatal error) indicating that the data was too big.

DISCUSSION
Numerous reports have discussed the use of different molecular markers to determine the
appropriate phylogenetic divergence at many levels of the tree of life. For our experiments,
we considered molecular markers previously employed in phylogenetic analysis for the
evaluation of the differentiation capability of DNA sequences (Hoang et al., 2015) (e.g.,
COXI, mtDNA, influenza A virus, human rhinovirus, coronavirus and bacterial genomes).
In this work, we focused on the Mitochondrial Cytochrome C Oxidase Subunit I (COXI)
coding gene as a marker to evaluate our approach for group clustering of relevant similar
sequences. The COXI gene has been proposed as one of the most relevant marker genes
for molecular taxonomy (Patwardhan, Ray & Roy, 2014). While no single gene is even
close to establishing the systematic classification of organisms, the COXI gene is one of the
most closely related to the consensus evolutionary divergence. Therefore, it is important to
wrap our results not as how the Catalogue of Life (Roskov et al., 2017) classification should
become, but as how accurate our marker could be. The selection (COXI) was based on
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three criteria: (i) the marker must code for proteins since it has been already proven that
these type of markers have steadier mutation rates, (ii) the marker should have already
been employed in a wide range of the tree of life, at least for eukaryotes, and should be able
to discriminate for the intended groups, and (iii) the marker should have a homogeneous
length and have a minimum number of reported copies in the selected database, since both
duplication events and large indels may bias new cluster formation. To rule out any bias in
the clustering of organisms with respect to their downloaded sequences, we incorporated
all of their stored copies.

A possible expected result was that the clusters generated for each selected value of k
would correspond to the organization depicted in Fig. 2. However, since the K-means
method promote the generation of centroids in highly populated regions of the feature
space, it is more likely to obtain clusters of organisms that are highly related among them,
instead of organisms related by possible common ancestors or groups with a small number
of less homogeneous organisms (e.g., primates formed a cluster early in small k values and
kept together at larger numbers of k).

The COXI gene is one of the most accepted general markers to establish divergence
(Patwardhan, Ray & Roy, 2014). It spans from Phylum to Class, and when using introns
in selected species, it has been shown to properly classify Genera and Species (Zardoya
& Meyer, 1996). Our results were remarkably good in clustering up to the Family level
by using only the coding region and without the need to pretreat or manually curate the
sequences.

Hebert, Ratnasingham & De Waard (2003) established a divergence rate from 0.01% to
64% with a median of 8% across a number of species on 11 Metazoan phyla. In that study,
Arthropod (with the exception of Lepidoptera and Diptera class) and Plathelminth phyla
displayed the greatest divergences, while Chordata showed the second lowest divergence.
Our results showed high cohesiveness, particularly for Chordates, where they quickly
established stable, compact clusters, predominantly with their own classes. Since the
downloaded data for each phylum or class was not balanced, we had the opportunity
to evaluate how the sequences are clustered in a real-life condition. For example, when
sampling whole ecosystems (i.e., microbiomes), bacterial populations will not be balanced
across their species, but will show predominant phylogenetic diversity toward certain
groups. Our results show that our presented method is very sensitive to both, the relative
abundance of tight clusters, and the K -number. Far from being a disadvantage, we found
that changing the number of clusters in an experiment may provide new insights about the
relationship between the various sequences.

Sequence mutations of COXI coding regions have not been shown to distribute bias
towards any segment or region, something like what happens to other markers such as the
ribosomal 16S gene, where changes on highly conserved regions are very few and slow, while
changes on hypervariable regions show rapid changes that can determine divergence along
several phylogenetic groups, according to which hypervariable region is being evaluated. If
this would be the case, K -Means clustering may be adapted to steps of low mutation rates
before high mutation rate regions. COXI gene mutations spanning all of the sequence may
increase the amount of spurious clustering due to converging hotspots.
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The presence of a spurious cluster that is gathered together by their size, is an indication
of the need to filter out sequences with large indels. Despite such mishaps, the proposed
method is capable of performing an analysis of relationships between multiple DNA
sequences with minimum handling and without the need of sequence alignment, which
results in less human and computational time compared to traditional methods. We tested
this method with a number of markers (i.e., mammal mtDNA, influenza A virus, human
rhinovirus, coronavirus, and bacterial genomes) previously employed for Fourier DNA
spectra phylogenetic analysis (Hoang et al., 2015), the results are shown in Supplemental
Information 1 of this article. Briefly, most sequences evaluated under our method cluster
properly and consistently with previous reports (Hoang et al., 2015). Also consistent with
COXI results, the most evident aspect is the tendency to prioritize division of heavily
populated groups.

The proposed method may be used to evaluate the capability of a marker or gene to
differentiate between organisms at different levels, to identify subgroups within a set of
organisms, and perform classification of organisms with respect to known sequences or
classification of sections of a DNA sequence. Furthermore, this method can also be used
to perform similar analysis with amino acid sequences.

We have demonstrated that it is possible to group DNA sequences based on their
frequency components. It is the subject of futurework to identify whether distinct frequency
bands amount to greater weight in the clustering of sequences.

The proposed method has been coded and executed in MATLAB. The source code and
the datasets employed for the results presented in this paper are available at Github

CONCLUSION
Wehave presented amethod for performing cluster analysis of DNA sequences that is based
on the use of GSP methods and the K-means algorithm. We also proposed a visualization
method that allows us to easily inspect and analyze the results and possible nontrivial
relationships. Our results indicate the feasibility of employing the proposed method to find
and easily visualize interesting features of sets of DNA data.

ACKNOWLEDGEMENTS
The authors thank CONACyT and PRODEP for the provided support. Any opinions,
findings, conclusions or recommendations expressed in this material are the sole
responsibility of the authors and may not reflect the views of the sponsors.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Mendizabal-Ruiz et al. (2018), PeerJ, DOI 10.7717/peerj.4264 17/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.4264#supp-2
http://dx.doi.org/10.7717/peerj.4264#supp-2
http://dx.doi.org/10.7717/peerj.4264


Author Contributions
• Gerardo Mendizabal-Ruiz conceived and designed the experiments, performed the
experiments, analyzed the data, wrote the paper, prepared figures and/or tables, reviewed
drafts of the paper.
• Israel Román-Godínez and Ricardo A. Salido-Ruiz conceived and designed
the experiments, performed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.
• Sulema Torres-Ramos conceived and designed the experiments, performed the
experiments, contributed reagents/materials/analysis tools, wrote the paper, reviewed
drafts of the paper.
• Hugo Vélez-Pérez conceived and designed the experiments, contributed reagents/mate-
rials/analysis tools, wrote the paper, prepared figures and/or tables, reviewed drafts of
the paper.
• J. Alejandro Morales conceived and designed the experiments, analyzed the data, wrote
the paper, prepared figures and/or tables, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

Github: https://github.com/starsudg/STARS.git.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.4264#supplemental-information.

REFERENCES
Adkins RM, Honeycutt RL. 1994. Evolution of the primate cytochrome c oxidase subunit

II gene. Journal of Molecular Evolution 38(3):215–231.
Akhtar M, Epps J, Ambikairajah E. 2007. On DNA numerical representations for period-

3 based exon prediction. In: 2007 IEEE international workshop on genomic signal
processing and statistics. Number 2. Tuusula: IEEE, 1–4.

Akhtar M, Epps J, Ambikairajah E. 2008. Signal processing in sequence analysis:
advances in eukaryotic gene prediction. Journal of Selected Topics in Signal Processing
2(3):310–321 DOI 10.1109/JSTSP.2008.923854.

Anastassiou D. 2000. Frequency-domain analysis of biomolecular sequences. Bioinfor-
matics 16(12):1073–1081 DOI 10.1093/bioinformatics/16.12.1073.

Baikey KD. 1994. Numerical taxonomy and cluster analysis. In: Typologies and tax-
onomies: an introduction to classification. USA: SAGE Publications, 34–65.

Borrayo E, Mendizabal-Ruiz EG, Vélez-Pérez H, Romo-Vázquez R, Mendizabal
AP, Morales JA. 2014. Genomic signal processing methods for computation
of alignment-free distances from DNA sequences. PLOS ONE 9(11):e110954
DOI 10.1371/journal.pone.0110954.

Cheever E, Searls D, KarunaratneW, Overton G. 1989. Using signal processing
techniques for DNA sequence comparison. In: Bioengineering conference, 1989,
Proceedings of the 1989 fifteenth annual northeast. Piscataway: IEEE, 173–174.

Mendizabal-Ruiz et al. (2018), PeerJ, DOI 10.7717/peerj.4264 18/21

https://peerj.com
https://github.com/starsudg/STARS.git
http://dx.doi.org/10.7717/peerj.4264#supplemental-information
http://dx.doi.org/10.7717/peerj.4264#supplemental-information
http://dx.doi.org/10.1109/JSTSP.2008.923854
http://dx.doi.org/10.1093/bioinformatics/16.12.1073
http://dx.doi.org/10.1371/journal.pone.0110954
http://dx.doi.org/10.7717/peerj.4264


Das B, Turkoglu I. 2015. Fourier-based filtering approach for identification of protein-
coding regions in DNA sequences. In: Signal processing and communications applica-
tions conference (SIU), 2015 23th. Piscataway: IEEE, 2529–2532.

Das B, Turkoglu I. 2017. A novel numerical mapping method based on entropy for
digitizing DNA sequences. Neural Computing and Applications 1–9 Epub ahead of
print Feb 22 2017 DOI 10.1007/s00521-017-2871-5.

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinfor-
matics 26(19):2460–2461 DOI 10.1093/bioinformatics/btq461.

Edgar RC. 2004.MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research 32(5):1792–1797 DOI 10.1093/nar/gkh340.

Gabrielian A, Pongor S. 1996. Correlation of intrinsic DNA curvature with DNA prop-
erty periodicity. FEBS Letters 393(1):65–68 DOI 10.1016/0014-5793(96)00855-1.

Hebert PD, Ratnasingham S, DeWaard JR. 2003. Barcoding animal life: cytochrome
c oxidase subunit 1 divergences among closely related species. Proceedings
of the Royal Society of London B: Biological Sciences 270(Suppl 1):S96–S99
DOI 10.1098/rsbl.2003.0025.

Hoang T, Yin C, Yau S. 2016. Numerical encoding of DNA sequences by chaos game
representation with application in similarity comparison. Genomics 108(3):134–142
DOI 10.1016/j.ygeno.2016.08.002.

Hoang T, Yin C, Zheng H, Yu C, He RL, Yau SS-T. 2015. A new method to cluster DNA
sequences using Fourier power spectrum. Journal of Theoretical Biology 372:135–145
DOI 10.1016/j.jtbi.2015.02.026.

Inbamalar TM, Sivakumar R. 2012. Filtering approach to DNA signal processing. In:
International proceedings of computer science and information tech, vol. 28. Singapore:
IACSIT Press, 1–5.

Jain A. 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters
31(8):651–666 DOI 10.1016/j.patrec.2009.09.011.

Jain A, Murty M, Flynn P. 1999. Data clustering: a review. ACM Computing Surveys
31(3):264–323 DOI 10.1145/331499.331504.

Joshi A, Kaur R. 2013. A review: comparative study of various clustering techniques in
data mining. International Journal of Advanced Research in Computer Science and
Software Engineering 3(3):55–57.

Kanehisa M, Furumichi M, TanabeM, Sato Y, Morishima K. 2017. KEGG: new
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research
45(D1):D353–D361 DOI 10.1093/nar/gkw1092.

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Research 28(1):27–30 DOI 10.1093/nar/28.1.27.

Kanehisa M, Sato Y, KawashimaM, Furumichi M, TanabeM. 2016. KEGG as
a reference resource for gene and protein annotation. Nucleic Acids Research
44(D1):D457–D462 DOI 10.1093/nar/gkv1070.

Katoh K, Kuma K-I, Miyata T, Toh H. 2005. Improvement in the accuracy of multiple
sequence alignment program MAFFT. Genome Informatics 16(1):22–33.

Mendizabal-Ruiz et al. (2018), PeerJ, DOI 10.7717/peerj.4264 19/21

https://peerj.com
http://dx.doi.org/10.1007/s00521-017-2871-5
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1093/nar/gkh340
http://dx.doi.org/10.1016/0014-5793(96)00855-1
http://dx.doi.org/10.1098/rsbl.2003.0025
http://dx.doi.org/10.1016/j.ygeno.2016.08.002
http://dx.doi.org/10.1016/j.jtbi.2015.02.026
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1093/nar/gkw1092
http://dx.doi.org/10.1093/nar/28.1.27
http://dx.doi.org/10.1093/nar/gkv1070
http://dx.doi.org/10.7717/peerj.4264


Kotlar D. 2003. Gene prediction by spectral rotation measure: a new method
for identifying protein-coding regions. Genome Research 13(8):1930–1937
DOI 10.1101/gr.1261703.

KwanHK, Arniker SB. 2009. Numerical representation of DNA sequences. In: IEEE
international conference on electro/in-formation technology, 2009. EIT’09. Piscataway:
IEEE, 307–310.

Lassmann T, Sonnhammer EL. 2005. Kalign—an accurate and fast multiple sequence
alignment algorithm. BMC Bioinformatics 6(1):298 DOI 10.1186/1471-2105-6-298.

LiW, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659
DOI 10.1093/bioinformatics/btl158.

Lin S, Zhang H, Hou Y, Zhuang Y, Miranda L. 2009.High-level diversity of dinoflagel-
lates in the natural environment, revealed by assessment of mitochondrial cox1 and
cob genes for dinoflagellate DNA barcoding. Applied and Environmental Microbiology
75(5):1279–1290 DOI 10.1128/AEM.01578-08.

MabroukM. 2017. Advanced genomic signal processing methods in DNA mapping
schemes for gene prediction using digital filters. American Journal of Signal Processing
7(1):12–24 DOI 10.5923/j.ajsp.20170701.02.

Marhon S, Kremer SC. 2011. Gene prediction based on DNA spectral analysis: a
literature review. Journal of Computational Biology 18(4):639–676
DOI 10.1089/cmb.2010.0184.

Mendizabal-Ruiz G, Román-Godínez I, Torres-Ramos S, Salido-Ruiz R, Morales J.
2017. On DNA numerical representations for genomic similarity computation. PLOS
ONE 12(3):e0173288 DOI 10.1371/journal.pone.0173288.

Mount DW. 2004. Alignment of pairs of sequences and multiple sequence alignment.
In: Bioinformatics: sequence and genome analysis. New York: Cold Spring Harbor,
51–204.

Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: a novel method for fast and
accurate multiple sequence alignment. Journal of Molecular Biology 302(1):205–217
DOI 10.1006/jmbi.2000.4042.

Patwardhan A, Ray S, Roy A. 2014.Molecular markers in phylogenetic studies—
A review. Journal of Phylogenetics & Evolutionary Biology 2(2):Article 131
DOI 10.4172/2329-9002-2-131.

Prosser SWJ, Velarde-Aguilar MG, León-Règagnon V, Hebert PDN. 2013. Advancing
nematode barcoding: a primer cocktail for the cytochrome c oxidase subunit I gene
from vertebrate parasitic nematodes.Molecular Ecology Resources 13(6):1108–1115
DOI 10.1111/1755-0998.12082.

Ravichandran L, Papandreou-Suppappola A, Spanias A, Lacroix Z, Legendre C. 2010.
Time-frequency based biological sequence querying. In: 2010 IEEE international
conference on Acoustics speech and signal processing (ICASSP). Piscataway: IEEE,
4174–4177.

Roskov Y, Abucay L, Orrell T, Nicolson D, Bailly N, Kirk P, Bourgoin T, DeWalt
R, DecockW, Van DeWever A, Nieukerken E, Zarucchi J, Penev L. 2017. In:

Mendizabal-Ruiz et al. (2018), PeerJ, DOI 10.7717/peerj.4264 20/21

https://peerj.com
http://dx.doi.org/10.1101/gr.1261703
http://dx.doi.org/10.1186/1471-2105-6-298
http://dx.doi.org/10.1093/bioinformatics/btl158
http://dx.doi.org/10.1128/AEM.01578-08
http://dx.doi.org/10.5923/j.ajsp.20170701.02
http://dx.doi.org/10.1089/cmb.2010.0184
http://dx.doi.org/10.1371/journal.pone.0173288
http://dx.doi.org/10.1006/jmbi.2000.4042
http://dx.doi.org/10.4172/2329-9002-2-131
http://dx.doi.org/10.1111/1755-0998.12082
http://dx.doi.org/10.7717/peerj.4264


Species 2000 & ITIS catalogue of life, 2017 annual checklist. Available at http://www.
catalogueoflife.org/annual-checklist/ 2017 .

Rushdi A, Tuqan J. 2006. Gene identification using the Z-curve representation. In: 2006
IEEE international conference on acoustics speed and signal processing proceedings Vol.
2. Piscataway: IEEE, 1024–1027.

Sharma D, Issac B, Raghava G. PS, Ramaswamy R. 2004. Spectral Repeat Finder (SRF):
identification of repetitive sequences using Fourier transformation. Bioinformatics
20(9):1405–1412 DOI 10.1093/bioinformatics/bth103.

Sharma K. 2008. Bioinformatics: sequence alignment and Markov models. New York:
McGraw Hill Professional.

SimpsonMG. 2006. Plant systematics. Second Edition. Amsterdam: Elsevier/Academic
Press.

Skutkova H, VitekM, Sedlar K, Provaznik I. 2015. Progressive alignment of genomic
signals by multiple dynamic time warping. Journal of Theoretical Biology 385:20–30
DOI 10.1016/j.jtbi.2015.08.007.

Stoica P, Moses RL. 2005. Spectral analysis of signals. Vol. 452. Upper Saddle River:
Pearson Prentice Hall.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensi-
tivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research
22(22):4673–4680 DOI 10.1093/nar/22.22.4673.

Vasconcelos R, Montero-Mendieta S, Simó-Riudalbas M, Sindaco R, Santos X,
Fasola M, Llorente G, Razzetti E, Carranza S. 2016. Unexpectedly high levels of
cryptic diversity uncovered by a complete dna barcoding of reptiles of the socotra
archipelago. PLOS ONE 11(3):e0149985 DOI 10.1371/journal.pone.0149985.

Voss RF. 1992. Evolution of long-range fractal correlations and 1/f noise in DNA base se-
quences. Physical Review Letters 68(25):3805–3808 DOI 10.1103/PhysRevLett.68.3805.

White J, Navlakha S, Nagarajan N, Ghodsi M, Kingsford C, PopM. 2010. Alignment
and clustering of phylogenetic markers-implications for microbial diversity studies.
BMC Bioinformatics 11(1):152 DOI 10.1186/1471-2105-11-152.

Yin C, Yau SS-T. 2005. A Fourier characteristic of coding sequences: origins and a
non-Fourier approximation. Journal of Computational Biology 12(9):1153–1165
DOI 10.1089/cmb.2005.12.1153.

Yin C, Yin XE,Wang J. 2014. A novel method for comparative analysis of DNA
sequences by Ramanujan-Fourier transform. Journal of Computational Biology
21(12):867–879 DOI 10.1089/cmb.2014.0120.

Zardoya R, Meyer A. 1996. Phylogenetic performance of mitochondrial protein-coding
genes in resolving relationships among vertebrates.Molecular Biology and Evolution
13(7):933–942 DOI 10.1093/oxfordjournals.molbev.a025661.

Zhao B, Duan V, Yau SS-T. 2011. A novel clustering method via nucleotide-based
Fourier power spectrum analysis. Journal of Theoretical Biology 279(1):83–89
DOI 10.1016/j.jtbi.2011.03.029.

Mendizabal-Ruiz et al. (2018), PeerJ, DOI 10.7717/peerj.4264 21/21

https://peerj.com
http://www.catalogueoflife.org/annual-checklist/2017
http://www.catalogueoflife.org/annual-checklist/2017
http://dx.doi.org/10.1093/bioinformatics/bth103
http://dx.doi.org/10.1016/j.jtbi.2015.08.007
http://dx.doi.org/10.1093/nar/22.22.4673
http://dx.doi.org/10.1371/journal.pone.0149985
http://dx.doi.org/10.1103/PhysRevLett.68.3805
http://dx.doi.org/10.1186/1471-2105-11-152
http://dx.doi.org/10.1089/cmb.2005.12.1153
http://dx.doi.org/10.1089/cmb.2014.0120
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025661
http://dx.doi.org/10.1016/j.jtbi.2011.03.029
http://dx.doi.org/10.7717/peerj.4264

