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Nowadays, due to the worldwide growth demand of energy, over consumption of

fossil fuel as well as their accompanying increased negative environmental impacts, the

development of renewable energy systems, such as fuel cells and water electrolyzers,

is becoming one of the “holy grail” for researchers. However, their large-scale

applications have been severely limited by precious and unsustainable noble-metal

electrocatalysts. Hence, it is highly desirable to develop robust electrocatalysts

composed exclusively of low-cost and earth-abundant elements, to reduce or

replace expensive and scarce noble-metals. Carbon-based nanomaterials, including

heteroatoms-doped carbons and carbon-encapsulated metal materials, have recently

attracted great interests because they show remarkable electrocatalytic performance

and long-term stability for energy-related reactions, such as oxygen reduction reaction

(ORR), hydrogen and oxygen evolution reactions (OER), hydrazine oxidation reaction

(HzOR), etc. This review summarizes the recent progress in heteroatoms-doped carbon

and carbon-encapsulated metal materials, highlighting the promise as cost-efficient

electrocatalysts. Finally, a prospective on the future development of these promising

materials is offered.

Keywords: carbon-based nanomaterials, fuel cell, water splitting, energy-related reactions, doping effect

INTRODUCTION

The over consumption of fossil fuel reserves (natural gas, petroleum, coal, etc.) and their ongoing
negative environmental impacts (e.g., water, air, and soil pollution) have driven the development of
alternative, environmentally-friendly energy systems to reduce and/or eliminate our over-reliance
on fossil fuels (Chow et al., 2003; Barnett et al., 2012; Subbaraman et al., 2012). Fuel cells, which
can directly generate electricity from chemical fuels such as hydrogen and liquid hydrazine, and
water electrolyzer that can generate the hydrogen fuel from water, are the promising energy
conversion systems. However, the large-scale commercialization of fuel cells and water electrolyzer
has so far been hampered by expensive and unsustainable electrocatalysts used for boosting the
sluggish reactions at both anode and cathode, such as oxygen reduction reaction (ORR), hydrogen
oxidation reaction (HOR), and water splitting including oxygen evolution reaction (OER) and
hydrogen evolution reactions (HER) (Yang et al., 2008; Bhowmik et al., 2016; Cheng et al., 2016;
Guo et al., 2016; Huang et al., 2018). In recent years, great efforts have been made to develop
low-cost and earth-abundant electrocatalysts to promote the above-mentioned energy-related
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reactions, such as the carbon-based materials and transition
metal sulfides and carbides (Feng et al., 2015; Hu et al., 2015;
Liu et al., 2015; Huang C. et al., 2019; Wang X.-T. et al.,
2019). Among the various electrocatalysts being investigated,
carbon-based materials, including heteroatoms-doped carbons
and carbon-encapsulated metal materials, have drawn increasing
attentions due to their low-cost, high-efficiency, and good long-
term durability (Figure 1). In this review, we will discuss the
synthetic procedure of heteroatoms-doped carbons and carbon-
encapsulated metal materials, as well as their characterizations
and electrochemical performance.

FUEL CELL REACTIONS

ORR is the reaction occurred on cathode in fuel cells, which
involves multiple electrochemical processes. The ORR can either
proceed through a two-step, a two electron (2e) process with
the formation of HO−

2 intermediate in alkaline, and H2O2 in
acidic media, or via a more efficient four-electron (4e) pathway to
directly reduce O2 into OH

− in alkaline and H2O in acidic media
(Dai et al., 2015). The sluggish kinetic of ORR, the high cost
and low durability of the Pt-based electrocatalysts are the current
bottlenecks, which are needed to be addressed to enlarge the
application of fuel cells (Liang et al., 2011; Huang et al., 2015b).
Nitrogen and other heteroatoms-doped carbon materials, as well
as carbon-encapsulated metal materials have shown remarkable
electrocatalytic activity and durability toward ORR (Geng et al.,
2011; Lin et al., 2012).

Hydrazine oxidation reaction (HzOR) is a vital reaction in
direct liquid fuel cells (DLFCs) taking place at the anode. Due
to its more favorable energy and power densities compared

FIGURE 1 | Summary illustration of the carbon-based noble-metal-free

electrocatalysts and their applications.

to hydrogen fuel, as well as no harmful and/or carbon-
containing byproducts, HzOR has been becoming one of the
great scientific and technological interest (Yamada et al., 2003;
Sanabria-Chinchilla et al., 2011). Unfortunately, electrochemical
conversion of hydrazine molecular to nitrogen on catalytic
surface in DLFCs is kinetically sluggish and requires a relatively
high over potential at electrodes, which is not well-suited for
quantitation via conventional electrochemical approaches. In
order to address the facing problem, extensively studies have
been made in last decades to lower the overpotential of the
hydrazine oxidation and improve the conversion efficiency.
Currently, electrodes such as platinum, gold, silver, palladium,
and alloys have been reported to be the electrocatalysts for the
electrochemical oxidation of hydrazine (Gao et al., 2007; Rosca
and Koper, 2008; Ye et al., 2008; Yi and Yu, 2009). However, these
materials are tending to agglomerate or leach out during reaction
and lose/reduce their activity. Others have found that carbon-
based materials such as modified carbon nanotube and reduced
graphene nanosheets can effectively electrocatalyze hydrazine
oxidation, which paved a way to find the novel high-performance,
inexpensive, sustainable metal-free HzOR electrocatalysts (Zhao
et al., 2002; Wang et al., 2010).

WATER-SPLITTING REACTIONS

Electrolysis of water is widely considered to be the green and
efficient approach to produce hydrogen fuel. The electrochemical
water-splitting consists of two half reactions: the cathodic
hydrogen evolution reaction (HER, 2H+ (aq) + 2e− → H2

(g)) and the anodic oxygen evolution reaction (OER, 2H2O (l)
→ 4e− + 4H+ (aq) + O2 (g)) (Shi and Zhang, 2016). To
successfully conduct electrochemical water splitting, the applied
voltages for both reactions must be above the thermodynamic
potential values corresponding to the intrinsic activation barriers
(i.e., overpotential, η) (Yan et al., 2014; Zou et al., 2014).
Moreover, OER requires a higher overpotential (higher energy)
to overcome the kinetic barrier to occur than that of HER due to
the four-electron transfer involved in OER and gives the inherent
sluggish kinetic (Xu et al., 2016). Hence, electrocatalysts for both
the HER and OER are essential to reduce the overpotentials
and consequently increase the energy conversion efficiency.
Currently, the most effective electrocatalysts for the HER and
OER are noble metal/metal oxides, such as Pt, RuO2, and IrO2

(Lee et al., 2012). However, the high cost and element scarcity
of noble-metal based materials limited their wide application.
Therefore, it is highly desired to develop effective alternative
water splitting electrocatalysts with low cost and high abundance.

HETEROATOMS-DOPED CARBONS

As one of the most important classes of noble metal-free
materials, carbon-based nanomaterials have drawn much
attention because of their unique chemical, optical, electrical,
and physical properties. Heteroatoms doping (e.g., nitrogen,
boron, oxygen, sulfur, phosphorous) in carbon structure can
affect various physicochemical properties of sp2 carbonmaterials,
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and hence lead to significant changes in local graphitic structure,
hardness, electrical conductivity, and chemical reactivity
(Wiggins-Camacho and Stevenson, 2009). Thereby, the
structural incorporation of foreign atoms in graphitized carbon
has received increasing attention nowadays due to its enhanced
physicochemical properties and electrocatalytic performance.

N-doped carbon materials, owing to their unique electronic
properties and structural features, have been reported to
exhibit not only efficient ORR performance comparable to
that of commercial Pt/C (20 wt.%), but also good long-term
stability, and excellent resistance to methanol crossover effects
that are superior to Pt/C (Tang et al., 2009; Chen et al.,
2012; Sharifi et al., 2012; Hou et al., 2015). The research
area on this kind of metal-free electrocatalyst actually dates
back to several decades ago, particularly to the seminal work
reported by Dai, in which nitrogen doped carbon nanotube
arrays were reported to remarkably electrocatalyze ORR in
alkaline fuel cells with high long-term stability and good
methanol crossover tolerance (Gong et al., 2009). Following this
report, many other related materials without any metals, such
as nitrogen-doped graphene and nitrogen-doped mesoporous
carbons, were developed to show remarkable electrocatalytic
activity and high durability for the ORR (Qu et al., 2010).
Hu and his co-authors have prepared boron doped carbon
nanotubes (BCNT) and directly used as electrocatalysts for
ORR in alkaline medium (Yang et al., 2011). The result
illustrated that the ORR performance of the synthesized BCN
was related with the boron dopant amount. Specifically, the
ORR activity increased with the increasing boron content,
illustrating the importance of the boron moieties (Figure 2).
Moreover, BCN gave good ORR selectivity and methanol
crossover resistance, qualifying the B-doped nanotubes can
serve as promising ORR metal-free electrocatalysts. Moreover,
carbon materials with phosphorus dopants also have shown
strikingly ORR activity in alkaline medium (Liu et al.,
2011). Ordered mesoporous carbons with a small amount
of P doping, prepared by Yu group, demonstrated their
promise as a metal-free electrocatalyst for ORR, which featured
excellent electrocatalytic activity via four-electron pathway in
alkaline medium, enhanced stability, and excellent alcohol
tolerance, compared to those of Pt/C (Yang D.-S. et al.,
2012).

Along with single heteroatoms doped carbon materials,
dual or multi heteroatoms doped carbons, which constitute
of two or three kinds of heteroatoms in the carbon, were
also investigated as metal-free electrocatalysts for the ORR.
Wang et al. reported that vertically aligned B and N co-
doped carbon nanotubes electrode, which prepared by pyrolysis
of melamine diborate, gave a higher electrocatalytic activity
for ORR in alkaline media than the one singly doped with
boron or nitrogen (Wang et al., 2011). They believed that
the promoted activity was mainly attributed to the synergetic
effect arising from the co-doping of boron and nitrogen. On
the other hand, nitrogen and sulfur co-doped carbon aerogels
have improved the overall electrocatalytic activity in both basic
and acidic media, compared to the corresponding carbon solely
doped with nitrogen, suggesting sulfur co-doping can further

FIGURE 2 | Electrocatalytic capabilities of the BCNT catalysts for the ORR in

O2-saturated 1.0M NaOH electrolyte. (A) CV curves (scan rate 50 mVs−1 ). (B)

RDE voltammetry with a rotation speed of 2,500 rpm (scan rate 10mV s−1).

For comparison, corresponding examinations for CNTs and commercial Pt/C

catalysts (20 and 40 wt % Pt loading) were also carried out. Re-printed with

permission from Wiley-VCH Publications 2011 (Yang et al., 2011).

enhance the ORR activity (Wohlgemuth et al., 2012). Recently,
researchers also reported the tri (N, B, P)-doped carbon can
significantly improve the performance of nitrogen doped carbons
and show remarkable ORR performance (Choi et al., 2012).
We have synthesized N-, O-, and S-tridoped, polypyrrole-
derived mesoporous carbons (NOSCs) and studied their ORR
performance using colloidal silica as template. The synthesized
NOSCs exhibited good catalytic activity toward ORR with
low onset potential and low Tafel slope (Meng et al., 2014b).
Moreover, the electron transfer numbers andH2O/H2O2 ratios as
product of the electrocatalytic reaction were found to be tuneable
by the amount of colloidal silica and their synergistic effect of N,
S, and O tri-doping (Figure 3).

Additionally, heteroatoms doped carbons can also serve as
metal-free electrocatalysts for HzOR, HER and OER. N-doped
carbon nanoneedles (CNNs) with well-organized graphiticmulti-
layers and large proportions of N-doped edge planes (Figure 4)
have been proven to be efficient metal-free electrocatalysts for
hydrazine oxidation (Silva et al., 2012). The high catalytic activity
toward HzOR was mostly due to their unique structures and
large proportions of exposed edge planes. Later, the same group
also synthesized other carbon-based materials by carbonization
of cellulose filter paper, rice, yeast cell, and polypyrrole, all
of which showed remarkable HzOR activity (Huang et al.,
2015a; Koh et al., 2016; Martins et al., 2016). In the case
of nitrogen and oxygen doped carbons, they believe that the
presence of dopants and defects aid the effective adsorption
of hydrazine onto the catalytic surfaces, then the hydrazine
molecule was effectively dissociated/oxidized by the flow of
electrons, giving a good electrocatalytic performance (Figure 5)
(Meng et al., 2014b). During the oxidation process, carbon
atoms with the relatively positive charge in the graphitic
structure, facilitated the flow of electrons, which allowed the
oxidation of N2H4 molecular to form N2 and H+. H+ was
then react with OH− to form water. Subsequently, the water
and nitrogen products were desorbed and fresh hydrazine
molecules was adsorbed on the surface to keep the catalytic
cycle running.

With the high rapid development of graphene and
carbon-based materials, heteroatoms doped carbons were
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FIGURE 3 | (A) Electron-transfer number (n) and (B) % peroxide formed at three different potentials vs. amount of colloidal silica used as templates for a series of

NOSCx-900 materials. Re-printed with permission from the American Chemical Society Publications 2014 (Meng et al., 2014a).

FIGURE 4 | Characterization of N-doped carbon nanoneedles: (A) low magnification and (B) slightly higher magnification TEM images. (C) HRTEM and (D) SAED. (E)

Their width distribution and (F) length distribution. Re-printed with permission from Wiley-VCH Publications 2012 (Silva et al., 2012).

also investigated as OER and HER electrocatalysts in water-
splitting reactions. Zhao et al reported that the nitrogen-doped
carbon materials function as the efficient oxygen evolution
electrocatalysts with good stability (Zhao et al., 2013).
The material gave a current density of 10mA cm−2 at the

overpotential of 0.38V in alkaline electrolytes, which was
comparable to those of iridium and cobalt oxide catalysts. The
electrochemical and physical results displayed that the good
oxygen evolution activity of the nitrogen/carbon materials was
associated with the pyridinic-N and quaternary-N. Nitrogen
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FIGURE 5 | Schematic illustration showing the proposed electrocatalytic

processes over nitrogen and oxygen doped carbon. Re-printed with

permission from Wiley-VCH Publications 2014 (Meng et al., 2014b).

and phosphorus co-doped mesoporous carbon foam with a
large surface area of ∼1,663 m2 g−1 was reported to act as
bi-functional electrocatalyst for OER and ORR with good
electrocatalytic properties (Zhang et al., 2015). The N and P
co-doping and the highly porous network of the carbon foam
were the main reason for the good bifunctional activity. Later,
Dai et al. reported that N, S co-doped graphitic sheets with
stereoscopic holes (SHG) can efficiently serve as tri-functional
electrocatalysts for the ORR, OER, and HER, simultaneously (Hu
and Dai, 2017). The SHG electrode showed a remarkable OER
activity with a small onset potential of 1.49V and overpotential of
1.56V vs. RHE at a current density of 10mA cm−2 in 0.1MKOH
electrolyte, which were comparable to those of commercially
available RuO2 electrocatalyst, respectively. In the case of HER,
SHG electrode exhibited a similar activity of metal-containing
HER electrocatalysts, giving positive onset potential, large
current density and small Tafel slope. The multifunctional
electrocatalytic activities were attributed to the synergistic effect
of N, S co-doping and the large surface area derived from this
unique SHG architecture, which provided efficient pathways
for electron and electrolyte/reactant transports. B-substitute
graphene (B-SuG) was also found to electrocatalyze HER in
acidic medium (Sathe et al., 2014). In comparison with the
graphene without B doping, B-SuG performed a better activity,
with more positive onset potential and larger current density.
Jiao et al. have synthesized a series of heteroatoms doped
graphene and investigated their electrochemical performance
as metal-free electrocatalyst for HER (Jiao et al., 2016). Density
functional theory (DFT) calculations illustrated that heteroatoms
doping can significantly increase the hydrogen adsorption
strength of graphene, lower the adsorption free energy of H
(1G∗

H) and thus enhance the HER activity, especially for the dual
doping ones.

SYNTHESIS OF HETEROATOMS-DOPED
CARBON MATERIALS

The preparation of heteroatom-doped carbon nanomaterials
involves one-pot synthesis by in-situ incorporating heteroatoms
during the formation of carbon nanomaterials or the post-
synthesis through the post-treatment of performed carbon
nanomaterials with the heteroatoms-containing precursor. The
in-situ doping, direct carbonization of the dopant-containing
precursors and carbon precursors together, can ensure the
dopants structural incorporation into the carbon framework
with a homogeneous distribution. In recent years, several
heteroatom-doped carbon materials have been fabricated by this
direct method. Nitrogen-doped carbon nanotube and nanofiber
have been prepared from nitrogen-containing precursors, such
as melamine (Terrones and Terrones, 1999; Terrones et al.,
1999), benzylamine (Munoz-Sandoval et al., 2017), acetonitrile
(Xia and Mokaya, 2004). Moreover, other synthetic substances,
possessing large amount of dopants atoms, were also used
to prepare heteroatoms-doped mesoporous carbons, including
dicyandiamide (Liu R. et al., 2010; Liu Z.-W. et al., 2010),
triphenylphosphine (Yang S. et al., 2012), polyaniline (Ajayan
et al., 2007; Vinu et al., 2008; Lei et al., 2009), polypyrrole
(Chang et al., 2007; Shrestha and Mustain, 2010), and so on.
Asefa group has used polyaniline as the carbon and nitrogen
precursor to synthesize the nitrogen and oxygen co-doped
mesoporous carbons (PDMCs), which showed remarkable ORR
performance with positive onset potential, large current density,
high electron transfer number and long-term stability, due to
the structural doping of heteroatoms into the carbon framework
(Silva et al., 2013). Recently, our group have synthesized N,
O, and P tri-doped hollow carbons (NOPHC), which served
as bifunctional metal-free electrocatalysts for HER and ORR,
using polypyrrole as precursor and Co2P as template (Huang S.
et al., 2019). N, O and P were “in-situ” incorporated into the
carbon structure during pyrolysis process, while hollow structure
formed after removal of Co2P template (Figure 6). Additionally,
Antonietti and others also employed non-volatile ionic liquids
(ILs), composed of an organic N-containing cation and a bulky
inorganic anion, as excellent direct precursors for synthesis
of nitrogen (Paraknowitsch et al., 2010a,b), phosphorous
(Paraknowitsch et al., 2013), and/or sulfur-doped (Wang and
Dai, 2010; Paraknowitsch et al., 2012) carbon materials with
high amount of dopants. Post-synthesis method was also widely
employed to fabricate heteroatoms doped carbons. Yang and co-
workers have successfully synthesized N (or S) doped graphene
with large surface area via pyrolysis of graphene oxide in presence
of guest gases (NH3 or H2S). When the annealing temperature
was in the range of 500–1,000◦C, both N and S were doped into
the graphitic carbon, forming different binding configurations at
the edges or on the planes of the graphene (Yang S. et al., 2012).

CARBON-ENCAPSULATED METAL
MATERIALS

In addition to heteroatoms-doped carbons, carbon-encapsulated
metals materials were also widely investigated as promising
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alternatives of the noble-metal based electrocatalysts for the
energy conversion systems (Wang et al., 2018; Ouyang et al.,
2019; Wang J.-Y. et al., 2019). Bao group has encapsulated 3d
transition metals Fe, Co, and the FeCo alloy into nitrogen-doped
carbon nanotubes (NCNTs) through a chemical vapor deposition
(CVD) method (Deng et al., 2014). The synthesized NCNTs
encapsulating 3d TM Fe, Co, and FeCo alloy nanoparticles
(NPs) displayed good activity and long-term durability toward
HER in acidic medium. DFT calculations, combining with
the experimental results, illustrated that the introduction of
metal and nitrogen in the carbon can synergistically enhance

the HER activity. Our group also prepared N-, O-, and S-
tridoped carbon-encapsulated Co9S8 materials (Co9S8@NOSCs)
which have proven to act as noble metal-free bifunctional
electrocatalysts for HER and OER in alkaline media (Huang
et al., 2017). The Co9S8@NOSC nanocomposite materials
were fabricated by preparing a S- and Co(II)-containing
polypyrrole solid precursors (S-Co-PPY), carbonizing the S-Co-
PPY precursor at different high temperatures, and then removal
of surface bound metallic species on the carbonized products in
concentrated HCl solution, as illustrated in Figure 7. Regarding
to OER, Co9S8@NOSC-900 nanomaterials, obtained at pyrolysis

FIGURE 6 | Synthetic procedure used to prepare NOPHCs electrocatalysts. Re-printed with permission from Elsevier Publications 2019 (Huang S. et al., 2019).

FIGURE 7 | Synthetic procedures used to synthesize Co9S8@NOSC hybrid electrocatalysts. Re-printed with permission from Wiley-VCH Publications 2017 (Huang

et al., 2017).
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temperature of 900◦C, gave an efficient electrocatalytic activity,
with a small overpotential of 340mV at current density of
10mA cm−2, high anodic current density, low Tafel slope
(68mV dec−1) as well as high (nearly 100%) Faradic efficiency.
The excellent electrocatalytic activity can be derived from the
synergistic effects between the heteroatom-doped carbon layers
and the Co9S8 cores in the materials. Later, N-, O-, and S-doped
carbon-encapsulated Ni3S2 and NiS core-shell architectures were
prepared using the similar method with S- and Ni(II)-containing
polypyrrole solid precursors (S-Ni-PPY) (Cao et al., 2018). The
materials can bifunctionally electrocatalyze HER and ORR in
alkaline media with good activity and long-term stability.

CONCLUSIONS, FUTURE OUTLOOK, AND
PERSPECTIVES

Over the last few years, great effort has been made to develop
the carbon-based materials as (noble) metal-free electrocatalyst
for the ORR, HzOR, HER, and OER for fuel cells and water
electrolyzer. Although huge progress has been achieved, there is
still more research needed to be given for carbon-basedmaterials.
For example, the electrocatalytic performance for most (noble)
metal-free electrocatalysts is difficult to compete the noble-based
counterparts, which require further improvement. Also, the
electrocatalytic mechanism and the exact active sites are not well-
known, both of which are needed to be explored. In addition,

there is difficulty in obtaining heteroatoms-doped carbon with
high density of dopants.

To overcome the above-mentioned shortcomings, new
precursors or synthetic methods are demanded to fabricate
the carbons with high density of heteroatoms or large
number of active sites, which in turn can obtain the carbon
materials with enhanced catalytic activity. We believed that
by combining various experimental approaches, state-of-the-art
characterizations and powerful computational calculations, the
new, low-cost (noble) metal-free carbon electrocatalysts with
high electrocatalytic activity and clear catalytic mechanism can
be accomplished for clean energy systems.
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