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Background: Our knowledge of Type 1 Diabetes Mellitus (T1DM) etiology is incomplete; however, the pathogenesis of 
the disease includes T-cell-mediated destruction of β-cells. 
Objective: The present study aimed to investigate the key gene pathways and co-expression networks in T1DM disease. 
Material and Methods: TIDM-associated genes were identified from 13 databases, enrichment of pathways annotated with 
functional annotations, and analysis of protein-protein network interactions. Next, functional modules and transcription 
factor networks were constructed. The analysis of gene co-expression networks was conducted to discover associated 
pivotal modules.
Results: A total of 172 expressed genes and four variants (SNP) were filtered in the of T1DM disease; pathway enrichment 
analysis identified key pathways, such as inflammatory bowel disease, type I diabetes mellitus, cytokine-cytokine receptor 
interaction, Th17 cell differentiation, JAK-STAT signaling pathway, and graft-versus-host disease. A weighted correlation 
network analysis revealed one module that was strongly correlated with T1DM. Functional annotation revealed that the 
module was mainly enriched in pathways such as T cell activation, regulation of immune system process, and response to 
the organic substance. IRF2, IRF4, IRF8, and CDX2 were regulated in the module at a significant level.
Conclusion: The study identified IL-2 as a significant T1DM hotspot and highlighted the role of hub genes and transcription 
factors in the autoimmune disease, offering potentials for treatment and prevention.
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1. Background
Type 1 Diabetes Mellitus (T1DM) is due to damage 
to β-cells that produce insulin in the pancreas. In 
terms of etiology, T1DM is categorized into two 
general subtypes, including idiopathic (type 1B) and 
autoimmune (Type 1A) (1). The pathogenesis and 
etiologic factors of T1DM are unclear; studies have 
shown that fulminant type 2 diabetes can be a part of 
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this subtype (2) In addition, T1DM as a complication 
is multifactorial and induced by a complicated 
combination of environmental and genetic factors, so 
the genetic factors include many susceptibility genes. 
In T1DM, the development of islet-specific auto-
antibodies against cellular structures is accompanied 
by a heterogeneous process. The best-characterized 
autoantibodies that are signs of ongoing cell destruction 
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are islet cell antibodies (ICA), insulin autoantibodies 
(IAA), autoantibodies against IA-2 (IA-2A), Glutamic 
acid decarboxylase antibodies (GADA), and Zinc 
transporter 8 autoantibody (ZnT8A) (3). In childhood, 
IAA and GADA are the most frequently detected 
autoantibodies, while IA-2A and ZnT8A autoantibodies 
are found in relatively small numbers of patients (4). 
Autoantibodies are expected at the time of diagnosis; 
however, as the disease progresses, disturbances in the 
metabolism of glucose become more common (4).
There is a difference in the age of seroconversion for 
the various autoantibodies responsible for initiating 
autoimmunity. For instance, IAA peaks at the age of 
two, whereas GADA peaks at the age of 4-5 years 
and remains prominent throughout childhood (5). As 
positive autoantibodies increase, the risk of developing 
T1DM increases. When IA-2A levels are high, the risk 
of developing T1DM remains constant. However, the 
risk decreases when IAA and GADA levels are high 
(5). It is still necessary to perform a detailed analysis 
of this complex relationship, which includes the ZnT8 
autoantibody. Children with islet autoantibodies and 
genetically susceptible to T1DM do not progress 
to clinical T1DM. Genetic susceptibilities are also 
associated with the rapid development of T1DM, as 
defined by HLA genotypes and non-HLA genes, the 
age at which autoantibodies appear, sex, and possibly 
yet unknown environmental factors (6). A variation 
in the duration of the asymptotic phase indicates that 
environmental factors, as well as genetic factors, 
influence the progression of the disease. IAA, IA-
2A, and GADA perform a significant role in the 
progression of seroconversion to clinical T1DM and 
islet autoimmunity (7).
T1DM may show up at any age, however,  it most 
frequently does so in children. Over one million 
children and adolescents under twenty worldwide 
were estimated to have more cases of T1DM in 2021, 
representing 149.5 per 1000 people/annum (8). There 
has been a correlation between clinical T1DM and 
reduced mass of β-cells by 30-60 percent. However, 
there is a difference between these numbers among 
children and adults with early-stage and long-
standing diabetes (9). The global incidence of T1DM 
has steadily increased during the past century (10). 
A recent report indicates that the incidence of the 
disease has leveled off in populations with the highest 
increase. It is essential to predict autoimmunity risks 

early to select appropriately matched case-control 
groups for prevention trials. Children with T1DM are 
at an increased risk of mortality, other complications, 
and cardiovascular problems (11). On the other hand, a 
timely diagnosis can reduce complications at the time 
of onset (12).
Gene expression profile analysis has been used 
extensively in pathological mechanism research, disease 
diagnosis, and treatment. Numerous investigations 
utilizing microarray analysis have been dedicated 
to examining the molecular genetics underlying the 
development of T1DM. The specific genes expressed 
in T1DM individuals, and the functional pathways and 
co-expression network remain to be determined. These 
findings provide fresh perspectives on pathogenesis, 
development, and drug discovery of T1DM.

2. Objective
In this study, we obtained datasets from 13 databases, 
filtered reported expressed genes for T1DM disease, 
annotated the enrichment of functional pathways, 
and analyzed the PPI network; transcription factors 
and modules analyzed performed for protein-protein 
interaction (PPI) networks of expressed genes. To 
identify the key gene modules related to the disease, 
the co-expression network of the dataset was also 
analyzed.

3. Material and Methods

3.1. Identification of GDAs and SNPs Sites
Thirteen databases were selected for searching for 
Autoimmune Diabetes and T1DM, namely ClinVar 
(13), UniProt (14), GWAS db (15), GWAS Catalog (15), 
ORPHANET (16), CTD (17), GENOMICS ENGLAND 
(18), CLINGEN (19), PSYGENET (20), CGI (21), 
LHGDN (22), HPO (23), and BeFree (24) to analyze the 
gene-disease association data of T1DM and the relative 
SNPs.

3.2. Go and KEGG Pathway Enrichment Analysis
The g:Profiler includes analytical tools and an integrated 
biological knowledge base to extract the systematic 
biological meaning of broad lists of proteins or genes 
(25). It was used to carry out the functional analysis 
of genes, and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (26) was employed to analyze 
pathway enrichment. A threshold of at least 95% of 
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matches above the threshold is considered statistically 
significant for the GO and pathway enrichment analysis 
using the g:SCS algorithm (25).

3.3. PPI and Module Analysis
The STRING database (27) analyzed the expressed 
genes PPI network with a confidence score >0.9 
for significant results. Cytoscape software (version 
3.10.0; The Cytoscape Consortium, New York City, 
NY, USA) (28) visualizes the PPI network. A plugin 
for Cytoscape called Molecular Complex Detection 
(MCODE) (29) was used to analyze the PPIs’ network 
modules. MCODE detects densely connected modules 
of networks that might represent molecular complexes. 
The performed plugin criteria for significant modules 
score and rank set as follow; degree cut-off: 5; node 
score cut-off: 0.2; k-core: 2; and max. depth: 100. 
The obtained top significant modules were ranked and 
scored. The gene with the highest weighted vertex was 
designated as a seed by MCODE. 

3.4. Transcription Factor Analysis
The analysis of transcription factors within the indicated 
modules was conducted using the iRegulon plugin of 
Cytoscape (30). The default criteria for the iRegulon 
plugin were set. Putative transcription factors were 
identified with a normalized enrichment score (NES) 
greater than 5. Each module’s top three transcription 

factors with the highest NES were enumerated.

4. Results
To identify the gene-disease association data from 
human T1DM SNPs (four variants and the interfering 
genes (n=172; Supplementary 1), the g: Profiler web 
server was used. As indicated in Table 1, six genes 
performed four variants, including 3′ prime UTR, NMD 
transcript, Intron, Missenses, Non-coding transcript 
exon, non-coding transcript, and Synonymous.

4.1. Function and Pathway Annotation
We uploaded all the genes to the g: Profiler online tool 
to conduct a pathway enrichment analysis. For KEGG 
pathway enrichment (Fig. 1A), the expressed gene 
mainly enriched in pathways in inflammatory bowel 
disease, type I diabetes mellitus, cytokine-cytokine 
receptor interaction, Th17 cell differentiation, JAK-
STAT signaling pathway, rheumatoid arthritis, graft-
versus-host disease, autoimmune thyroid disease, 
allograft rejection, and leishmaniasis (Table 2). For the 
GO term biological (GO: BP), molecular (GO:MF), 
and cellular (GO:CC) process analysis, the expressed 
gene enriched in positive regulation is also revealed in 
Figure 1A. Results are visualized for the GO term of 
biological process analysis to illustrate the experimental 
findings (Fig. 1B).

	

Gene name

C
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Gene ID

A
lleles

Frequently reported variant

3′ 
prime 
UTR

NMD 
transcript Intron Missenses Non-coding 

transcript exon
Non-coding 
transcript Synonymous

SUMO4
TAB2 6 ENSG00000055208 

ENSG00000177688 G/A 2 12 2 2

AP4B1-AS1 
PTPN22 1 A/G 2 2 4 10 2 2

IFIH1 2 ENSG00000115267 C/T 4 2

CTLA4 2 ENSG00000163599 C/T 1 2 4

	

Table 1. SNPs associated with T1DM

ENSG00000134242
ENSG00000231128

https://www.ijbiotech.com/jufile?ar_sfile=2348213
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Figure 1. Enrichment analyses for: A) Kyoto Encyclopedia of Genes and Genomes pathways and 
B) GO terms of biological process analysis from expressed genes in type 1 diabetes disease.

A)

B)
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Term ID Count P-value

has05321:Inflammatory bowel disease 19 2.40E-18

hsa04940:Type I diabetes mellitus 16 1.81E-17

hsa04060:Cytokine-cytokine receptor 
interaction

31 5.03E-16

hsa04659:Th17 cell differentiation 20 6.91E-15

hsa04630:JAK-STAT signaling pathway 22 5.23E-13

hsa05323:Rheumatoid arthritis 17 1.31E-12

hsa05332:Graft-versus-host disease 12 1.39E-11

hsa05320:Autoimmune thyroid disease 13 2.41E-11

hsa05330:Allograft rejection 11 1.55E-10

hsa05140:Leishmaniasis 14 2.88E-10

Module Transcription 
factor

P-value

1 IRF8 2.854E-2
2 CDX2 3.269E-2
3 IRF2 3.976E-2
4 IRF4 4.631E-2

Figure 2. Protein–protein interaction network and module analysis of expressed genes in T1DM. 
A) Protein–protein interaction network based on 158 constructed by Cytoscape. B) The significant 
module identified from the protein–protein interaction network.

Table 2. Gene classification in the functional modules based on 
Genomes Terms and Kyoto Encyclopedia of Gene with a False 
Discovery Rate of <0.05 (Top 10) Table 3. Predicted transcription factor

A)

B)
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4.2. Construction and Analysis of the PPI Network
Employing the STRING database, we built the PPI 
network to investigate the functional relationships 
between all expressed genes. Cytoscape was used 
to evaluate and then visualize 172 different genes. 
Protein-functional interaction network (PPI), included 
158 nodes and 218 edges (Fig. 2A). Furthermore, the 
MCODE plugin verified functional modules from 
the PPI network. The plugin detected one significant 
module that met the cut-off criteria. Module 1 (score: 
5.143) comprised 8 nodes and 18 edges; the seed gene 
was IL-2A (Fig. 2B).

4.3. Transcription Factor Networks Construction of 
Modules
As transcription factors bind to specific DNA sequences, 
they regulate gene expression and function. Using the 
iRegulon plugin, we predicted the transcription factors 
in the module. Table 3 displays predicted transcription 
factors with NES >5 values. In these modules, we 
predicted that IRF-8 would regulate IL4 and CCL20; 
CDX2 would regulate IL17A, IL2, IL18, CCL20, and 
IL1A; IRF-2 would regulate CCL20; and IRF-4 would 
regulate IL4, IL1B, and CCL20 (Fig. 3).

5. Discussion
We attempted to identify molecular functional 
pathways and co-expression networks in T1DM by 
analyzing gene profiles of patients with T1DM, which 
have been submitted to public NCBI GEO databases. 

Analyzing the associated genes would help us to reveal 
the relationships between genes and clinical features. 
Here, 178 genes and four variants were analyzed 
which were associated with T1DM (Table 1). Among 
the four variants, SUMO4 (31, 32) and IFIH21 (33) 
were limited to environmental factors like region and 
viral infection. The immune regulatory mechanisms 
function within tolerance ranges, and when they 
are not appropriately regulated, they may improve 
autoimmune reactions. Thus, it is notable that T1DM-
associated genetic variants have a role in a distinct 
overlapping regulatory network potentially altering the 
autoimmune phenotypes development. Notably, there 
is a direct and indirect relationship between the CTLA-
4 and PTPN2, which means that the variant can affect 
immune-response gene expression in a cell-type and 
tissue-specific manner.
KEGG pathway enrichment and GO analysis were 
performed for functional annotation to elucidate the 
underlying pathways (Table 2). We found that the 
expressed genes mainly enriched in inflammatory 
bowel disease, type I diabetes mellitus, cytokine-
cytokine receptor interaction, Th17 cell differentiation, 
JAK-STAT signaling pathway, graft-versus-host 
disease, T cell activation, regulation of immune system 
process, and response to an organic substance (Fig. 1A 
,1B). Type 1 diabetes is characterized by an imbalance 
in cytokine-cytokine receptor interactions, leading 
to chronic inflammation and immune dysregulation 
(34). In individuals with T1DM and confirmed 

Figure 3. Transcription factor target networks of the four modules. Blue oval nodes represent the 
predicted transcription factor. Yellow oval nodes represent transcription factor-regulated genes.
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diabetic sensorimotor polyneuropathy (DSPN), there 
is an increase in both pro-inflammatory and anti-
inflammatory cytokines, including IL-1α, IL-4, IL-
12p70, IL-13, IL-17A, and TNF-α. These cytokines 
play a role in the immune response and may be part 
of compensatory mechanisms to balance immune 
activity (34). The JAK/STAT signaling pathway is 
crucial in various diseases, including T1DM. This 
pathway involves many critical biological processes, 
such as cell proliferation, differentiation, apoptosis, 
and immune regulation (35). Dysregulation of the JAK/
STAT pathway has been associated with autoimmune 
diseases, including T1DM (36). In T1DM, the JAK/
STAT pathway has been implicated in the viability and 
apoptosis of pancreatic β-cells. IL-6, a proinflammatory 
cytokine, activates the JAK/STAT signaling pathway, 
inhibiting pancreatic β-cell viability and increasing 
apoptosis. Additionally, high glucose levels can induce 
the activity of the JAK/STAT pathway, resulting in 
the activation of TGF-β1 and an increase in cardiac 
fibroblasts (35). In the T-cell activation process, CD4+ 
T cells help autoreactive B cells, producing high-
affinity autoantibodies; conversely, CD8+ T cells 
directly contribute to the destruction of β-cells (37). 
In addition to T cells, other immune cell subsets such 
as macrophages, B cells, monocytes, and natural 
killer (NK) cells have been reported to contribute to 
insulitis and β-cell destruction in T1DM by infiltrating 
pancreatic islets and producing pro-inflammatory 
cytokines and nitric oxide (NO) (38). The role of the 
remaining enriched pathways in T1DM disease still 
requires further exploration.
Furthermore, we constructed the PPI network by all 
genes for functional interactions (Fig. 2A). The most 
significant three functional modules were filtered (Fig. 
2B). We found that the seed gene of the module was IL2.  
IL-2, a cytokine that affects T cells mainly through the 
JAK-STAT, Erk, and PI3K pathways, has been studied 
primarily in T cells. However, IL-2 can also influence 
other cell types if they express the IL-2 receptor (39). 
IL-2 is also involved in the activation and proliferation 
of T cells, particularly CD8+ cytotoxic T cells, which 
are critical for antitumor immune responses (40). The 
upregulation of CTLA-4 and Treg cells through low 
production of IL2 is one of the associated risk factors 
with anti-diabetic immune tolerance (41). Lack of 
negative costimulation induced by the PD-1/PD-L1 
pathway can lead to increased T cell stimulation and 

activation, contributing to the development of T1DM. 
Additionally, the attendance or lack of GAD antibodies 
(GADA) has been linked to the period between the start 
of immune checkpoint inhibitors (ICIs) therapy and the 
onset of T1DM (41). The balance between pathogenic 
and regulatory cells, including Treg cells, contributes 
to developing autoimmunity in T1DM (39). Several 
T1DM susceptibility loci, including IL2, CTLA4, IL10, 
PTPN2, and IL2RA, could influence both effector T cells 
and Treg cells FOXP3, a transcription factor, is used as 
a marker of CD4+ Treg cells (39). CCL20 got the same 
score as IL-2 in the module (Fig. 2B). CCL20, also 
known as macrophage inflammatory protein (MIP)-3α, 
is a chemokine that plays a role in leukocyte migration 
during inflammatory reactions (42). The CCL20-CCR6 
axis has been extensively studied in various diseases, 
including diabetes. CCL20 is highly expressed by M2-
type macrophages activated by IL4 in pancreatic cancer, 
which promotes the epithelium-mesenchymal transition 
(EMT) and invasion of cancer cells. Additionally, the 
CCL20-CCR6 axis has been shown to promote growth 
of pancreatic cancer (42). The present results showed 
that IL-2 is associated with T1DM T cell activation, and 
CCL20 might have a potential role in the development 
of T1DM. The interactions between this seed gene and 
T1DM still require further investigation. 
The T1DM is likely caused by several transcription 
factors identified by our study (Fig. 3 and Table 3). 
Several transcription factors have been implicated 
in the pathogenesis of T1DM, including IRF2, IRF4, 
IRF8, and CDX2. It has been reported that IRF2 can 
inhibit the transcriptional activation of IRF1, another 
member of the IRF family. However, more study is 
required to comprehend IRF2’s involvement in T1DM 
properly (43). 
There is limited direct evidence linking IRF4 to the 
disease. However, IRF4 has been shown to play a 
role in other autoimmune disorders, suggesting its 
potential involvement in T1DM. For example, a study 
demonstrated that IRF4 is abnormally expressed in 
various mature lymphoid neoplasms and acts as an 
oncogene (44). This suggests that dysregulation of IRF4 
could contribute to developing autoimmune diseases, 
including T1DM. Additionally, IRF4 expression has 
been observed in dermatopathic lymphadenopathy 
(DL), reported the expression of MUM1/IRF4, a variant 
of IRF4, in the case of DL (45). While DL is not directly 
related to T1DM, this finding suggests that IRF4 may 
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be involved in the immune response associated with 
chronic inflammatory conditions.
IRF8 was found to promote M1-type polarization of 
macrophages, which is associated with pro-inflammatory 
responses. In the context of diabetes, IRF8 activation 
was shown to promote macrophage autophagy and M1-
type polarization, contributing to inflammation (46). 
However, there is limited research on the role of IRF8 
in T1DM, and more studies are needed to elucidate its 
involvement in the disease.
While CDX2 is primarily associated with intestinal 
development and homeostasis, recent studies have 
suggested its potential involvement in the pathogenesis 
of T1DM. The TCF7L2 polymorphism, associated 
with T2DM, is associated with the clinical signs and 
autoimmune characteristics of T1DM (47). Meanwhile, 
the association between other transcription factors 
and T1DM must still be fully elucidated.

6. Conclusion
Aside from IL-2 being a determined significant 
candidate of the T1DM network hotspot, our results 
contribute to our understanding of the complicated 
autoimmune disease by determining the hub genes and 
their transcription factors in the modulating functional 
network that can be an opportunity to treat and prevent 
the human T1DM disease. 
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