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Abstract: Recent industrial robotics covers a broad part of the manufacturing spectrum and other
human everyday life applications; the performance of these devices has become increasingly impor-
tant. Positioning accuracy and repeatability, as well as operating speed, are essential in any industrial
robotics application. Robot positioning errors are complex due to the extensive combination of their
sources and cannot be compensated for using conventional methods. Some robot positioning errors
can be compensated for only using machine learning (ML) procedures. Reinforced machine learning
increases the robot’s positioning accuracy and expands its implementation capabilities. The provided
methodology presents an easy and focused approach for industrial in situ robot position adjustment
in real-time during production setup or readjustment cases. The scientific value of this approach
is a methodology using an ML procedure without huge external datasets for the procedure and
extensive computing facilities. This paper presents a deep q-learning algorithm applied to improve
the positioning accuracy of an articulated KUKA youBot robot during operation. A significant
improvement of the positioning accuracy was achieved approximately after 260 iterations in the
online mode and initial simulation of the ML procedure.

Keywords: machine learning; positioning errors; robotics; deep q-learning; reinforced learning; robot
operating system ROS

1. Introduction

In complex manufacturing, articulated robots are chosen more frequently because
of their advantages: multidegree-of-freedom (multi-DOF), wide working space, offline
programming (OLP) capability, and high dexterity [1]. OLP significantly saves operating
time and investment in the development of complex-shaped objects for the production pro-
cess [2]. Nevertheless, OLP often does not ensure the required accuracy and repeatability;
even using the most advanced robotic system, the motion parameters, namely, coordinate,
velocity, acceleration, deceleration, and required positioning tolerance, have to be adjusted
manually before operation [3]. However, sometimes even the final adjustment does not
provide the desired accuracy due to the actual positioning errors. The value of errors
depends on the robot characteristics and manipulation task [4]. Errors that depend on
robot characteristics include inaccuracies in the assembly, transmission gear backlashes,
and arm compliance [5]. In addition, kinematic mistakes occur due to serially connected
links that accumulate errors related to drives, mechanisms, and joints from the robot
base to the end effector [6–9]. Manipulation task performance depends on environmental
conditions, applied load, stiffness of mounting surface, and tool characteristics, such as
rotation speed, angle, and even lubrication [10]. Moreover, robot movement trajectory and
setpoint position in the workspace influence its positioning accuracy [11]. Additionally,
the robot’s movement is always affected by dynamic processes. Therefore, such a complex
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origin of positioning errors limits the implementation of common error compensation
techniques [12–18]. Therefore, new and reliable methods, such as visual recognition sys-
tems and machine learning (ML) algorithms, can be applied to improve robot positioning
accuracy and repeatability during operation [19–22].

One of the widely used ML algorithms to control physical equipment is the deep
q-learning algorithm, which belongs to the reinforcement learning ML type [23]. It allows
a robot to find the best positioning accuracy through trial-and-error interactions with the
environment rather than requiring positive or negative labels [24–29]. As a part of the
general robotic operation optimization technique, it gradually finds the best positioning
method and seeks to discover the most considerable cumulative reward value in each
iteration There are two main advantages of using the deep q-learning algorithm in an
industrial robot case: the possibility to introduce gathered live video data into it [30,31]
and the possibility to avoid the commonly known ML problems such as overfitting. The
principle of deep q-learning is based on the perception of the environment [32], the state
of the robot, and respective actions to achieve the maximum reward. Previous research
proved this algorithm’s suitability for defining the robot tool position using visual data,
finding the best combination of robot motion parameters, and generating output results
with corrected setpoint coordinates [26,29,33].

Since online robot training is a time-consuming procedure, the values of positioning
accuracy can be determined using ML simulation for actual cases. The simulation lasting
less than five minutes replaces physical experiments lasting more than five hours. The
convenience of the simulation is that it only requires a computer (except when it is necessary
to collect input data from the real robotic system). However, any simulation cannot perfectly
represent real-world conditions due to assumptions and simplifications used to describe
various unknown or undefined physical effects. Therefore, even if the algorithm works
well, simulation results require validation from experiments performed in operational
conditions. Consequently, simulation is an excellent method to select the most promising
combinations of algorithm parameters for testing in the real world.

The main aim of this paper is to present a methodology for the improvement of
industrial robot accuracy and repeatability using the deep q-learning algorithm with
optimal parameters. The methodology was evaluated by comparing simulations and
experiments using the KUKA youBot articulated robot as a workbench.

2. State-of-the-Art

This section reviews the machine learning-based methods used to improve the perfor-
mance of mechatronic and robotic systems or their components. From the perspective of
industrial robotics, the main ML implementation fields and goals are: sensor data analysis—to
increase object detection/recognition accuracy; tool path generation—to optimize motion
trajectory or energy consumption; and robot calibration and positioning errors analysis—to
save operational time and increase positioning accuracy.

2.1. Trajectory Generation and Its Accuracy

Trajectory generation is an essential task for robots and robotic systems operating in all
possible applications. Trajectory defines robot movement quality in terms of the accuracy
of static points at the end of the trajectory, intermediate points as waypoints within, and
acceleration levels during the entire movement cycle. Good trajectory uses minimum
possible intermediate points, defines paths using higher-order curves, and uses internal
robot interpolation facilities as the fastest and most efficient resource. Issues of accuracy
cover the entity of volumetric (or, in case, planar) coordinates of the target as a basis for
error definition at the actual robot position. Angular coordinate deviation questions are
often left behind except when manipulation tasks raise the requirement to ensure precise
tool orientation [34,35].

The accuracy of a robot’s trajectory and the required computational resources strictly
depend on the trajectory generation method. Recently, more and more attention is being
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paid to the automatic trajectory generation by copying human movements, for example,
in surgery, where movement trajectory is of vital importance. Wang and Majewicz Fey
developed a special ML procedure that implements a neural network for robot trajectory
generation [36]. The proposed method uses human gesture analysis as input and suc-
cessfully transforms it into a final robot motion. During experimental validation, highly
competitive accuracies were achieved of 92.5% for suturing, 95.4% for needle passing, and
91.3% in the knot-tying operations.

A summarized overview of various ML approaches for the improvement of robot
positioning accuracy and generation of trajectory is provided in Table 1.

Table 1. Summary of research focused on trajectory generation and its accuracy.

Aims Methods Hardware Achievements Ref.

To improve the accuracy of the
welding robot

Calibration based on deep
reinforcement learning.

Yaskawa MA1-440 with
controller DX200, laser

vision sensor,

Achieved control error of less
than 0.8 mm [37]

To develop an open access
dataset to verify robot
calibration algorithms.

Levenberg–Marquardt (LM)
algorithm and extended

Kalman filter (EKF)
ABB IRB120 robot The maximum positioning error

is decreased by 68.07% [38]

To reduce the absolute
position error of robots

Machine vision and
neural network

Hyundai Hi5 (HA006 model)
6-axis industrial robot,

pneumatic gripper, laser
measurement system, camera

Positional error reduced by
50.3%, reaching its absolute

value equal to 0.029 mm
[39]

To improve celerity and
accuracy of positioning for the
spatial pose of the delta robot

Basic and optimized BP neural
networks MATLAB simulation

Delta robot system can achieve
97.75% accurate positioning with

± 0.05 mm tolerance
[40]

To develop a positioning error
prediction model based on an

extreme learning
machine algorithm

An extreme learning
machine algorithm

KUKA KR210 R2700, a laser
tracker, and an accompanying

spherically mounted
reflector (SMR)

The accuracy of the robot was
improved by 75.89% and 80.93% [41]

To develop a system for
automatic segmentation of the

spine, pedicle identification,
and screw path suggestion for
use with an intraoperative 3D

surgical navigation system.

Automated model-based
approach. Accuracy was
evaluated by comparing

automatic segmentation to the
manually outlined reference

surface on Cone-beam images.

–
Success rate achieved of pedicle
screw planning accuracy equal

to 95.4%
[42]

Integrate accuracy
enhancement method for a
Cable-Driven Continuum

Robot (CDCR)

The kinematic model and
data-driven Gaussian Process

Regression technique

Prototype of the
CDCR, Qualisys Track

Manager with six cameras and
an industrial PC

Position and orientation
errors reduced by 68.72%

and 51.74%
[43]

To develop a method for
complex robot inverse
kinematics calibration

Inverse kinematic model based
on multilayer perceptron

“Sina” surgical robot,
infrared tracker

After calibration, positioning
and orientation accuracy

improved by 53% and
43%, respectively

[44]

An overview of the references shows that there are three main directions of ML
implementation in the field of positioning accuracy enhancement and trajectory generation:

• The development of new methods for manipulator calibration to compensate for the
positioning errors regardless of their nature. It is performed similar to our methodology.

• Implementation of ML into the robot controller to solve kinematic problems occurring
in complex structure manipulators where traditional methods are not suitable or
require a lot of computational resources.

• Implementation of ML into the trajectory generation process to enhance or generate
input data to optimize generated trajectory.
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2.2. Object Grasping

Using a robot as a manipulator, a device for pick-and-place tasks, and a general device
with a changeable load or end-of-arm tool embraces a general problem of grasping. The
variety of objects from solid to almost liquid state and their different geometric shapes
raises the requirements for object manipulation. However, this issue faces limitations such
as maximal acceptable forces or accelerations during the motion. Solutions existing in the
grasping area developed a tree-like structure of standard objects and assigned solutions
such as two- or three-finger grabbers. Nevertheless, individual problems raise tasks for
original designs and conceptions. The implementation of ML procedures recently covers
grabbing parameters, but, unfortunately, ideas and applications must be generated only by
human beings. ML in this area can adjust grabbing parameters to the optimal values.

The manipulation of complex geometry objects that slightly change their position or
orientation due to grasping action is a difficult task [22]. Typically, directions and ampli-
tudes of such movements are chaotic and hardly predictable due to arising uncertainties.
The authors raise the hypothesis that concerning the required positioning accuracy, the
machine learning-based classification method and computer vision system could be used
to define the object’s actual position after grasping. Such a solution could provide crucial
information for real-time movement trajectory correction. A similar object recognition
problem is mentioned in [45], where a composite structure inspection system consisting of
an industrial robot and laser profilometer is described. The robot actuates the profilometer
and quickly scans the part’s profile, providing profile height data as a grayscale image. A
convolutional neural network detects defects and assigns them to a certain class. Product
assignment to a particular class defines the required adjustments in the binding material
allocation algorithm, which typically results in trajectory changes of the robot or other
device placing the binder.

Luo et al. [46] presented a reinforcement learning-based solution for force/torque
control to assemble a tight-fit gear wheel set. Experiments showed that using reinforcement
learning, the robot provided fewer assembly errors due to part misalignment. Lie et al. [47]
implemented the least squares support vector machines method for image classification
to sort coal and gangue. The proposed system reached the identification accuracy of coal
88.3%, and the identification accuracy of the gangue sample was 90.0% with 0.130 s average
total time for one sample recognition. Reviews by Li et al. [48] and Bai et al. [49] analyze
the research progress in implementing machine learning for robotic grasping, including
aspects of machine vision or tactile feedback. A condensed review of the related research is
provided in Table 2.

The result of the performed review reveals three main directions on how ML can be
used in the grasping process:

• The combination of ML and computer vision ensures more precise object detection
and recognition as well as a more accurate definition of optimal grabbing position and
grabber orientation.

• ML can be used to analyze and process position or force feedback signals when it is
necessary to adjust the final robot tool position for successful grasping.

• ML significantly improves the manipulation process of unstable objects that can change
their position or shape due to the low stiffness, grasping impact, or gravity forces.

2.3. Sensor and Instrumentation

The intelligent application of robots and robotic systems requires sensors and their
data processing systems. Such systems recently armed with machine learning algorithms
can achieve high efficiency and early detection of issues. The implementation of ML
procedures can also sharpen these systems by increasing their accuracy or resolution. The
use of the sensors allows the creation of systems with artificial (synthetic) ontology, which
opens a space for further application of ML procedures. Instrumentation in robotics covers
fault detections of the system, early detection of defects, failure prevention, and other issues
required for successful task execution. A big issue in robotics is applications with virtual
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and augmented reality, allowing one to enhance the approach of synthetic ontology. This
field of research lays on the frontier of applied science, and achievements there will bring
significant changes in robot perception.

Table 2. Summary of research on robot grasping technology enhancement using machine learning.

Aims Methods Hardware Achievements Ref.

To develop an image
positioning and identification

system for coal and gangue
sorting robot

Least squares support
vector machines

Industrial computer,
V-GE502GC-T-CL

Camera, MV-LD-12-10 M-J
lens, robotic manipulator,

belt conveyor

88.3% identification accuracy
of the coal and 90.0% of the

gangue sample
[47]

To build a robotic system that
integrates grasping, vision,
and motion planning to be

able to pick items from a shelf
to specific order boxes

Combination of machine
learning and conventional

feature-based strategy

Two lightweight UR5 robot
manipulators, 3 stereo

cameras, and 2
custom-built grippers

The system was able to pick 10
target items correctly in

around 8 min
[50]

To incorporate force/torque
information into

reinforcement learning

Iterative Linear-Quadratic-
Gaussian algorithm Rethink Robotics Sawyer robot

Results show that using
force/torque data, assembling

accuracy of precise
components could

be increased

[46]

To develop a method
combining a quality inspection

system and process control

A convolutional neural
network and computer vision

Kuka KR120 robotic arm
Keyence LJ-7080

laser profilometers

A system able to detect defects
and provide their

quantitative characteristics
[45]

To develop a method for
complex-shaped object

position estimation
after grasping

Machine learning-based
classification method

A robotic arm equipped with a
parallel gripper

The presented approach can
be used as a good solution to

overcome the possible
uncertainties during the

execution of a grasping task.

[22]

To develop a method
estimating the geometric

primitives of multiple circles
in the 3D space for

robot-assisted
industrial automation

Multiple circular contours
extraction, Maximum
Likelihood Estimation

SampleConsensus (MLESAC),
Rodrigues formula, Delaunay

triangulation,
hierarchical clustering

KUKA KR 6 robot, AccuProfile
820-60 laser, linear motion

system Rexroth Bosch

The method successfully
implemented automation of
the riveting of the fastener

components on an
aerospace structure

[51]

To implement semantic tasks,
reach to grasp method for the

industrial robot

Semantic grasp planning,
model-based

trajectory generation

Kinect depth sensor,
7 DOF Light Weight KUKA

robot, WSG 50 parallel
jaw gripper

Object discovery accuracy
95.8% Grasping
accuracy 81.2%

[52]

Ribeiro et al. [53] used ML to increase the accuracy of human movement trajectory
tracking using inertial measurement units. Their proposed method defines zero velocity
and evaluates the regression of translations in periods of movement. Xiao et al. [54]
proposed the implementing of ML to decrease IMU tracking errors by learning typical error
patterns and later compensating for them. As a result, the obtained trajectory could be
transformed easier and faster into robot motion commands.

Cheng et al. in [55] proposed a fault prediction method for industrial robots. It
measures the electrical current used by the motors and analyzes it in time and frequency
domains. The main diagnostic parameters are the magnitude fluctuation index and signal-
to-noise ratio. The magnitude fluctuation index is extracted in the time domain using
Hilbert transformation, and the signal-to-noise ratio is defined as the ratio between frequen-
cies in the spectrum obtained by the short Fourier transformation. The Gaussian mixture
model detects failure by clustering the obtained parameters as normal and faulty.

The outcome of the review of research focused on sensors and instrumentation in
robotics is listed in Table 3.
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Table 3. Summary of research on sensors and instrumentation in robotics.

Aims Methods Hardware Achievements Ref.

To compensate for
undermined calibration values,
sensor movement latency, and
displacement offsets of IMU

Multilayer perceptrons, deep
neural networks IMU and IR sensors 69% reduction in tracking errors [54]

To improve the accuracy of the
force/torque sensor

Linear regression,
Support Vector Regression

High dynamic range F/T sensor
based on flexure mechanism

Accuracy has been improved
using time-series data for

sensor calibration
[56]

To calibrate augmented reality
device using 3D depth

sensor data

Neural network based on the
VoteNet architecture

Microsoft Hololens,
Kuka Mobile Youbot,

Visual Studio 2019

Elimination of external tools
used for augmented reality

data calibration
[57]

To develop a methodology to
detect and localize

external contact

Random Forests and
multilayer perceptrons

Proprioceptive sensors (joint
positions, velocities, and

one-dimensional (1D) joint
torques. Kinova Jaco

2 manipulator

The time constant to detect
contact equals 0.005 s in cases

with a high contact
force gradient

[58]

To improve the accuracy of
IMUs used for

position tracking

ML regression models based
on long short-term memory Xsens Avatar. 17 IMU’s

The proposed method ensures a
lower average error of

position tracking
[53]

To develop a fault prediction
system for industrial robots

Gaussian mixture
model-based unsupervised
fault detection framework s

Industrial robot,
current sensors

Prediction of gear wear faults in
the robot with higher than

96% accuracy
[55]

The analysis of references related to ML-based sensing and instrumentation in robotics
emphasizes that the mainstream in this field is human movement trajectory tracking and
its transformation into the robot control program. Another actual research direction is the
implementation of ML for internal robot parameter monitoring to predict possible faults
and unwanted impacts from the environment, for example, contact with other objects.

The provided analysis of ML applications in the field of robotics covers specific areas
mentioned in the highlighted references that focus on various aspects but mainly result in
the increase in accuracy, efficiency, or functionality. Nevertheless, this area is not limited
by these research items. The wide variety of robotic tasks creates a considerable space for
unique and individual solutions.

3. Materials and Methods
3.1. Deep Q-Learning-Based KUKA YouBot Control Method

The KUKA youBot articulated robot [59] controlled by a unique software platform
consisting of six merged modules (Figure 1) was used in our research. All software mod-
ules, mainly written in Python language, operate simultaneously and perform individual
functions. Communication with external devices is performed through additional drivers,
libraries, and robot operating system (ROS). The latter communicates with the robot using
dedicated drivers and libraries provided by the manufacturer.

The created ML_control module contains the deep q-learning algorithm [60]. It receives
the values of global variables from the Globals module, which synchronizes Globals’
variable values among several Python programs running on the control system. The
ML_control module communicates with the Main, accepting input values and sending the
ML algorithm’s output value.

The user interface was realized within the Main module, which controls the flow of
the experiment. The Main module also includes experiment and simulation algorithms
and the data input/output functions. The Main sends the command to the Vision module,
which takes a photo of the target using a digital microscope, identifies the target, calculates
its center coordinates, and sends them back to the Main.
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The Botmover module gives low-level access to the robot control parameters and
allows control of the KUKA youBot by an external program. The primary function of this
module is to control robot joint angles based on coordinate requirements received from the
Main via ROS_comms. Once a set of coordinates and a command to move to that position
are received, angle values for each joint are calculated by solving the inverse kinematic task.
Then, by employing youBot libraries and drivers, the joint angle data are sent to the robot
to perform the corresponding motion. Such a method enables close to real-time control of
the robot from the Main module. The Botmover runs in an infinite loop until interruption
by the user or another program.

Communication between the Botmover and other programs runs in asynchronous
mode. It is based on the publisher–subscriber principle and is realized via means and
libraries of ROS. The ROS_comms module acts as an intermediary between the Botmover
program written in C++ and the Python programs. It enables full control of the robot
parameters and movements directly from other Python applications.

3.2. Implementation of the Method

The simulation and experiment algorithm (Figure 2) running in the Main module is a
cycle performing certain functions that repeat many iterations (400–4000). The cycle begins
by inputting five values from the previous cycle into the ML. If the cycle runs for the first
time, the parameter’s value is zero. In the other cases, the algorithm takes the correction
step and the deviation values in the y and z directions from the previous cycle.

The output from the ML goes in the form of a single natural number, thus converting it
into the appropriate correction step stored in the memory. The correction step is a correction
performed in one iteration and exists in the form of a vector (value and direction). Firstly,
this is where an array of vectors is created containing all defined vectors. Then, the accepted
ML output is assumed to be an index of that array. Each ML output value is assigned with
the corresponding correction step. The vector components of the correction step are defined
with the coordinates of the target in space to obtain the corrected coordinates.

The goal of the algorithm is to obtain corrected coordinates. The correction steps
are cumulative. They continue to add the results of the current iteration to the results
of all previous iterations. After defining the corrected coordinates, the robot receives
the command to execute them in real-time. The Vision module takes the target picture,
calculates the actual target coordinates, and sends a command to return the robot to the
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“home” position. The actual coordinates of the target are compared with the theoretical
ones to determine the deviation values and directions.
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After determining the deviations, the ML algorithm activates the reward function,
which determines the value of the reward depending on the obtained deviations value. The
value of the reward indicates to the algorithm how much the performed action corresponds
to the desired result.

A positive reward indicates that the current iteration achieved the desired result. The
magnitude of the reward is proportional to the result achievement level. A positive reward
is given as output when one of the two conditions is fulfilled: (I) the deviation found in
the current iteration must be smaller than in the previous iteration; (II) the deviation in the
current iteration is less than half of the average deviation when the robot moves without
correction. A negative reward is received when: (I) the measured deviation in the current
iteration is greater than or equal to the deviation in the previous iteration; (II) or the threshold
is exceeded (correction value is so high that any deviation compensation is impossible).

Such a reward function motivates the algorithm to perform actions that would reduce
the deviations in each iteration until, in an ideal situation, a specific optimal point (average
deviation reduced by half) is reached. However, due to the stochastic nature of some
sources of positioning errors, it would be very difficult or impossible to reach such a point.
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Nevertheless, it is useful to have such a point as the goal is an ideal deviation value that
must fit as close as possible.

The resulting deviation and reward values are stored in memory at the end of each
iteration. Afterward, a learning cycle is restarted for a new iteration.

For speed and convenience, the Main module can also perform simulations with or
without the use of collected real data. The simulation uses most of the same blocks of
the Main code and the actual experiment code (Figure 2). The difference is that instead
of sending commands to the robot and the camera, the simulation uses data collected
experimentally when the robot was moving thousands of iterations without correction.
These data represent the actual positioning accuracy of the robot. Such a dataset gives a
possibility to use it in an unlimited number of simulations. Moreover, it minimizes the
required number of iterations by loading the algorithm memory with real data before
performing the online training.

3.3. Methodology of the Research

By using data representing experimentally obtained actual coordinates when the robot
moves without correction, many simulations were performed in advance to speed up the
experiments and define the best combination of algorithm parameters.

The deep q-learning algorithm with parameters providing the most seemingly suc-
cessful results was further tested experimentally.

All experiments were performed at maximum operating speed when all joints were
rotating at 90◦/s to test the worst possible conditions at which the accuracy is mainly
affected by inertial forces. The trajectory of the robot movement, the “home”, and target
positions (Figure 3) were chosen so that all robot joints would move by similar angles
during movements.
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positions during each cycle of the experiments. 1—target, 2—robot, and 3—microscope.

The experiment began by finding the theoretical target. The robot moved to the
“home” and “target” positions 100 times, while the Vision module defined the target center
coordinates and sent them to the ML_control memory. The ML_control calculated the
target’s average coordinates, further used in the training procedure algorithm.

The algorithm was trained using parameter values obtained from simulations. The
robot moved from the “home” position to the target position with the target coordinate
correction. A digital microscope took a picture of the target and sent it to the Vision
module to detect the target position in the picture and define its center coordinates. The
obtained coordinates were transferred to the Main module, which processed the data and
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wrote them to memory. The Main module calculated the deviation in y and z directions
and wrote data into memory. Then the procedure activated the reward function and
saved the determined reward for the deep q-learning algorithm in computer memory.
Horizontal (y), vertical (z), and absolute deviations, as well as previous correction steps,
were transferred into the machine learning algorithm. The algorithm calculated the values
of the coordinate corrections for the next iteration. In the simulation run of 4000 iterations,
experimental tests stopped after completing 800 iterations since further training did not
give any improvement.

4. Results
4.1. Results of the Simulation

The standard deep q-learning algorithm has four main parameters: activation function,
optimizer, replay memory, and temperature [49]. The activation function defines the
algorithm’s output for a given input or set of inputs. An optimizer is a parameter that
controls interconnections among neurons (synapses) and affects how the final algorithm
works over a long period. The replay memory is a function that allows the algorithm to use
the previous experience to decide on the present. Temperature is a parameter that regulates
the exploration–exploitation ratio. The efficiency of the deep q-learning algorithm depends
on the combination of these parameters.

The appropriate algorithm configuration and its parameters were obtained from the
simulation procedure. The ML algorithm made coordinate corrections to compensate for
the positioning errors, thus improving the robot’s positioning accuracy after a number
of training cycles of the machine learning algorithm. The number of training cycles for
the machine learning algorithm was small enough to make training practical in terms
of time (e.g., the total training took no more than a few hours). After developing the
optimal algorithm, multiple variations of the parameters were tested and evaluated in the
simulations. By varying each parameter, tens of 4000 iteration length simulations were
performed to find the best combination of their values.

The quality of the defined parameter combinations was evaluated by the standard
deviation of the mean error values of the last 300 iterations (Figure 4) and the stability of
the long-term process. These values show how strongly the results vary when a certain pa-
rameter is changed. The lower standard deviation value means that the smaller parameter
change affects the result.
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The determined optimal combination of parameters shows that an extensive artificial
neural network is not required for this purpose, but an extensive amount of replay memory
is useful. Simulations have shown that an increase in at least one or both mentioned
parameters does not significantly improve the results, and it prolongs simulation time. A
higher temperature value indicates a high algorithm operating stability.

4.2. Results of the Experiment

Robot positioning accuracy was evaluated using the algorithm parameters deter-
mined from the simulations. The dependency of relative position vs. the number of
iterations shows how the position of the robot end effector changes during 800 motion
cycles (Figure 5). It is seen that internal sensors do not notice the position drift when the
robot works without the correction. The positioning deviation (curve 2, without correction)
has practically the same amplitudes and trends in both y- and z-axes: 0.08 mm (from 1.10 to
1.18 mm) in the z-axis and 0.07 mm in the y-axis (from 1.08 mm to 1.15 mm). This difference
might be explained by the fact that the load carried by the robot affects the movement of
the robot mainly in the vertical direction.
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The dependencies of the corrected position vs. iteration (Figure 5) show a completely
different trend than the uncorrected case: large variations in position coordinates in the
learning position of approximately 220 iterations. This behavior is highly expected because
the algorithm at the beginning of the training performs “exploration”. At the end of this
stage, there was a drastic change in the accuracy characteristics, and these coordinate
values became much more stable. As in the case of uncorrected motion, the amplitude of
fluctuations in the vertical axis is larger than in the horizontal axis. However, the adjusted
positioning shows many more stable trends in the process perspective—both coordinates
remain approximately constant.

The absolute error in terms of the number of iterations used to determine the robot’s
positioning accuracy changes over time (Figure 6). As was expected, the positioning
deviation increases with the number of iterations, and significant random error value
fluctuations are observed in the short run.
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The position deviation graph shows a distinct picture of the ML outcome from the original
state. Here, after the end of the transient learning phase, when the steady learning phase begins,
it is obvious that the value of the error remains approximately constant and is equal to that
which occurs at the beginning of the uncorrected positioning. Such a situation indicates that
the algorithm successfully eliminates positioning drift, although the mean error value remains
similar to that which appears at the very beginning of the uncorrected positioning.

5. Discussion

There are a few algorithms that have been used for similar research, and each one
has its own set of approaches that focuses on distinct factors. More detailed information
about the methods and their achievements is provided in Table 1. Our research brings fresh
results for machine learning integration into the robotic system as the strategy to increase
robot positioning accuracy.

Our key finding is that applying different parameters to the ML algorithm helps us
separate the relevance of certain characteristics and choose where we should concentrate
our efforts. The importance of the algorithm setup parameters to achieve better learning
procedure results is shown in Figure 4. This analysis might save time and resources in
future studies, as well as improve the efficiency of the research.

Nevertheless, the proposed methodology faces limitations, too. Initially, this proce-
dure is useful in case of a small number of points of interest in the trajectory. A considerable
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amount of data will require the entire mapping of the robot workspace rather than posi-
tioning error compensation ad hoc. The proposed ML procedure focused on the individual
case of position, robot configuration in this position, and carrying load or end-of-arm tool.

The advantage of this methodology is that it is easy to use in the installed robot
environment, where a particular task is processed, and the learning process brings an
optimal value of robot position compensation for the analyzed case. Running the procedure
does not require a ML professional; this is affordable for robot operators when the general
script for the learning process is uploaded into a robot control system. Such a situation
is advantageous in the real operation environment, especially for production process
adjustment after its changes.

Although the principle of positioning error compensation is similar everywhere, the
methods for achieving the result are very different (Table 1). Only similar robotic systems,
signal fusion, and algorithms can be compared. The two closest studies to our method
performed on 6 DOF robots with an image recognition system using deep reinforcement
learning yielded an accuracy improvement of 20% and 50.3%, respectively [37,39]. Our
algorithm reached a 66.6% improvement in positioning accuracy, decreasing the absolute
positioning error value from 0.09 mm to 0.03 mm.

As a scope of this research, the activity mainly focuses on one aspect of the robotic
accuracy issues. A few further steps toward a multifunctional solution are required to
make these results more applicable. Specifically, this research develops an algorithm for
compensating position errors using visual control, performed by the optical sensor, which
requires the installation of a camera with corresponding optics, with a magnifying ratio
not less than 50×. During this ML process, the algorithm is constantly searching for the
best path to reduce positioning errors after learning; therefore, the final number of loops
does not exist. Continuous procedure during its run decreases error, but the best-achieved
result with the time passing fluctuates due to process exploration. Therefore, the best
learning result could be chosen separately from the learning history. On the other hand,
the continuous learning mode loses a bit in positioning accuracy but remains flexible for
the compensation values adjustment in case of external condition change (loads, thermal
conditions, etc.).

Future studies could focus on eliminating the necessity to add visual control into the
ML algorithm. This could be accomplished by locking/freezing compensation coordinates
discovered without the use of visual sensors. To eliminate the constant need for a camera,
it is possible to use distance sensors or their array and keep feeding the algorithm with live
data from them together with internal robot sensor data. Future robotic systems possibly
will be supplied with an internally installed ML technique using externally mounted
sensors, indicating absolute positions of the robot’s trajectory points of interest.

6. Conclusions

This research provides an attempt to improve robot positioning accuracy using ML
techniques. The implemented deep q-learning algorithm demonstrated efficiency by de-
creasing the robot position error from 0.09 mm to 0.03 mm. This result appeared as an
outcome after approximately 800 iterations of the training process.

The newly created methodology improves the reliability and accuracy of robot posi-
tioning and decreases the duration of the ML procedure. This algorithm developed on the
workbench allows accounting control of an unlimited number of variables per iteration
with the proposed ML algorithm. This methodology is realized through the graphical user
interface, which allows real-time monitoring of the procedure progress and control.

Nevertheless, the experimental learning process took a long time; therefore, there is an
interest in and space for ML process simulation, which increase learning process efficiency.
For this purpose, the original robot position deviations on the required point were stored
and later used as simulation input. The developed methodology for simulation with many
input parameters uses a special neural network. The simulation process lets us choose
optimal activation and optimizer functions as well as the size of replay memory and the
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value of temperature. Moreover, after excessive trials, we defined the optimal size of the
artificial neural network; it took one hidden layer with 37 neurons. The values obtained
from the simulation were validated experimentally and confirmed initial assumptions of
the proposed methodology. The robot positioning drift in the target point was efficiently
compensated for externally without access to the internal robot control system.

The developed methodology of the online ML procedure is useful for all types of
industrial robots. It is unrelated to the robot control system since it runs on independent
external hardware. Our findings create a base of user-friendly and in-place online ML
procedures that need adjusting to the level of the end user. Future research includes the
analysis of different types of ML algorithms, the development of sensor fusion methods
for online robot accuracy control, and further development of the algorithm focused on
improving the accuracy of the entire robot trajectory.
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