
Systems biology

Nezzle: an interactive and programmable visualization of

biological networks in Python

Daewon Lee 1,2

1School of Art and Technology, College of Art and Technology, Chung-Ang University, Anseong, Republic of Korea and 2Graduate

School of Advanced Imaging Sciences, Multimedia, and Film, Chung-Ang University, Seoul, Republic of Korea

Associate Editor: Pier Luigi Martelli

Received on October 7, 2021; revised on March 29, 2022; editorial decision on May 7, 2022; accepted on May 9, 2022

Abstract

Summary: High-quality visualization of biological networks often requires both manual curation for proper alignment
and programming to map external data to the graphical components. Nezzle is a network visualization software written
in Python, which provides programmable and interactive interfaces for facilitating both manual and automatic curation
of the graphical components of networks to create high-quality figures.

Availability and implementation: Nezzle is an open-source project under MIT license and is available from https://
github.com/dwgoon/nezzle.

Contact: dwlee@cau.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A variety of real-world phenomena such as biological pathways,
communication networks and social relationships can be repre-
sented as networks (Barabási, 2016). An insightful visualization of
networks facilitates understanding of the analyzed networks and
leads to important discoveries. Therefore, open-source software for
analyzing and visualizing networks such as GraphViz (Ellson et al.,
2001), NetDraw (Borgatti, 2002), Cytoscape (Shannon et al., 2003),
Pajek (Batagelj and Mrvar, 2004) and Gephi (Bastian et al., 2009)
have been developed, and they have made significant contributions
to the field of network science.

As the Python programming language has become a lingua franca
for scientific computing (Harris et al., 2020), the demand of scientific
communities for network visualization in Python has led to the develop-
ment of the essential libraries and plug-ins. For example, PyGraphviz is
a Python interface to the Graphviz, which allows programming the
applications of GraphViz in Python (Hagberg et al., 2004). Gephi pro-
vides a scripting plug-in for Python scripting based on Jython (Bastian
et al., 2009), and GephiStreamer is a third-party Python package that
communicates with Gephi through WebSocket and REST API (Totet,
2014). Cytoscape also supports Python programming through CyREST
and py4cytoscape (Demchak, 2020; Ono et al., 2015). However, the
aforementioned methods have some limitations in terms of interactive
graphical user interface (GUI) and seamless programming in Python.
PyGraphViz does not provide any interactive GUI. Python program-
ming in Cytoscape and Gephi is inherently indirect, since they are imple-
mented in Java and rely on a client–server communication.

To achieve both interactivity and seamlessness for visualizing
biological networks with external data in Python, we have devel-
oped a network visualization software named Nezzle (it means
Net þ Puzzle, because adjusting nodes and edges of a network for

visualization is similar to doing a puzzle). Nezzle provides inter-
active and programmable interfaces that allow users to adjust the
positions of nodes and edges and automate the stylization of
graphical components through Python programming.

Figure 1A shows the place of Nezzle in the ecosystem of net-
work visualization in Python. It is located at the position that rep-
resents a compromise between interactive GUI and seamless
programming in Python. PyGraphViz with Matplotlib (Hunter,
2007) and NetworkX (Hagberg et al., 2008) is one of the success-
ful solutions for automating network visualization. However, users
may have a hard time arranging graphical components as this solu-
tion lacks an interactive GUI. On the other hand, Nezzle pursues a
lightweight and highly customizable software rather than an
enterprise-level and all-in-one software that presents an integrated
visualization and analysis environment (IVAE) such as Cytoscape
and Gephi. Therefore, the GUI of Nezzle is designed to be as min-
imal as possible, while solving most problems programmatically.

2 Features and use cases

2.1 Design concept
Visualization in Nezzle is designed primarily to be performed
through code execution, and the graphical components are edited
manually via the network view of GUI only when necessary
(Fig. 1B, Supplementary Fig. S1). This is similar to refining the ele-
ments of a Matplotlib figure through the GUI after plotting by code
execution (Hunter, 2007). One of the important features of Nezzle
is seamless programming in Python, which means that any Python
module or package can be a plug-in for extending the functionality
of Nezzle without inter-process or server–client communications
(Supplementary Fig. S2).

VC The Author(s) 2022. Published by Oxford University Press. 3310

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(12), 2022, 3310–3311

https://doi.org/10.1093/bioinformatics/btac324

Advance Access Publication Date: 13 May 2022

Applications Note

https://orcid.org/0000-0002-3004-2901
https://github.com/dwgoon/nezzle
https://github.com/dwgoon/nezzle
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac324#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac324#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac324#supplementary-data
https://academic.oup.com/


2.2 Lightweight visualization
Most scientists today use high-level languages such as Python, R,
and Julia rather than Java and Cþþ. With a few changes, scientists
can develop their own visualization pipelines based on existing
Python codes with Nezzle. In particular, in the case of simple styling
automation or visualization of external data through programming,
it is more productive to utilize a lightweight software that supports
a high-level language like Python (see Supplementary Notes). Nezzle
is expected to be an alternative to programming in low-level lan-
guages for network visualization.

2.3 Rapid prototyping
Nezzle provides a set of essential features for rapid prototyping
to visualize biological networks (Fig. 1C). In general, research-
ers have to go through a trial-and-error process until they obtain
a satisfactory visualization. Users can copy network images
from Nezzle and paste them into presentation or word processor
software via clipboard to accumulate and compare intermediate
visualization results. After confirming the final visualization,
users can also export networks as high-quality images or movies
for publication.

Nezzle can be a testbed for rapidly evaluating the feasibility of
algorithms related to biological networks in Python. For example,
users can develop a prototype of network visualization algorithm
that is optimized based on a GPU-accelerated deep learning frame-
work such as PyTorch (Paszke et al., 2019). After developing
prototype-level algorithms in Nezzle, users may want to implement
the algorithms as product-level plug-ins for IVAEs such as
Cytoscape or Gephi (Fig. 1C).

3 Conclusion

To achieve both manual curation as well as automatic stylization for
high-quality visualization of biological networks in Python, Nezzle

provides interfaces for interactive graphics and dynamic code execu-
tion. Nezzle enables users to rapidly prototype network visualiza-
tion while obtaining high-quality images for publication. We expect
Nezzle will contribute to advancing the ecosystem of network
visualization.

Acknowledgements

We thank the members of Complex Intelligent Systems Laboratory at Chung-

Ang University (https://cislab.cau.ac.kr) for their critical reading and valuable

comments.

Funding

This research was supported by Chung-Ang University Research Grants in

2020, and by Culture Technology R&D Program 2021 through the Korea

Creative Content Agency funded by Ministry of Culture, Sports and Tourism

(A Specialist Training of Content R&D based on Virtual Production,

R2021040044).

Conflict of Interest: none declared.

References

Barabási,A.-L. (2014) Network science book. Netw. Sci., 625.

Barabási,A.-L. (2016) Network Science. 1st edn. Cambridge University Press,

Cambridge, England.

Bastian,M. et al. (2009) Gephi: An Open Source Software for Exploring and

Manipulating Networks. In Proceedings of the Third International AAAI

Conference on Web and Social Media, San Jose, California, USA, Vol. 3, pp.

361–362.

Batagelj,V. and Mrvar,A. (2004) Pajek—analysis and visualization of large

networks. In: Graph Drawing Software. Springer, Berlin, Heidelberg, pp.

77–103.

Borgatti,S.P. (2002) Netdraw software for network visualization. Analytic

Technologies, Lexington, KY, p. 95.

Demchak,B. (2020) py4cytoscape. https://github.com/cytoscape/py4cyto

scape (27 February 2022, date last accessed).

Ellson,J. et al. (2001) Graphviz—open source graph drawing tools. In:

International Symposium on Graph Drawing. Springer, Berlin, Heidelberg,

pp. 483–484.

Hagberg,A. et al. (2004) PyGraphViz. https://github.com/pygraphviz/pygraph

viz (27 February 2022, date last accessed).

Hagberg,A. et al. (2008) Exploring network structure, dynamics, and function

using networks. Technical report. Los Alamos National Lab. (LANL), Los

Alamos, NM.

Harris,C.R. et al. (2020) Array programming with NumPy. Nature, 585,

357–362.

Hunter,J.D. (2007) Matplotlib: a 2D graphics environment. Comput. Sci.

Eng., 9, 90–95.

Ono,K. et al. (2015) CyREST: turbocharging cytoscape access for external

tools via a RESTful API. F1000Research, 4, 478.

Paszke,A. et al. (2019). PyTorch: an imperative style, high-performance

deep learning library. In Proceedings of the 33rd International

Conference on Neural Information Processing Systems, Vancouver,

Canada, pp. 8026–8037.

Shannon,P. et al. (2003) Cytoscape: a software environment for integrated

models of biomolecular interaction networks. Genome Res., 13,

2498–2504.

Totet,M. (2014) GephiStreamer. https://github.com/totetmatt/GephiStreamer

(27 February 2022, date last accessed).

Fig. 1. Overview of Nezzle. (A) Location of Nezzle in the ecosystem of network

visualization in terms of interactive GUI and seamless programming in Python. (B)

Main components of Nezzle GUI. (C) Use cases of Nezzle.

Nezzle 3311

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac324#supplementary-data
https://cislab.cau.ac.kr
https://github.com/cytoscape/py4cytoscape
https://github.com/cytoscape/py4cytoscape
https://github.com/pygraphviz/pygraphviz
https://github.com/pygraphviz/pygraphviz
https://github.com/totetmatt/GephiStreamer

