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Introduction
Adiponectin was characterized, in 1995, as 
a protein abundantly secreted by 3T3‑L1 
adipocytes and present at high plasma 
concentrations in mice. Adiponectin is also 
referred to as ACRP30, AdipoQ, apM1, 
or GBP28. Four different teams working 
differently discovered that it is produced 
by the white adipose tissue almost at the 
same time.[1‑4] Of all this nomenclature, 
the name adiponectin (ApN) is the most 
widely accepted. Numerous studies have 
made it possible to establish the determining 
role of ApN in energy homeostasis, the 
metabolisms of lipids and carbohydrates, 
in particular in muscle and liver, as well as 
its anti‑inflammatory and anti‑atherogenic 
properties.[5] ApN has also been detected 
in skeletal muscle,[5] cardiomyocytes,[6] 
osteoblasts,[7] lymphocytes,[8] adrenal gland,[9] 
placenta,[10] testis,[11] ovary,[12] pituitary 
gland,[13] and liver tissue.[14] The objective of 
this review is to analyze current knowledge 
concerning ApN and, in particular, its role in 
physiology and pathophysiology.

Adiponectin Structure and Biology
Structure of adiponectin

ApN is a specific protein in the adipose 
tissue of 247 amino acids with a molecular 
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weight of 30 kDa in mice and 244 amino 
acids with a molecular weight of 28 kDa 
in humans.[1,4] The protein structure of ApN 
includes four parts: a signal region at the 
NH2‑terminus, a variable region that is 
species specific, a collagenous domain and a 
globular domain at the COOH‑terminus.[15]

Circulating ApN oligomers are 
present in plasma in three multimeric 
forms [Figure 1]. The assembly is carried 
out beforehand in the endoplasmic reticulum 
by post‑translational modifications, such 
as hydroxylations and glycosylations of 
the ApN monomer. The globular domain 
allows the formation of low molecular 
weight trimers by hydrophobic bond, and 
the interactions at the level of the collagen 
domain by disulfide bonds allow the 
formation of medium molecular weight 
hexamers (association of two trimers), 
and high molecular weight multimers 
(4 to 6 trimers). ApN is also present in 
plasma in its globular form alone, resulting 
from proteolysis, but in very small 
quantities.[16] The different forms of ApN 
have different biological properties and 
probably different tissue targets.

Synthesis of adiponectin

Unlike other adipokines, ApN has an inverse 
relationship with obesity.[17] Several studies 
have shown that weight loss, including a 
reduction in body fat, is accompanied by 
an increase in circulating ApN levels.[18] 
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The increase in circulating ApN induced by weight loss is 
not homogeneous but is in favor of the HMW form and 
to the detriment of the LMW and MMW forms.[19] This 
is important, considering that the high molecular weight 
form is currently considered to be the active form of 
ApN, or at least more active than the LMW and MMW 
forms.[20,21] During puberty, a notable decrease in the 
circulating ApN concentration is observed in males.[22] In 
addition, circulating ApN levels also vary by ethnicity[23] 
and are positively associated with age.[24] Arai et al. (2006) 
showed that centenarians had higher circulating ApN 
levels than younger people with the same BMI.[25] The 
body fat of the subjects was not measured in this study, 
however. The circadian variation profile of ApN shows that 
concentrations fluctuate by about 20% over 24 hours, with 
a slight decrease in rates overnight until a minimum in the 
early morning.[26] This daily variation seems to be greater 
in women than in men and would not differ between thin 
and obese subjects.[27]

Structure of adiponectin receptors

To exert its biological effects, ApN must bind to its 
specific receptors. The AdipoR1 and AdipoR2 receptors 
were first identified by Yamauchi et al. (2003),[28] and T. 
Cadherin [Figure 1], a member of the cadherin family, has 
also been identified by Hugh et al. (2004) as a receptor of 
hexamers and HMW adiponectin oligomers.[29]

The AdipoR1 and AdipoR2 receptor genes are located 
on chromosomes 1, locus 1p36.13‑q41, and 12, locus 
12p13.31, respectively. AdipoR1 and AdipoR2 are members 
of the progestin and AdipoQ receptor superfamily, which 
possesses seven transmembrane domains. They are 

topologically integral membrane proteins with intracellular 
N‑terminus and extracellular C‑terminus, which is the 
reverse topology of all other G‑protein coupled receptors.[28]

The AdipoR1 receptor has a higher affinity for the globular 
form, while the AdipoR2 receptor preferentially binds to 
the high molecular weight form [Figure 1]. It was initially 
shown that the AdipoR1 receptor was mainly expressed in 
skeletal muscles and AdipoR2 in the liver.[28] Subsequently, 
the expression of these receptors has been identified in other 
tissues, such as the myocardium, macrophages, brain tissue, 
endothelial cells, lymphocytes, and adipose tissue,[30] or in 
pancreatic β cells where the level of expression of AdipoR2 
is even equivalent to that of its expression in the liver, and 
the level of expression of AdipoR1 higher than that of its 
muscle expression.[31] Studies in mice have confirmed that 
these two receptors are the main ApN receptors in vivo 
and that they mediate the effects of ApN.[32] Thus, KO 
mice for these two receptors develop glucose intolerance 
and hyperinsulinemia, showing their major involvement 
in carbohydrate homeostasis and insulin sensitivity. These 
effects appear to be receptor‑specific, with in particular 
the involvement of AdipoR1 in the activation of AMPK 
while AdipoR2 is involved in the activation of PPARα.[30] 
More generally, a study to invalidate these receptors has 
shown that the involvements of the AdipoR1 and AdipoR2 
receptors in metabolism are very different.[33] In particular, 
they showed that AdipoR1 KO mice increase their adipose 
mass and insulin sensitivity, and decrease their glucose 
tolerance and energy expenditure. Conversely, AdipoR2 
KO mice show better sensitivity to insulin and glucose, 
maintain normal body weight even under a fatty diet, spend 
more energy and improve their dyslipidemia.

Figure 1: Adiponectin structure and receptors.Monomeric ApN consists of a globular domain, a collagenous domain, a species-specific domain, and a 
signal peptide. Oligomerization facilitates the formation of the trimers (LMW), hexamers (MMW), and multimer (HMW). S-S: disulfide bond.ApN interacts 
with ApN receptors: AdipoR1, AdipoR2, and T-Cadherin. The dotted line between AdipoR2 and globular ApN reflects that AdipoR2 is a relatively low-affinity 
receptor for globular ApN
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T‑cadherin is a glycoprotein involved in cell adhesion and 
a potential receptor for ApN. It is colocalized at the cellular 
level with ApN and is expressed in tissues like aorta, heart, 
or skeletal muscle, but almost none T‑cadherin can be found 
in liver.[34] Only the high molecular weight complexes of 
ApN are capable of binding T‑cadherin, which implies 
that post‑translational modifications of ApN are essential 
for its binding. It is therefore conceivable that T‑cadherin, 
which is an extracellular protein without an intracellular 
domain, can act as an ApN binding protein rather than as 
a co‑receptor.[29] It has been shown by Fukuda et al. (2017) 
that T‑cadherin has a role in adiponectin binding, especially 
the 130‑kDa prodomain‑bearing where T‑cadherin is 
preferentially localized on the cell surface and bound 
more adiponectin than its 100‑kDa form.[35] exosomes that 
contain adiponectin and T‑cadherin are released in response 
to adiponectin in cells expressing T‑cadherin.[36]

Regulation of adiponectin receptor expression

Various factors regulate the expression of ApN receptors, 
which are thus expressed differently depending on the 
tissue. In the adipose tissue of transgenic mice for the ApN 
gene, with a targeted overexpression of ApN in adipose 
tissue, the level of expression of the AdipoR2 receptor 
is increased, but not that of AdipoR1.[37] Furthermore, 
in adipose tissue, the expression levels of ApN receptors 
are associated with the level of tissue expression of 
ApN.[38] The expression levels of AdipoR1 and AdipoR2 are 
inversely correlated with body fat and obesity.[39,40] Unlike 
the expression of ApN itself, there is no sexual dimorphism 
in the expression of ApN receptors in adipose tissue.[40] 
McAinch et al. (2006) showed that ApN up‑regulates the 
AdipoR1 receptor in differentiated primary skeletal muscle 
cells from normal‑weighted subjects, but not those from 
diabetic, obese, or having lost weight.[41] The level of 
expression of the AdipoR2 receptor was not changed in 
this study. AdipoR1 and AdipoR2 receptors expression 
levels are also associated with age and aerobic capacity in 
skeletal muscle.[42] Unlike adipose tissue, the expression 
of ApN receptors in muscle depends on gender, with men 
expressing more ApN receptors,[42] this dimorphism thus 
appears to be tissue specific. Interestingly, circulating 
ApN levels are lower in men than women, which can be 
explained by the level of receptor expression in muscle. 
Finally, a study has shown that the expression of the three 
receptors is highly correlated, and positively associated 
with the expression of PPARδ in human myocytes.[43]

Adiponectin: Role in Physiology and 
Pathophysiology
Carbohydrate metabolism and insulin sensitization

Numerous studies have shown the existence of an inverse 
relationship between circulating ApN concentrations 
and insulin resistance in several pathologies with high 
cardiovascular risk such as obesity, metabolic syndrome, 

and T2DM.[44,45] The question is to know the meaning of 
this interaction. Mice disabled for the ApN gene develop 
hepatic, but not global resistance to insulin, with a 65% 
increase in hepatic glucose production. On a diet rich 
in saturated fatty acids, they also develop carbohydrate 
intolerance, which can be corrected by acute administration 
of recombinant ApN, without modification of muscle 
glucose uptake. Following this administration, the 
hepatic expression of the enzymes of gluconeogenesis, 
phosphoenol‑carboxykinase and glucose‑6‑phosphatase 
is increased, with no change in insulinemia, which is a 
sign of insulin sensitization.[46] In addition, the notion of 
an insulin‑sensitizing activity of ApN is reinforced by the 
observation in individuals with extreme insulin resistance 
of a high ApN concentration.[47]

In mice, injection of recombinant ApN induces an 
increase in circulating insulin levels.[48] Indeed, it has been 
demonstrated that the treatment of pancreatic β cells with 
ApN induces an increase in insulin exocytosis, accompanied 
by an increase in expression of Pdx‑1 and MafA genes, 
co‑activators of transcription of the insulin gene.[49] ApN 
promotes the consumption of glucose by stimulating the 
membrane translocation of GLUT4 in muscle cells and 
adipocytes following the phosphorylation of AMPK.[50,51] 
This phenomenon is associated with the activation of the 
Rab5 protein by the APPL1 protein. Indeed, Rab5 is a 
GTPase involved in the biogenesis of endosomes, whose 
role seems crucial during the translocation of GLUT4 from 
endosomes to the plasma membrane.[52] ApN also inhibits 
the formation of glucose and glycogen. In liver cells, 
glycogenolysis and gluconeogenesis are slowed down by 
ApN, following the decrease in the expression of two key 
enzymes in these pathways, glucose‑6‑phosphatase and 
PEPCK.[53] In muscle cells, glycogen production is also 
reduced by ApN, following activation of AMPK.[51] ApN 
induces a drop in blood sugar by its hypoglycemic action, 
it helps protect the body against the onset of T2DM.[51]

Lipid metabolism

Mice homozygously disabled for the ApN gene exhibit 
hepatic steatosis in the long term, but not in the short 
term. Conversely, mice transfected with ApN gene have a 
reduced hepatic triglyceride content and, fed a diet rich in 
fat, limit the hepatic accumulation of triglycerides and lipid 
derivatives. Conversely, ApN promotes the differentiation 
of adipocytes, their sensitivity to insulin, and their 
accumulation of triglycerides.[54] It therefore appears that 
ApN diverts fatty acids from ectopic (non‑subcutaneous) 
lipid deposits towards deposits of young subcutaneous 
adipocytes, which generate less insulin resistance.[55] 
Having found no mention in studies of the in vitro effects 
of ApN on lipoproteins, it is difficult for us to distinguish 
whether dyslipidemia linked to hypoadiponectinemia 
results from a direct hepatic effect of the hormone or from 
an indirect effect of insulin resistance.
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ApN increases the transport of fatty acids into muscle 
cells, stimulating the expression of fatty acid translocase. 
It also promotes the catabolism of fatty acids by inducing 
the activity and expression of many enzymes involved 
in the β‑oxidation process.[50] In particular, via AMPK, 
ApN inactivates ACC by phosphorylation. This enzyme 
catalyzes the production of malonylcoA, an inhibitor 
of CPT‑1. This protein transports fatty acids to the 
mitochondria.[56] By lifting the inhibition of CPT‑1, ApN 
promotes mitochondrial transport of fatty acids where they 
are degraded by the enzymes of β‑oxidation. ApN also 
regulates the transcription of many genes involved in lipid 
catabolism, such as ACO, FABP3, and CPT‑1 by inducing 
the expression of the transcription factor PPARα.[57]

ApN also promotes the accumulation of triglycerides in 
adipocytes.[54] In the liver, on the other hand, it reduces 
the transport of fatty acids and the accumulation of 
triglycerides.[58] ApN inhibits the expression of around 
thirty hepatic genes encoding proteins involved in the 
transport of fatty acids and lipogenesis.[59] ApN therefore 
controls lipid metabolism by promoting the transport of 
fatty acids and β‑oxidation in muscle cells, by inhibiting 
hepatic lipogenesis and by stimulating the storage function 
of adipose tissue. It therefore induces a decrease in 
circulating lipid levels, exerting a lipid‑lowering role in the 
body.

Cardiovascular effects

In the cardiovascular system, the effects of ApN are 
not limited to carbohydrate metabolism alone. A role 
is indeed recognized for it in cardiovascular pathology 
in particular. Atherosclerosis is the result of a complex 
process in which the adhesion of circulating monocytes 
to endothelial cells, their differentiation into macrophagic 
cells, the accumulation of cholesterol within them, and 
their transformation into foam cells are key steps. Various 
receptors such as receptors of the R scavenger family 
and numerous adhesion molecules including VCAM‑1 or 
ICAM‑1 play important roles in it. ApN could suppress 
the expression of the scavenger type A receptor at the 
macrophagic level and, in this way, inhibit the lipid 
accumulation and the transformation into foamy cells of 
circulating monocytes.[60] Likewise, it would antagonize 
the action of TNFα. The latter, via the NF‑κB pathway, 
stimulates the transcription of endothelial adhesion 
molecules and represents a factor in the pro‑inflammatory 
reaction.[61] We reported above that plasma ApN levels 
were significantly lowered in obese patients, who are also 
known to be at high cardiovascular risk. Measuring the 
plasma ApN level could therefore constitute an index to 
be taken into account in the assessment of coronary risk. 
In addition, there is a sexual dimorphism: the women 
have higher ApN levels than men and menopause does 
not affect their levels.[62‑64] Oophorectomy does not change 
plasma ApN levels and estrogen replacement has no effect 

on them either. In contrast, castrated male mice expressed 
significantly decreased ApN levels, while, in cell cultures, 
adding testosterone reduced both circulating ApN and ApN 
secretion.[63,65] This treatment also induces insulin resistance. 
In contrast, oophorectomy does not cause changes in ApN 
levels in female mice. Therefore, ApN may be involved in 
increasing the cardiovascular risk in men.

In addition, there is a close link between insulin resistance 
and atherosclerosis. ApN levels are further reduced in 
patients with T2DM complicated by atherosclerosis. 
Recently, a modulating effect on vascular remodeling has 
also been suggested by the suppressive activity of ApN on 
proliferation and migration of human aortic smooth muscle 
cells. A mouse model deficient in ApN showed a neointimal 
formation, in response to an external vascular lesion, twice 
as large than that observed in normal mice.[66] This type of 
mouse exhibited moderate insulin resistance accompanied 
by glucose intolerance. Furthermore, the treatment of 
ApN‑deficient mice with an ApN‑producing adenovirus 
attenuated neointimal proliferation. ApN therefore seems 
to be a cytokine with an “anti‑insulin resistance” and 
“anti‑atherosclerosis” effect.

Therefore, manipulations of the ApN gene in mice have 
clarified its involvement in vascular and carbohydrate 
homeostasis. In the absence of ApN, the response to an 
external arterial injury is exacerbated, with thickening 
of the intima and excessive proliferation of smooth 
muscle cells.[67] Conversely, administration of ApN 
reduces the extent of atherosclerotic lesions that appear 
spontaneously in apolipoprotein E‑deficient mice.[68] 
More recent studies suggest that ApN may also act as an 
antithrombotic factor and protect against ischemic damage 
to the myocardium.[69,70] In humans, epidemiological studies 
clearly point to low circulating levels of ApN as a risk 
factor for cardiovascular disease, while high levels are 
associated with a reduced risk of myocardial infarction.[67]

Adiponectin, obesity, insulin resistance, and T2DM

Conditions associating insulin resistance, T2DM and 
obesity, as in the case of lipodystrophy, present collapsed 
serum ApN levels.[58] Studies carried out in knockout 
mice for the ApN gene (mice genetically deprived of the 
expression of this protein) provide different elements 
as to the role played by this adipocytokine. In KO mice, 
we can measure lower plasma acid clearance and levels 
of FATP‑1, as well as increased TNFα levels in adipose 
tissue and in plasma. When these mice are put on a diet 
rich in glucose and lipids, they acquire insulin resistance, 
probably linked to a decrease in the substrate of the 
intracellular insulin type 1 receptor, thus causing reduction 
of intracellular uptake of glucose by insulin‑sensitive 
tissues (mainly skeletal muscle).[58] The restitution of 
ApN expression in this KO mouse corrects these various 
metabolic abnormalities. ApN therefore appears to be a 
hormone sensitizing the action of insulin and a decrease 
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in its production could be linked to the pathophysiology 
of insulin resistance. In human, many clinical studies 
indicate that increased ApN is a negative predictor of 
the development of insulin resistance and T2DM in 
BMI‑adjusted subjects populations.[71‑73] A lowered plasma 
ApN level is a risk factor for progression of T2DM. The 
mechanisms by which ApN improves insulin sensitivity 
are unknown. Studies in lipoatrophic mice and in animal 
obesity models suggest that ApN improves tissue sensitivity 
to insulin by lowering the plasma concentration of free fatty 
acids. The action of ApN could also involve stimulating the 
activity of AMPK.[50] Insulin resistance causes stress in the 
endoplasmic reticulum, where the adiponectin multimer 
is formed, which in turn activates the unfolded protein 
response, and then suppresses adiponectin synthesis.[74] In 
addition, obesity‑induced inflammation and oxidative stress 
inhibit adiponectin maturation and secretion.[75]

In addition, the insulin‑sensitizing effects of new 
anti‑diabetic molecules such as the PPARγ nuclear receptor 
agonists (thiazolinediones) are accompanied by an increase 
in adiponectinemia. Carriers of the Pro12Ala variant of the 
PPARγ gene, which we know is protective against T2DM, 
have also high adiponectinemia. Conversely, diabetic, 
insulin‑resistant, and hypertensive patients with mutants 
with a negative dominant effect of PPARγ have collapsed 
adiponectinemia. Thus, in humans, hypoadiponectinemia 
is a risk factor for T2DM.[76] These results are confirmed 
by studies in animal models showing unambiguously 
that insulin resistance and a high susceptibility to 
atherosclerosis accompany ApN deficiency. Conversely, 
the administration of ApN in lipodystrophic or obese 
mice corrects their insulin resistance.[58] Recent genome 
studies have highlighted the ApN gene on the long arm 
of chromosome 3 (3q27). At this locus, a susceptibility to 
diabetes and dysmetabolic syndrome has been localized. 
Indeed, polymorphisms of this gene are associated with 
insulin resistance as well as a predisposition to T2DM, most 
certainly via an alteration in his expression which results 
in lowered ApN plasma levels.[77] Therefore, the ApN gene 
has been proposed as a gene for susceptibility to T2DM. 
Studies in Pima Indians and in the general population also 
indicate that subjects with high concentrations of ApN 
are less at risk of developing T2DM than those with low 
concentrations.[78] Genetic analyzes at the ApN locus on 
chromosome 3q27 also support the implication of low ApN 
levels in increasing the risk of T2DM.[46] Thus, the decrease 
in adiponectinemia is now identified as a contributing 
factor in the pathogenesis of insulin resistance, T2DM, and 
cardiovascular pathologies.

ApN and its signal in cancer

Obesity, a disease characterized by significant excess 
of body fat, is a risk factor for many conditions like 
T2DM, cardiovascular diseases, as well as malignancies 
leading to cancers. Obesity decreases ApN while it is now 

established that ApN helps against cancer by limiting tumor 
development and the metabolic dysfunctions that they can 
cause.[79] ApN indeed reduces cancer cells migration and 
invasion abilities, stops their growth and proliferation, and 
helps in triggering apoptosis in them.[80] ApN helps fighting 
endometrial cancer, and, as a corollary, a low ApN level 
is associated with a faster development of the illness.[81] 
The analysis of serum of patients with ovarian cancer also 
show low levels of ApN.[82] AdipoR1 and AdipoR2 are 
expressed in epithelial ovarian cancer cell, granulosa 
tumor cell, cancerous epithelial, and ovarian tissues.[83‑85] 
A positive AdipoR1 expression in patients with epithelial 
ovarian cancer is associated with a better life expectancy 
than a negative AdipoR1 expression.[84] ApN decreased 
epithelial ovarian cancer cell proliferation independently 
from apoptosis.[85] Thyroid cancer cells express both 
AdipoR1 and AdipoR2, while papillary thyroid carcinoma 
cell lines express a significantly lower number of receptors 
than normal thyrocytes.[86] In prostate cancers, ApN and its 
receptors are known to be importantly involved but so far 
the results are partly contradictory.[87] AdipoR1 and AdipoR2 
receptor isoforms expression has thus been measured at a 
low level in prostate cancerous neoplastic tissue.[88] ApN 
levels of patients with advanced prostate cancer were 
measured at a higher level than those at an earlier stage 
of the illness. Furthermore, AdipoR2 expression has also 
been reported to be directly associated with prostate cancer 
progression and metastatization.[89] Recently, scientists 
have shown that treatment with adiponectin significantly 
inhibits the proliferation of human pancreatic cancer 
cells. Suppression of adiponectin receptors abolished the 
antiproliferative effect of adiponectin and clearly promoted 
the development of human pancreatic cancer xenografts in 
nude mice.[90] ApN also inhibits the proliferation of cancer 
cells in the colon and changes the cell cycle in the G1/S 
transition phase.[91]

Conclusions
Adiponectin is an adipokine produced and secreted 
by adipocytes. The biological actions of adiponectin 
are mediated through interactions with its receptor 
subtypes, AdipoR1, AdipoR2, and T‑cadherin. ApN exerts 
multiple protective effects on various cell types, such as 
insulin‑sensitizing, anti‑inflammation, anti‑proliferation, 
or anti‑atherosclerotic actions and suppression of 
carcinogenesis. ApN is also a relatively abundant serum 
protein in human. Its levels are decreased in various 
pathological states including insulin resistance, T2DM, 
obesity, metabolic syndrome, or cardiovascular diseases. 
Many studies have shown the protective role of ApN in 
obesity‑associated diseases and cancer. ApN modulates 
several signaling pathways to exert its physiological and 
protective functions. Figure 2 shows the involvement of 
APN in the signaling of its target cells. Focusing on ApN 
for new therapeutic strategies is full of promise regarding 
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the aforementioned protective action against metabolic 
diseases.
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