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After birth, the intestinal immune system enters a critical developmental stage, in which 
tolerogenic and pro-inflammatory cells emerge to contribute to the overall health of the 
host. The neonatal health is continuously challenged by microbial colonization and food 
intake, first in the form of breast milk or formula and later in the form of solid food. The 
microbiota and dietary compounds shape the newborn immune system, which acquires 
the ability to induce tolerance against innocuous antigens or induce pro-inflammatory 
immune responses against pathogens. Disruption of these homeostatic mechanisms 
might lead to undesired immune reactions, such as food allergies and inflammatory 
bowel disease. Hence, a proper education and maturation of the intestinal immune 
system is likely important to maintain life-long intestinal homeostasis. In this review, the 
most recent literature regarding the effects of dietary compounds in the development of 
the intestinal immune system are discussed.
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introduction

The gastrointestinal system is one of the largest vulnerable surfaces of our body. It is continu-
ously facing the external environment, including microbiota, nutrients, metabolites, pollutants, 
and harmful pathogens. To maintain intestinal homeostasis, the immune system is able to induce 
tolerance to innocuous food antigens while it may also recognize pathogenic bacteria to mount an 
inflammatory immune response. The education and maturation of the intestinal immune system is 
the result of millions of years of co-evolution with host-specific microbiota and dietary intake. This 
results in mutual benefits represented by co-habitation and at the same time it provides protection 
against pathogens. Disruption of these homeostatic mechanisms can result in undesired immune 
reactions leading to intestinal disorders, such as inflammatory bowel disease (IBD), including 
ulcerative colitis (UC) and Crohn’s disease (CD). At birth, the transition between the sterile envi-
ronment of the uterus and the external microenvironment exposes our body to colonization with 
maternal microbiota and food antigens, which are initially delivered through breast milk. Hence, 
the newborn’s immunity relies upon antibodies and other breast milk components (discussed 
below) passed on from their mothers. At weaning and upon introduction of solid food in the 
diet, the dynamic equilibrium that allows the homeostatic co-habitation with non-self antigens 
is continuously maintained through complex mechanisms, involving the constant shaping and 
education of the immune system. Food nutrients and bacterial metabolites may have a direct effect 
on the maturation/differentiation of immune cells. In turn, the immune system exerts active oral 
tolerance mechanisms to prevent reactions against food antigens and to maintain a tolerogenic 
environment.
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This review provides insights to how the intestinal immune 
system is educated by oral intake of antigens before and after 
weaning. We will focus our attention on the impact of breast 
milk and diet during the development of the intestinal immune 
system.

The intestinal immune System: Overview

The intestine is a complex tissue involving a single layer of intes-
tinal epithelial cells (IECs) separating the external environment 
from the mammalian host. At the luminal side of the IECs layer, 
a high concentration of potential antigens, in the form of dietary 
compounds and commensal microbiota, is found, influencing 
mammalian physiology. At the opposite side, the intestinal 
lamina propria contains a diverse array of evolutionary ancient 
immune cells, including mononuclear phagocytic cells and lym-
phocytes, the associated enteric nervous system and stromal cells 
(Figure 1). The single layer of epithelial cells that separates the 

intestinal lumen from the lamina propria contains large numbers 
of lymphocytes with high antimicrobial and cytotoxic capacity. 
All these different players interact with each other in order to 
maintain the proper function of the digestive system, whereas 
failure in keeping homeostasis has been associated with the etiol-
ogy of intestinal disorders, such as IBD. In the following section, 
we will introduce the main immune populations present in the 
intestinal lamina propria and their role in maintaining homeosta-
sis. Then, we will discuss the development of the immune system 
shaped by breast milk and digested food.

intestinal epithelial Cells
The main function of the IEC layer is to provide a physical 
and biochemical barrier to the external environment. The 
maintenance of intestinal homeostasis by IECs has been 
extensively reviewed elsewhere in Ref. (1). In brief, the IECs are 
composed of Paneth cells, goblet cells, enteroendocrine cells, 
and enterocytes, which collectively contribute to create the 

FiGURe 1 | The intestinal immune system. The intestinal immune system 
is physically separated from the microbiota and dietary compounds by a 
single layer of intestinal epithelial cells (IECs). Intraepithelial lymphocytes (IEL), 
residing in the paracellular space between epithelial cells, contribute to the 
maintenance of the mucosal barrier and to the protection against pathogens. 
The lamina propria is connective tissue constituted by stromal cells, blood 
vessels, nerves, and immune cells. Macrophages (Myeloid cells depicted in 
blue) and dendritic cells (Myeloid cells depicted in green) are strategically 
located adjacent to the epithelial layer, sampling luminal antigens and 
orchestrating the innate and adaptive immune response. Other innate 
immune cells are also present in the lamina propria, including mast cells, 

monocytes, neutrophils, and eosinophils (not shown). T and B cells (mainly 
IgA-producing plasma cells) also accumulate in the lamina propria after being 
primed in the draining lymphoid tissues. Different subsets of CD4+ T cells are 
found in the lamina propria, such as regulatory T cells (Foxp3-expressing TREG 
and Tr1) and effector cells (Th1, Th2, and Th17). Finally, innate lymphoid cells 
(ILC), divided in three main subsets (ILC1, ILC2, and ILC3), are vastly 
enriched in the gastrointestinal mucosa participating in the protection against 
pathogens and in the maintenance of intestinal homeostasis. Surrounding the 
lamina propria and the muscularis mucosa (not shown), the submucosa and 
the muscularis externa contain nerves belonging to the enteric nervous 
system (ENS).
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first line of defense against microbial invasion. This consists of 
antimicrobial peptides (AMPs) and the mucus layer. Microfold 
cells (M cells) are epithelial cells specialized in the sampling 
and presentation of luminal antigens to the mucosal immune 
system. M cells are strategically overlaying intestinal lymphoid 
structures, such as Peyer’s patches (PPs) and isolated lymphoid 
follicles (ILFs). Finally, stromal cells and stem cells, which 
continuously renew the intestinal epithelium, reside together 
with Paneth cells within tubular invaginations of the intestinal 
epithelium, called crypts.

Mononuclear Phagocytes
Mononuclear phagocytes including macrophages (Mφ) and 
dendritic cells (DCs) are among the most abundant cell types 
within the intestine. They are strategically located throughout 
the lamina propria just underlying the single layer of intestinal 
epithelial cells. Mononuclear phagocytes are sampling luminal 
content, orchestrating both innate and adaptive immune 
responses. Under steady state conditions, the lamina propria 
contains two developmentally different CD11c-expressing 
primary subsets of mononuclear phagocytes based on the 
reciprocal expression of the integrin αE (CD103) and CX3CR1. 
CD11chiCD103negCX3CR1+ (CX3CR1+) cells are considered to be 
Mφ due to their stationary nature and low stimulatory abilities 
(2). On the other hand, CD11chiCD103+CX3CR1neg (CD103+) 
cells are considered to be bona fide DCs due to their abilities 
to migrate to the draining lymph nodes and initiate effective 
immune responses [reviewed in Ref. (3)]. In addition, these 
subsets of mononuclear phagocytes have different functions and 
they cooperate in order to maintain intestinal homeostasis. For 
instance, CX3CR1+ Mφ are specialized in antigen capture from 
the lumen, however they do not migrate to the mesenteric lymph 
node (MLN) in steady state conditions (4). By contrast, CD103+ 
DCs are inefficient in capturing luminal antigens, whereas they 
efficiently migrate out of the lamina propria to the MLN in a 
CCR7-dependent manner. Furthermore, CD103+ DCs are able 
to produce TGF-β and retinoic acid (RA), which equip these 
cells with the ability to generate inducible regulatory T cells 
(iTREG) (5, 6). These iTREG are conserved between species (5–7). 
Induction of gut-homing TREG, likely by RA-producing CD103+ 
DCs, is a crucial step during the establishment of oral tolerance 
(discussed below) (8, 9). Together, these cells play a crucial role 
in distinguishing between innocuous and pathogen-derived 
antigens and drive both pro- and anti-inflammatory processes. 
For example, CD103+ DCs selectively express the αv integrin, 
which is crucial to activate latent TGF-β (10). Activation of latent 
TGF-β by the αv integrin is physiologically relevant as observed 
in mouse models lacking αv integrin in the myeloid compart-
ment. These mice develop spontaneous colitis associated with 
decreased intestinal TREG (11). In addition, CX3CR1-deficient 
Mφ show decreased TREG expansion, commonly observed dur-
ing the establishment of oral tolerance (9). CX3CR1-deficient 
mice lack dendrite transepithelial extrusions and have impaired 
luminal antigen sampling, which result in reduced production of 
IL-10, typically released upon macrophage sensing of food and/
or commensal-derived antigens (9, 12).

Although IL-10 is active in multiple immune cells, includ-
ing lymphocytes, myeloid cells, and intestinal epithelial cells, it 
seems that Mφ are the main IL-10 cell target in order to maintain 
intestinal homeostasis. In fact, mice lacking IL-10Rα, specifi-
cally in CX3CR1+ Mφ, develops spontaneous colitis (13). This 
is in agreement with the hyperproduction of inflammatory 
cytokines and decreased ability to induce CD4 T cells observed 
by Mφ derived from patients with loss-of-function mutations 
in IL-10R genes (14). Notably, IL-10 depletion specifically in 
CX3CR1+ Mφ does not result in intestinal inflammation (13), 
suggesting redundant and/or compensatory sources of IL-10, 
most likely by type 1 regulatory T cell (Tr1). Hence, these data 
suggest a model in which Mφ are required to sense IL-10, 
which might be produced by several different cell types, to 
become a main tolerogenic cell with a crucial role in intestinal 
homeostasis. The severity of disease observed in patients with 
impaired IL-10 signaling underscores the critical role of Mφ 
and IL-10 at the intestinal barrier. However, the downstream 
IL-10 signaling pathways involved in imprinting Mφ, with 
potent tolerogenic properties, are still poorly understood.

Lymphocytes
Naïve B and T cells that accumulate in the intestinal mucosa 
are primed in gut-associated lymphoid tissues (GALT), such 
as PPs and mesenteric lymph nodes (MLN). Upon priming 
within GALT, activated T cells acquire the ability to home to 
the intestine by expressing the gut-homing chemokine receptor 
9 (CCR9) and integrin α4β7. These CCRs bind to the chemokine 
CCL25 and to the mucosal vascular addressin cell-adhesion 
molecule (MAdCAM-1), respectively (15, 16), both of them 
expressed in the small bowel lamina propria. Once lymphocytes, 
including IgA-producing plasma cells and CD4+ T cells, enter 
the mucosa they mainly distribute in the lamina propria, with 
the exception of CD8+ T cells that preferentially migrate to the 
epithelium (17). CD4+ T cells are divided into subsets, the most 
abundant found within the intestinal lamina propria are IL-17 
producing T helper cells (Th17), Th1 and Regulatory T cells 
(TREG). TREG include two types of CD4+ T cells; forkhead box 
P3 (Foxp3)+ T cells and Tr1 cells, which provide the foundation 
of the tolerogenic immune response. Their relevance during 
the establishment of intestinal immune homeostasis has been 
demonstrated by mutations in human FOXP3, which are associ-
ated with the fatal autoimmune disorder Immunodysregulation 
Polyendocrinopathy Enteropathy X-linked (IPEX) syndrome 
(18, 19). In mice, disruption of Foxp3+ TREG development and/
or function results in intestinal-associated autoimmune and 
inflammatory disorders (20), likely due to the inability to sup-
press immune responses against commensal bacteria. Human 
and mouse Tr1 cells can be identified by the surface markers 
CD49b and LAG-3 as well as the production of high IL-10 levels 
(21). Importantly, transfer of Tr1 cells into colitic mice prevents 
intestinal inflammation, highlighting their immunosuppressive 
role (21). TREG exert their immunosuppressive functions through 
several mechanisms, including the production of inhibitory 
cytokines, such as IL-10 (22), metabolic disruption, expansion 
of innate lymphoid cells (ILC)1-like NK cells and ILC2s (23, 
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24), and modulating DC functions (25), all of which have the 
final outcome of limiting expansion of antigen-specific T cells.

In contrast, Th1 and Th17 cells are mostly associated with 
pathogenicity during chronic inflammation. Indeed, important 
efforts to develop drugs targeting the IL-17-Th17 pathway to 
treat autoimmune diseases have been made (26). In agreement 
with a pathogenic role, Th17 generation require encounters 
with antigen presenting cells (APCs) within a pro-inflammatory 
microenvironment, characterized by the presence of IL-23, IL-6, 
and IL-1β (27). In addition, intestinal Th17 cells also promote 
tissue repair and protect mucosal barriers against pathogen 
colonization, hence contributing to maintain intestinal homeo-
stasis (28). Some studies suggest that their protective and/or 
pathogenic function depends on plasticity, in which pathogenic 
Th17 cells might gain immunosuppressive functions (28). In a 
recent study, using a mouse model of Th17 fate-mapping com-
bined with reporters to visualize the appearance of TREG in vivo, 
it was demonstrated that Th17 cells can transdifferentiate to 
IL-10-producing TREG to eventually contribute to the resolution 
of inflammation (29).

innate Lymphoid Cells
Innate lymphoid cells (ILCs) belong to the lymphoid lineage. In 
contrast to B and T cells, ILCs lack antigen receptors and do not 
undergo clonal selection when stimulated. This newly described 
cell type is vastly present at mucosal surfaces, in particular 
throughout the GI tract and within ILFs. ILCs have been classi-
fied into three subtypes based on their cytokine production and 
expression of determined transcription factors (30). Group 1 ILCs 
(ILC1s) are characterized by their expansion in response to IL-12, 
IL-15 and IL-18, and their production of type 1 cytokines, such as 
IFNγ and the transcription factor T-bet. Although natural killer 
(NK) cells also express IFNγ and T-bet, ILC1s are different in that 
they lack cytolytic activity and possess a separate developmental 
pathway compared to NK cells. Furthermore, fate mapping 
of ID2+ or PLZF+ precursor cells distinguished ILC1 from NK 
cells (31–33). Group 2 ILCs (ILC2s) require the GATA-binding 
protein 3 (GATA3) and ROR-α transcription factors, expand in 
response to IL-25, IL-33, and TSLP and produce IL-5, IL-9, and 
IL-13, typically associated with Th2-responses. Group 3 ILCs 
(ILC3s) depend on the RA receptor-related orphan receptor-γ 
(RORγt) transcription factor, respond to IL-1β and IL-23 pro-
duced by myeloid cells and secrete high amounts of IL-17A and 
IL-22, as well as GM-CSF and lymphotoxins (34). Thus, due to 
their similarities, ILCs are considered the innate counterpart of 
T helper cells.

Innate lymphoid cells are important mediators of inflamma-
tion and exert protection against pathogens, but they are also key 
drivers of homeostasis under steady state conditions. For instance, 
ILCs have been associated with worsened Helicobacter hepaticus-
triggered intestinal inflammation (35). In accordance with this 
model of pro-inflammatory activities, depletion of ILCs results 
in significant amelioration of colitis in the H. hepaticus-triggered 
intestinal inflammation (36) and in the Tbx21−/−Rag2−/− ulcera-
tive colitis (TRUC) model (37). Despite the implications with dis-
ease, ILC3s have also been implicated in critical protective roles, 
including defense against the pathogenic bacteria Citrobacter 

rodentium (38, 39), containment of lymphoid-resident com-
mensal bacteria (40) and induction of mucin and antimicrobial 
peptides (e.g., RegIIIβ and RegIIIγ) (41, 42). Most of these protec-
tive functions rely on the production of IL-22 upon stimulation 
with either IL-23 or IL-1β. ILC3s produce large amounts of this 
cytokine and administration of exogenous IL-22 in ILC-depleted 
mice is sufficient to restore homeostasis. In addition, ILC2s and 
ILC3s express major histocompatibility complex class II (MHCII) 
(43), hence being able to present antigens to CD4+ T cells. In the 
intestine, the absence of MHC-II on ILC3s results in expansion 
of commensal-specific CD4+ T cells, which eventually leads to 
intestinal inflammation (44, 45). MHC-II expressing ILC2s 
induce the production of IL-2 and IL-4 by CD4+ T cells, thus 
potentiating type 2 immune responses (46). Furthermore, it has 
recently been proposed that the few resident memory T cells with 
pathogenic features within the non-inflamed intestine might 
function as antigen-specific sensors, whereas ILCs might serve 
to amplify T-cell mediated antigen-specific responses (47). Thus, 
these newly described cell types play critical roles in maintain-
ing intestinal homeostasis through, among others, shaping the 
intestinal flora.

At early stages in life, the intestinal immune system is under-
developed and undergoes immune maturation upon contact with 
dietary compounds and the microbiota. In agreement with this, 
germ-free and antibiotic-treated mice show reduced maturation 
of the intestinal immune system, as seen by decreased numbers 
of intestinal Th17 cells (48, 49), impaired production of antimi-
crobial peptides, and reduced IgA secretion, all deficiencies that 
are rescued upon bacterial colonization (50). Besides regulating 
the diversity of the microbiota, dietary compounds may directly 
influence the development of the immune system. In the follow-
ing section, we discuss how the external environment, including 
dietary compounds and the commensal microbiota, shapes the 
intestinal immune system.

Breast Milk Shaping Mucosal immunity

Breast milk is not only a primary source of nutrition, it also 
helps the child develop a proper immune system. Breast milk is 
a complex body fluid composed of a large diversity of molecules, 
cells, and extracellular vesicles. Already in 1892, Paul Ehrlich 
showed that immunity against plant toxins was transferred to the 
fetus in utero and via breast milk. This turned out to be antibod-
ies protecting the child, leading to the term “passive immunity,” 
which gave him the Nobel Prize and paved the way for modern 
immunology. In addition to protection to pathogens, breast milk 
also contributes to establish intestinal tolerance, likely through 
the action of breast milk-derived components (Figure 2), such as 
immune cells, cytokines, anti-bacterial proteins, probiotics, and 
extracellular vesicles (51, 52). The role of breast milk in shaping 
intestinal immune maturation and contributing to immunologi-
cal tolerance will be discussed below.

Duration of Breast-Feeding
There is great controversy, especially in industrialized coun-
tries, regarding the duration of breast-feeding and whether 
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FiGURe 2 | Breast milk-derived compounds with the potential to 
contribute to the development of the child intestinal immune 
system. Breast milk contains extracellular vesicles such as milk fat 
globules and exosomes, which can present antigens in a tolerogenic 
setting. Pre- and pro-biotics influence the microbiota contributing to 
symbiosis and intestinal protection. Milk-derived cytokines, which may 
differ depending on the health status of the mother, have the potential to 

directly promote the immune system development of the child. Milk-derived 
antigens have been shown to both induce tolerance and allergies in the 
lactating child. White blood cells from the mother can also be transferred 
through the milk and exert functions in the child (e.g., production of 
cytokines or antibodies). Milk-derived antibodies are originated from the 
mother and support the child with a passive immunity during the first 
months of life.
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partial or exclusive breast-feeding would be more beneficial. 
The World Health Organization (WHO) and UNICEF recom-
mend exclusive breast-feeding up to 6 months of age [WHO, 
Guiding Principles for Feeding Non-Breast-Fed Children 
Aged 6–24 Months of Age WHO, Geneva (2005)], and coun-
tries of the European Union and EFTA recommend exclusive 
breast-feeding for at least the first 4–6 months (53). In wealthy 
countries, where early infections, including life-threatening 
diarrhea are scarce, exclusive versus partial breast-feeding is 
likely not as important as in developing countries. In contrast, 
some believe that food allergies can be reduced by introducing 
solid food under the protection of breast milk.

Several studies have addressed the question regarding the 
correlation between breast-feeding and allergy development. 
Most of these studies suggest that breast-feeding may protect 
against allergies, at least when comparing with formula-feeding 
(54, 55). However, differences in genetics, exposure to allergens, 
pathogens, commensals, and smoking, as well as lifestyle, may 
lead to different conclusions. For example, in a Danish study 
exclusive breast-feeding duration was associated with increased 
risk of eczema development in children under the age of 2. In 
contrast, the risk for developing wheezy disorder in these chil-
dren was reduced, even with maternal heredity for asthma (56). 
The exact immunological mechanisms are not easily extracted 
from epidemiological correlations. In addition, in a review revis-
ing the literature regarding breast-feeding and allergies between 
1966 and 2001, only 56 out of 4323 studies were considered 
conclusive (57).

Studies on the relation between autoimmune diseases and 
breast-feeding are fewer but seem more conclusive for a protec-
tive effect of breast-feeding. Retrospective [reviewed in Ref. (58)] 
and prospective studies have shown that longer breast-feeding 
is protective for type 1 diabetes (59). Also IBD [meta analysis 
in Ref. (60)] and multiple sclerosis (61) prevalence are lower in 
individuals with longer breast-feeding history, indicative of an 
anti-inflammatory role of breast milk.

immune-Regulating Components in  
Breast Milk
During pregnancy, the mammary gland undergoes large modi-
fications in order to transform into a milk-secreting organ. A 
branching network of ducts that are made up by a single epithelial 
cell layer and ending up in lobulo-alveolar cavities make up the 
lactating mammary gland. Surrounding the alveoli are myoepi-
thelial cells, which when stimulated by oxytocin release, contract 
and enable milk ejection into the cavities (62). The first milk, from 
delivery to 5 days post-partum, is called colostrum and is pro-
duced in reduced amounts and the composition is lower in fat and 
lactose compared to mature milk (63–65). This is compensated 
by the colostrum being rich in immunologic components such 
as lactoferrin, secretory IgA (sIgA), developmental factors (e.g., 
EGF, TGFβ1, TGFβ2), and other cytokines (65, 66). Hence, the 
primary function of colostrum might not be nutritional but rather 
immunologic and trophic (64, 65). Some of the components with 
potential immunoregulatory functions are discussed below.

Antibodies
The majority of antibodies in milk are IgA, but breast milk also 
contains IgG and IgE. IgA serves as a first line of defense of 
mucosal sites to provide a passive immunity to the child who has 
no IgA production of its own during the first months after birth 
(67–70). Interestingly, specific antirotaviral IgA has been found 
in colostrum and mature breast milk and furthermore in infant 
stool. These antirotaviral antibodies are likely to provide a pas-
sive protection in the child (71). Therefore, the transferred sIgA 
is an important barrier protecting the newborn from intestinal 
and respiratory pathogens (72). Other studies have shown that 
maternal sIgA affects the development on gut microbiota in the 
offspring (73), which in turn affects the immune development. In 
relation to allergy, it was shown that high IgA levels in the feces of 
the infant were associated with lower risk for allergy development 
(74). In addition, allergen-specific immunoglobulins have been 
detected in neonates after allergen exposure in mice (75) and 
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humans (76). Whether the IgA work as a decoy receptor for the 
allergen, or if it is the effect on the microbiota, is still unresolved.

Mouse models support the role for breast milk immunoglobu-
lins and/or B cells in the development of the immune system 
and allergy development. In a B cell deficient mouse model, 
it was shown that maternal B cell immunity is important for 
protecting the offspring against allergic airway disease (77). The 
transfer of immunity was shown to be accompanied by transfer of 
antigen-specific IgA and IgG. Another study demonstrated that 
recombination activating gene-2 (Rag-2) deficient mouse pups 
(lacking B and T cells) had different immune responses if they 
received milk from wild type or Rag-2−/− mothers (78), indicating 
that the lymphocytes from the mother play a crucial role transfer-
ring immunity to the progeny. Whether the effects were due to 
immunoglobulins, cells or both could not be distinguished in this 
study and remains to be investigated (78).

Cells
Cell exchange between the mother and the fetus occurs already 
in  utero, and this results in microchimerism in the child (79). 
This also continues after birth through breast milk (80). The most 
abundant cell type in human breast milk is leukocytes, includ-
ing granulocytes, monocytes, lymphocytes, and Mφ (81, 82). In 
colostrum, Mφ are the major cells (40–50%) followed by neutro-
phils (40–50%) and lymphocytes (5–10%) (83–85). Interestingly, 
breast milk can also contain pluripotent stem cells (86), although 
their fate within the newborn needs to be investigated. Several 
studies, in mice, rats and primates have shown that milk-derived 
leukocytes might be taken up by the offspring where they can 
survive and exert their functions in the newborn stomachs. The 
less acidic newborn stomachs might provide a more permissive 
microenvironment for leukocyte survival compared to adult 
stomachs (87–89).

Breast milk-derived Mφ are more comparable to tissue resident 
Mφ, as they have higher HLA-DR expression and are able to carry 
MHC class II antigens to a higher extent than the monocytes found 
in blood (90). In addition, they express activation markers such 
as Leu-M3 and Leu-M5 (90). Neutrophils also seem to be more 
activated in milk compared to those in blood (91). Moreover, 
breast milk-derived Mφ also carry intracellular IgA, which can 
be released upon stimulation (92). Breast milk-derived T cells 
show a more terminally differentiated and memory phenotype 
compared to circulating T cells (93). Most breast milk-derived 
T cells express mucosal homing markers, such as the integrin 
αE (CD103), integrin β7, CD49d and CCR9 suggesting that they 
were primed in GALTs and then migrated to the mammary gland 
(94, 95). Furthermore, γδ+ T cells, which are commonly found in 
the intestinal mucosa, are also enriched in breast milk compared 
to blood (96). Breast milk-derived B cells are also different to 
those circulating in blood. For instance, breast milk-derived B 
cells show a more activated phenotype compared to those found 
in peripheral blood (97, 98). Interestingly, IgA-secreting B cells 
localized in the intestine can home to the mammary glands (99). 
This phenomenon seems to be dependent on CCR10 (or CCR3), 
since up-regulation of CCL28 in the mammary gland leads to 
the recruitment of antibody-secreting cells and to an increased 

production of IgA in the milk that is blocked using anti-CCL28 
antibodies (100). This mechanism might provide breast milk 
with intestinal microbiota-specific IgA, but other soluble factors 
from the B cells such as cytokines could also play a role. Thus, 
these observations suggest that lymphocytes might be educated 
at intestinal sites to recognize commensal bacteria, traffick to 
the mammary gland and transfer commensal bacteria-specific 
immune responses through breast milk to the newborns.

Antigens (Food Allergens/Respiratory Allergens)
Food allergens have been extensively detected in human breast 
milk. A randomized double-blind cross-over study showed that 
ovalbumin (OVA) can be detected in human breast milk in a 
dose-dependent way, up to 8 h after egg intake (101). Other food 
allergens can also be transferred via breast milk, such as cow milk 
proteins (102) and the peanut allergen Ara h 6, which can be 
rapidly transferred to breast milk just 10–20 min after ingestion 
of peanuts (103). This suggests that food allergens are not fully 
degraded in the digestive tract of the mother, and further that 
active allergens can be transferred via breast milk. A comparison 
between suckling and formula-fed rat pups showed that early 
introduction of food antigens together with milk shifted the 
cytokine milieu in a tolerance inducing way (104), which suggests 
an important early mechanism for development of oral tolerance. 
Breast-fed pups had higher IFN-γ levels and elevated CCR7+ and 
Foxp3+ cell numbers compared to formula-fed rats (104). This in 
turn led to an increased secretion of IL-10 by TREG proposing that 
these mice have a greater potential to induce a tolerant local gut 
environment. In agreement, Yamamoto et al. showed in a mouse 
study that providing lactating dams with food antigens led to 
induction of oral tolerance to food antigens in the pups (105). 
Particularly pronounced protection was observed in the offspring 
of sensitized dams, who had higher antigen specific IgG1 levels 
in the breast milk. Subsequently, the offspring of the sensitized 
mothers showed higher amount of antigen specific IgG1 levels in 
their plasma. Transferred antigens have also been shown to induce 
tolerance in the offspring. This was observed in mouse pups that 
were given human breast milk containing peanut allergen, which 
resulted in partial oral tolerance to the antigen (103). Not only 
food antigens have been found in human breast milk, but also 
respiratory antigens such as Der p 1 allergen from house dust 
mite (106). However, in contrast to food antigens, Der p 1 in milk 
was shown to promote sensitization when the human milk was 
given in a mouse model of asthma (106). This discrepancy could 
be due to either the xenobiotic nature of the experiment or to the 
nature of this antigen, as it has enzymatic activity and can damage 
the epithelial barrier (107). In an OVA model, Verhasselt et al. 
showed elegantly that OVA areosols could be transferred via milk 
and induce tolerance in the pups, and that this was dependent on 
TGF-β (108). However, it is difficult to rule out if OVA have been 
digested to some degree. In addition, the presence of the antigen 
in the gut might contribute to induce tolerance.

Cytokines and Other Soluble Factors
Several chemokines and cytokines, which might have a major 
impact on the mucosal and lymphoid tissues in the child have 
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been found in human breast milk (109). IL-6 and TGF-β have 
been identified as the most abundant cytokines present in breast 
milk (110). For instance, breast milk-derived IL-6 has been shown 
to be crucial for IgA production from milk mononuclear cells 
(111). With potential implications in allergy, IL-4 can be detected 
in both colostrum and mature breast milk, with elevated levels in 
colostrum from allergic mothers compared to non-allergic moth-
ers. Similarly, IL-8 is found in higher amounts in allergic mothers 
compared to non-allergic mothers (112). In contrast, the immu-
nosuppressive cytokine IL-10 has also been detected in breast 
milk (113). In vitro studies have shown that an anti-proliferative 
effect of milk on peripheral blood mononuclear cells (PBMC) 
was reduced when adding anti-IL-10 antibodies, demonstrat-
ing IL-10 activity in the milk (113). Breast milk-derived TGF-β 
might also play an important role inducing intestinal tolerance. 
In agreement, breast milk-derived TGF-β acts on T cells, which 
eventually confer protection to develop allergies (108). Finally, 
IL-1 receptor (IL-1R) antagonist has been found in human breast 
milk. The fact that mice with colitis are protected similarly if 
they receive human milk or formula supplemented with IL-1R 
antagonist (114), suggest that IL-1R signaling can have a major 
role in tolerance induction in the offspring.

The soluble protein CD14 can work as a receptor for lipopolysac-
charide and can be transferred through breast milk from rat dams 
to the pups (115). CD14 is up-regulated after bacterial exposure 
and is secreted by innate immune cells such as monocytes as well 
as epithelial cells (116). The association between low exposure to 
CD14 via the breast milk and increased risk for atopy has been 
observed in some cohorts (117) but not in others (118), and it 
remains to be further studied whether breast milk-derived CD14 
modulates immunity in the offspring. In addition, the presence 
of complement factors (119), free radicals and antioxidants, such 
as β-carotene (120) and α-tocopherol (121) in milk are also likely 
to modulate the microbiota and intestinal immunity of the child.

Factors Affecting the Microbiota
It has been suggested that bacteria from the maternal gut can be 
transported by mononuclear cells to the mammary gland and 
transferred to the breast-fed infant (122, 123). Human breast milk 
contains a large diversity of probiotic (having a positive health 
effect) bacteria, such as, Lactobacillus rhamnosus, Lactobacillus 
gasseri, Lactococcus lactis, Leuconostoc mesenteroides, and 
Bifidobacteria. Therefore, breast milk is an important source of 
bacteria for the undeveloped gut of the infant (124–127). Breast 
milk-derived probiotics possess the ability to positively modify 
the gut microbiota of the infant (e.g., to help improving the health 
of the infant gut). Furthermore, in a large population-based preg-
nancy cohort, an association has been shown between reduced 
risk of atopic eczema in infants and the consumption of probiotic 
milk of mothers during pregnancy (128). Therefore, probiotics 
might reduce the risk of atopic eczema (128).

Oligosaccharides are prebiotics (carbohydrates serving as 
nutrient for probiotics) that are abundant in milk, which also 
alter the gut flora (129). High levels of oligosaccharides in breast 
milk correlate with higher diversity of Bifidobacterium species, 
and inhibit the adhesion of pathogenic bacteria (130), hence 
showing protection to infection. Moreover, Lactoferrin is another 

component of milk with bactericidal properties against many 
pathogenic bacteria (131). However, Lactoferrin can also promote 
the growth of Bifidobacteria species (132), leading to an altered 
gut flora. The medium-chain saturated and long-chain unsatu-
rated fatty acids present in breast milk have also been shown to be 
anti-microbial (133) (see above). In addition, lysozyme will also 
affect the gut flora of the infant since it has both anti-bacterial 
and anti-viral activities (134, 135). This is probably contributing 
to the anti-pathogenic effect of breast milk, but the effect on the 
commensal flora is still unclear.

Extracellular Vesicles
The mammary epithelial cells secrete milk through five different 
secretory pathways (62), whereof the milk fat globule pathway 
is specific for mammary epithelium (136). This pathway is a 
budding process, which generates lipid-containing vesicles, milk 
fat globules (MFG) surrounded by a lipid membrane, and is a 
way to release the fat without the risk of clumping. The MFGs 
has a protective effect against microorganisms (137–139), which 
comes partly from the triacylglycerol rich-core, but also from 
the membrane, which contain pH resistant glycoproteins such as 
mucin-1 (MUC-1), MUC-X, and lactadherin (138, 139). MUC-1 
has been shown to attenuate epithelial inflammation (140), in 
agreement with the role of mucins creating a protective shield 
in the newborn gut against bacteria and viruses (141). Another 
type of extracellular vesicle that can be found in breast milk is 
exosomes (142), which are nano-sized membrane vesicles, which 
originate from the endosomal pathway. Exosomes contain a large 
diversity of lipids, proteins, and several kinds of RNA (143, 144). 
Importantly, the presence of mRNA (145) and miRNA (146) has 
been detected within breast milk-derived exosomes. Some of the 
proteins are common for all exosomes, regardless of their cellular 
origin, such as proteins involved in multivesicular body biogen-
esis or membrane transport and fusion, and tetraspanins such as 
CD9, CD63, and CD81 (147). Exosomes also contain cell-specific 
proteins, such as MHC class I and II as well as co-stimulatory 
molecules on their surface, when derived from APCs (148).

Virtually all cells release exosomes, which have both immu-
nostimulatory (149) and immunosuppressive functions (150). 
First reported to have an immunostimulatory function, were 
exosomes released by B cells, which express MHC class II 
and are therefore equipped with the ability to induce antigen-
specific CD4+ T cell responses in vitro (149). Importantly, using 
DC-derived exosomes harboring MHC class I, induction of CD8+ 
T cell responses was shown in vivo (151). The ability of exosomes 
to indirectly or directly stimulate T cells has been documented by 
several other studies (152–154).

Our studies have shown that breast milk-derived exosomes are 
likely to have an immunosuppressive role, as observed in PBMC 
cultures in  vitro, in which the presence of breast milk-derived 
exosomes were able to inhibit cytokine production and induce 
Foxp3+ TREG (142). Whether this effect was mediated via DC or 
the exosomes acting directly on the T cells, is currently under 
investigation. Cow’s milk has also been shown to contain extra-
cellular vesicles carrying TGF-β (155), and bovine milk exosome-
derived microRNA was shown to have immunoregulatory effects 
in in vitro macrophage experiments (156), further suggesting an 
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immunosuppressive role for breast milk-derived exosomes. An 
immunosuppressive function of exosomes derived from the gut 
epithelium has also been shown in their ability to induce antigen-
specific tolerance (150). Exosomes derived from serum of OVA 
fed rats have been shown to induce antigen-specific tolerance in 
naïve recipient animals. The origin of these exosomes is believed 
to be the intestinal epithelium, as exosomes isolated from in vitro 
pulsed intestinal epithelium cells showed the same characteristics 
as the serum-derived exosomes (150). In addition to intestinal 
epithelium-derived exosomes, also exosomes of other cellular 
origins have the ability to induce tolerance. Prado et al. demon-
strated that exosomes derived from BAL fluid of antigen-specific 
tolerized mice could inhibit allergen-induced airway inflamma-
tion (157). This was shown by decreased levels of IgE antibodies 
in mice pre-treated with BAL-derived exosomes from tolerized 
animals, compared to those treated with control exosomes. In 
addition, they further showed that these mice, pre-treated with 
exosomes from tolerized animals, also had a reduced level of IL-10 
and a significantly reduced production of IL-5 (157). Whether 
breast milk-derived exosomes possess similar properties in vivo 
still needs to be investigated.

Although a role for breast milk exosomes in shaping the 
immune system of the child is plausible, only in vitro studies and 
indirect observations are currently available to support this. In 
a study comparing allergic and non-allergic mothers, we have 
shown that allergic sensitization and lifestyle of the mother affects 
the phenotype of breast milk-derived exosomes. In this study, it 
was also shown that there is a relationship between the breast 
milk-derived exosome profile and the sensitization of the child, 
suggesting that the exosomes play a role in the cell-to-cell com-
munication between mother and child (158). We also observed 
that MHC class I was low in early milk, and higher in late milk, 
suggesting that endogenous antigens, e.g., viruses or autoan-
tigens, might be more exposed later after birth. By contrast, 
since MHC class II was high early and reduced later, allergens 
transferred from the mother might be more presented early after 
birth. One could speculate that this differential exposure has 
evolved to expose the child to different antigens at optimal time 
points during development. However, new exposure patterns in 
modern lifestyle might have led to an imbalance and more allergy 
or autoimmune development. In addition, breast milk-derived 
exosomes carry MUC-1 and were shown to interact directly with 
DCs by binding to the DC receptor DC-SIGN, and furthermore 
blocked HIV infection of DC by blocking the entry of the virus 
(159). Whether this occurs in vivo, with possible delivery of exo-
some cargo to DCs in the gut or in the circulation, remains to 
be investigated. However, since exosomes (“tolerosomes”) also 
can be produced by the gut epithelium, and have in this context 
been shown to be able to induce tolerance, we speculate that also 
milk exosomes could have this effect (150), delivering tolerogenic 
signals to the offspring.

Upon weaning, breast-feeding is discontinued whereas dietary 
intake of solid food increases, exposing our GI tract to a vast range 
of nutrients and exogenous antigens. Dietary intake and eating 
habits have a profound impact in shaping the immune system and 
regulating the microbial composition of the gut. However, a recent 
study suggested that interruption of breast-feeding together with 

the mode of delivery (vaginal compared with C-section) are the 
crucial steps in the definition of microbiota assembly, rather than 
the introduction of a solid-food diet (160). Nevertheless, a con-
trolled nutritional regimen is crucial for the proper maturation 
of a functional immune system and to allow protection against 
infection and intestinal or systemic disorders (161). Furthermore, 
paralleling the hygiene hypothesis, a “diet hypothesis” has been 
proposed to explain the differential incidence of allergic and 
chronic inflammatory diseases among countries with a similar 
cleanliness in the environment but with remarkable different 
diets (162). Education of the intestinal immune system in relation 
to dietary intake can be outlined into two main processes: (1) 
The sensing of specific food metabolites, which affects matura-
tion, differentiation, and activity of the intestinal immune system. 
(2) The active mechanisms to induce tolerance toward ingested 
antigens, a process referred to as “Oral Tolerance”.

Dietary Compounds Shaping Mucosal 
immunity

Our body directly absorbs some dietary metabolites, while 
others are indigestible by the enzymatic repertoire encoded by 
our genome. Therefore, microbial digestion of these metabolites 
is needed for their absorption (163). This is likely reflected by a 
spatial distribution of these food metabolites along the GI tract. 
For instance, Vitamin A or food ligands for the AhR receptor 
(see below) are enriched in the proximal small intestine (e.g., 
duodenum). By contrast, short-chain fatty acids (SCFA), which 
are metabolites of indigestible fibers, require bacterial enzymes 
to be digested and absorbed, hence being more concentrated 
in the large intestine (16). Consistently the effect of these food 
components on the education of immune cells follows the same 
pattern of distribution. (16) (Figure  3). As an example, SCFA 
promote the generation of CD4+ TREG cells that are enriched in 
the colonic tissue, whereas AhR ligands drive the differentiation 
of Th17 cells that in turn are more prevalent in the small intestine. 
These examples highlight the concept that the small intestine and 
colon are two different compartments composed of different 
metabolites, organisms and cell types. In the following sections, 
we will discuss how food metabolites educate our intestinal 
immune system. We will discuss the role of food components that 
are directly absorbed by our body (“Unmodified dietary com-
ponents”) and dietary antigens that require bacterial metabolic 
processing (“Commensal-derived food metabolites”).

Unmodified Dietary Compounds
Some food components do not require metabolic processing by 
commensal bacteria in order to be absorbed and digested by our 
body.

Vitamin A
Deficiency in Vitamin A and its metabolite retinoic acid (RA) in 
the diet has been associated with increased HIV pathogenesis, 
poor responses, and increased susceptibility to infections, both 
at the GI tract and in the lungs (164, 165). The dietary sources 
of Vitamin A encompass animal products (such as human milk, 
liver, and egg yolk) containing Vitamin A in the form of retinyl 
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signaling in macrophages and promote the expansion of ILC3s. Salt rich diets 
and AhR ligands are associated with expansion of Th17 cells. Milk-derived 

exosomes (Milk-exo) and epithelial cell-derived exosomes (IEC-exo) have been 
shown to promote TREG differentiation/expansion. Although, the precise 
mechanism and if this occurs in the intestine in vivo is still unknown. Vitamin D 
is converted into the active metabolite Calcitriol (1,25(OH)2D3), which may 
promote TREG and Th2 cells while blocking Th1 and Th17 differentiation. In 
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may preferentially exert immunoregulatory functions in the colon. Dietary fibers 
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through GPR43 and indirectly by triggering GPR109A on colonic myeloid cells 
(Mφ and DCs). In addition, the anti-inflammatory effect of SCFA is mediated by 
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inhibition of the LPS-induced inflammatory cascade.
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esters and food containing Vitamin A precursors, or carotenoids 
(such as yellow and green leafy vegetables). Upon absorption in 
the proximal small intestine, retinyl esters undergo a complex 
metabolic pathway that might lead to the oxidation of the Vitamin 
A metabolite, retinal, into RA. RA functions are then mediated 
by the binding to the RA nuclear receptors (RARα, RARβ, and 
RARγ) heterodimerized with retinoid X receptors (RXRα, RXRβ, 
and RXRγ) (166). The crucial role of RA orchestrating mucosal 
immunology began to be elucidated by the seminal article 
published a decade ago by Iwata and colleagues, showing that 
RA was necessary and sufficient to induce leukocyte trafficking 
to the gut mucosa (167). Subsequent work has shown that RA 
induces gut tropism in B cells and promotes the induction of IgA-
producing plasma cells at mucosal surfaces (168). Furthermore, 
RA acts as an adjuvant to induce Foxp3+ TREG and Th17 differ-
entiation [reviewed in Ref. (169)]. In addition, recently Noelle 
and colleagues showed that RA action on RARα represses the 
reprograming of Th1 to pathogenic Th17, hence playing a role in 
Th1–Th17 plasticity (170). The effect of RA might depend on the 
microenvironment. In a pro-inflammatory milieu characterized 
by the presence of IL-15, RA promotes inflammatory cellular and 
humoral responses to fed antigens (171).

Retinoic acid might also indirectly act on the immune system. 
This was observed in mice reared on a Vitamin A deficient diet 
(VAD), which results in disruption of number and composition 
of the gut microbiome (172). In particular, decreased segmented 
filamentous bacteria (SFB) were accompanied by a reduced 
proportion of Th1, Th17, and Th2 cells (173).

Recently, a critical role of RA in ILC homeostasis has been 
demonstrated. For instance, mice reared on a VAD are charac-
terized by increased numbers of ILC2s and reduced numbers 
of ILC3s as well as ILC3-derived cytokines, such as IL-17 and 
IL-22 (173). Interestingly, the transfer of RARα-deficient ILCs 
progenitors recapitulated the same phenotype, suggesting that 
RA intrinsically suppresses ILC2 development. Besides its role in 
differentiation, RA modulates IL-22 production possibly by direct 
engagement of the RARγ with the IL-22 promoter (174). Another 
recent report demonstrated that RA regulates the differentia-
tion of lymphoid tissue inducer (LTi) cells, which are essential 
for the development of secondary lymphoid organs (175). As a 
consequence, the availability of RA in utero has an impact on the 
education of the newborn immune system and protects against 
infection in adulthood (175). Thus, RA plays a crucial role in ILC 
homeostasis, which is then reflected by increased susceptibility 
to bacterial infections, intestinal inflammation, and the overall 
fitness of the intestinal immune response (173, 174).

In adults, the sources of RA have been extensively studied and 
reviewed elsewhere in Ref. (176). The limiting enzymes in RA 
metabolism are retinal dehydrogenases (RALDHs), which are 
highly expressed by intestine-resident CD103+ DCs, epithelial 
cells and stromal cells, as well as by CD103− CD11b+ DCs in the 
skin and lung (166). Expression of RALDH enzymes is crucial 
to metabolize RA, since cells lacking these enzymes are not able 
to produce RA (177). Interestingly, gut-homing expressing DC 
precursors migrate from the bone marrow to the small bowel, 
where they acquire tolerogenic properties (178, 179). Once DC 
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precursors reach the intestine, they might differentiate and 
sense RA to induce the expression of RALDH enzymes, with 
the subsequent de novo production of RA (179). The role of RA 
in educating intestinal DC is in agreement with the levels of 
Vitamin A in a proximal to distal gradient, which correlates with 
the abilities of DC to produce RA depending on their location 
in the intestinal tract (177). For instance, DCs obtained from 
the proximal small bowel express higher raldh2 mRNA levels 
compared to distal small bowel-derived DCs, correlating with 
their abilities to induce gut-homing receptors on T cells, con-
version of Foxp3+ TREG, and induction of IgA class switch on B 
cells (177). These examples highlight the concept that the avail-
ability of nutrients locally shapes the immune system. Recent 
efforts are pointing toward the requirements of vitamin A for 
proper development of the immune system with the consequent 
relevance for protection against infection and inflammatory 
disorders. Future studies exploiting conditional knockout of 
RA receptors in different immune cell subsets will be crucial 
to better understand the pleiotropic effects of Vitamin A on the 
immune system.

Vitamin D
In addition to Vitamin A, Vitamin D and its active metabolite 
calcitriol (1,25(OH)2D3), can influence the immune system 
beyond its metabolic role in calcium and phosphate homeostasis. 
The major source of Vitamin D is the photochemical conversion 
of 7-dehydrocholesterol to cholecalciferol (Vitamin D3) upon 
skin exposure to UV light. However, some food such as oily 
fish are enriched in Vitamin D and serve as a relevant source. 
Calcitriol, the active form of Vitamin D, results from a complex 
metabolic pathway involving hepatic and renal enzymatic activ-
ity (180). The biologic function of Vitamin D is mediated via 
binding to the hormone nuclear receptor Vitamin D receptor 
(VDR) heterodimerized with the RXR, which in turn promotes 
the transcription of Vitamin D responsive genes by binding 
their promoter region. Besides its role in regulating intestinal, 
renal and skeletal absorption of calcium and phosphate and in 
regulating blood pressure, VDR is also expressed by immune 
cells that in turn are equipped with the enzymatic machinery 
to produce calcitriol locally (181). The general positive effect of 
Vitamin D on the adaptive immune system is anti-inflammatory, 
as observed in studies showing inhibition of B (182) and T cells 
proliferation (183) and promotion of a shift from the Th1/Th17 
lineage toward a TREG/Th2 phenotype (184–186). Consistently, 
calcitriol action on innate immune cells results in the blockade of 
production of pro-inflammatory cytokines in CD40L-activated 
monocytes (187) and the promotion of an immature/regulatory 
phenotype on DCs (188). The immunoregulatory function of 
Vitamin D, together with the observation of a higher incidence 
and prevalence of IBD in northern European countries with 
lower sunlight exposure, prompted the implication of hypovi-
taminosis D in the pathogenesis of this disease (189). Indeed, 
low Vitamin D levels were observed in pediatric Crohn’s disease 
patients (190) and VDR gene polymorphisms were associated 
with increased susceptibility to IBD (191). In addition, Vitamin 
D plays a role in modulating cell homing marker expression. 
DC-dependent production of calcitriol results in the induction 

of skin-homing receptors (CCR10) and in the inhibition of gut-
homing molecules (α4β7 and CCR9) on activated T cells (192). 
However, whether this redirection of immune cells is implicated 
in IBD development remains to be addressed. In the murine 
setting, IL-10−/− mice (an established mouse model for IBD) 
crossed with VDR−/− mice displayed exacerbation of colitis and 
fulminating inflammation when compared with VDR-sufficient 
control mice (193). Similarly, VDR−/− mice were shown to be 
more susceptible to Dextran Sodium Sulfate (DSS)-induced coli-
tis due to impaired healing and decreased epithelial junctional 
complexes, suggesting a role for Vitamin D in the maintenance of 
the intestinal mucosal barrier (194). Interestingly, VDR−/− mice 
are characterized by increased bacterial load in the intestinal 
mucosa. This is most likely due to a VDR-dependent transcrip-
tional regulation of the autophagy gene ATG16L1 in Paneth 
cells, which are important for the production of antimicrobial 
peptides (195). Although preclinical and clinical observations 
point toward an involvement of Vitamin D in the pathogenesis 
of IBD, further studies addressing whether hypovitaminosis D 
is a cause or a consequence are needed. IBD patients are char-
acterized by inflammation-dependent intestinal malabsorption 
of diet-derived Vitamin D (180). However, recent prospective 
studies suggest that newly diagnosed IBD patients show Vitamin 
D deficiency whereas higher Vitamin D status correlates with a 
lower risk of developing Crohn’s disease (196).

AhR Ligands
Another relevant dietary constituent enriched in the small intes-
tine is represented by aryl hydrocarbon receptor (AhR) ligands. 
AhR is a widely expressed basic helix-loop-helix transcription 
factor, belonging to the PAS domain-containing superfamily. 
Interestingly, its expression on immune cells plays a pivotal role 
in the development and differentiation of the immune system 
(197). Ligands of AhR encompass xenobiotics such as envi-
ronmental pollutants, endogenous ligands such as tryptophan 
metabolites (e.g., FICZ) and dietary ligands contained in cruci-
ferous vegetables like broccoli and cabbage (198). Remarkably, 
a recent report showed that AhR might also act as a sensor of 
PAMPs by binding bacterial pigmented virulence factors (viz. 
phenazines from Pseudomonas Aeruginosa and naphtoquinone 
phthiocol from Mycobacterium Tubercolosis) and enhancing 
host immune response against pathogens (199). AhR ligands 
have been linked to the maintenance, but not the embryogenesis, 
of intraepithelial lymphocytes (e.g., TCRγδ and CD8αα T cells) 
(200) as well as differentiation and effector function of Foxp3+ 
TREG, Tr1, and Th17 cells (201–203). Recent findings highlighted 
a crucial role for AhR signaling in the innate lymphoid cells 
compartment. AhR deficiency dampens the postnatal, but not 
the fetal, development of RORγt+Nkp46+ ILC3, thereby affect-
ing IL-22 mediated protection against C. rodentium infection 
(204). Interestingly, AhR-dependent IL-22 expression by 
ILC3 was shown to be crucial to avoid the expansion of SFB 
and the induction of Th17 cells in the intestine, suggesting a 
cross-regulatory role of AhR that directly promotes Th17 cell 
differentiation and indirectly control their expansion by regulat-
ing the activity of ILCs (205). The requirement of AhR-mediated 
signaling during postnatal development was also outlined by 
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two studies demonstrating an AhR-dependent development of 
CCR6−CD4−T-bet+/− RORγt+ ILCs to generate cryptopatches 
and isolated lymphoid follicles (206, 207). Furthermore, AhR 
expression on peritoneal Mφ has been associated with hypore-
sponsiveness to LPS achieved by NF-κB inhibition (208). Hence, 
AhR ligands may target Mφ to maintain tolerance against the 
non-self repertoire enriched in the GI tract. In addition, AhR 
negatively regulates NLRP3 inflammasome activity (209), fur-
ther suggesting a role in dampening intestinal inflammation. To 
better determine the role of AhR on specific intestinal immune 
cells, additional studies exploiting an AhR ligand deficient diet, 
conditional ablation of AhR and a discrimination of microbial 
derived AhR ligands are needed.

Salt (NaCl)
It has recently been shown that salt, which is contained in high 
concentration in the western diet, induces pathogenic Th17 cells 
in the intestinal lamina propria (210), and hence providing an 
explanation for the link between the western life style and the 
high incidence of IBD observed in developed countries (189). 
Mechanistically, the serine-threonine kinase SGK1 (serum 
glucocorticoid kinase-1), which is important in controlling Na+ 
transport and salt homeostasis, is induced in T cells activated 
in Th17 polarizing conditions. SGK1 signaling blocks Foxo1, 
which is a repressor of IL-23R. Thus, SGK1-deficient cells display 
normal primary differentiation of Th17 cells, but impaired IL-17 
production upon IL-23 restimulation (210). Consistently, WT 
mice fed with a high salt diet were characterized by an increased 
frequency of Th17 in the SI-LP when compared to mice lacking 
SGK1 in the CD4+ compartment (210).

Commensal-Derived Food Metabolites
Some dietary components require special enzymes for their 
digestion; those that are lacking in our genome are instead 
provided by our microbiota (211). Mice reared under germ-free 
conditions display an altered metabolism with accumulation of 
undigested fibers and of primary bile acid products (212). The 
influence of commensal bacteria in regulating the availability of 
diet-derived nutrients and metabolites and their impact on the 
immune response have recently been reviewed elsewhere in Ref. 
(213), therefore we will in brief only discuss recently published 
results.

Short-chain fatty acids
Indigestible dietary fibers, which are present in fruits, vegetables, 
and cereals, represent the prototype of food metabolites that 
require bacterial enzymatic digestion in order to be biologically 
available. Fibers are processed by bacterial fermentation into 
SCFA products (mainly acetate, propionate and butyrate), which 
are enriched in the proximal colon in agreement with the higher 
bacterial load (16). Although butyrate has been associated with 
a pro-tumorigenic role in the etiology of colorectal cancer (214), 
it has also been shown that administration of butyrate to mice, 
which are genetically susceptible to small intestinal cancer and 
kept under a high fat diet, is able to attenuate tumor progres-
sion (215). Overall, the effect of a fiber-enriched diet results in 
the induction of an anti-inflammatory environment and thus 

provides a protection against inflammatory and allergic disorders. 
In line with this, in vitro butyrate-treated DCs produced lower 
levels of inflammatory cytokines, such as IL-12 and IFNγ (216). 
Furthermore, butyrate modulates intestinal macrophage function 
through histone deacetylase (HDAC) inhibition and downregula-
tion of the LPS-induced inflammatory cascade (217). Moreover, 
butyrate binding to GPR109A, which is a receptor for niacin in 
colonic Mφ and DCs, results in the generation of Foxp3+ TREG 
and IL-10 producing Tr1 cells (218). In vivo, the most prominent 
effect of SCFAs is the expansion of Foxp3+ TREG cells in the colonic 
lamina propria. SCFA-mediated effects on the immune system are 
mostly exerted through inhibition of HDAC and signaling down-
stream GPR43 and GPR41 receptors (213). A SCFA-enriched 
diet mediates the expansion of Foxp3+ TREG in the colon in a cell 
intrinsic and GPR43-dependent manner (219), whereas previous 
results showed the same expansion mediated by inhibition of 
deacetylation of the Foxp3 promoter (220). Interestingly, from a 
metabolic point of view, Th17 cells, differently from Foxp3+ TREG, 
are dependent on the glycolytic pathway (221). A recent study 
showed that de novo fatty acid synthesis is crucial for Th17 cell 
differentiation, whereas TREG are mostly induced by fatty acid 
uptake, thus providing a concomitant metabolic explanation 
of the phenotype observed in vivo upon changes in the dietary 
intake (222). Consistently with the enlargement of the Foxp3+ 
TREG pool in the colon, mice fed with a fiber enriched diet showed 
decreased T cell transfer-mediated colitis, which depends on a 
direct effect of SCFA on Foxp3+ TREG rather than de novo Foxp3+ 
TREG generation (219). Using a chemically induced murine model 
for colitis, Berndt and colleagues demonstrated that the route of 
administration is crucial to determine a protective or a harmful 
role of butyrate (223). The analysis of feces from human patients 
with IBD compared with healthy subjects revealed decreased levels 
of acetic, butyric, and propionic acids, thus suggesting a protec-
tive role of SCFA in the pathogenesis of IBD (224). Moreover, the 
fecal microbiota of patients with IBD showed decreased levels of 
F. Prausnitzii, a bacterial species of Firmicutes involved in dietary 
fiber digestion (225). Nevertheless, the effect of a fiber enriched 
diet in the treatment of IBD patients has shown opposite results 
(226–228), possibly depending on the different experimental 
protocols used in the different studies and on the selection of the 
patients cohorts (227). A better understanding of the local versus 
systemic effect mediated by this metabolite is needed to achieve 
a deeper insight in the mechanisms of action and the possible 
consequences in the shaping of the immune response in the GI 
tract and in other compartments of our body. In line with this, 
a fiber-rich diet is reflected by an increase in the serum level of 
SCFAs and is associated with a reduced susceptibility to allergic 
airway inflammation in a GPR41-dependent manner. This protec-
tive effect appeared to be mediated by an increased proliferation 
of CDPs and MDPs in the BM and the subsequent seeding of the 
lungs with DCs characterized by an increased phagocytic poten-
tial but a decreased ability to produce type 2-promoting cytokines 
(229). Whether this extra-intestinal effect of dietary metabolites 
is dependent on a direct sensing of SCFAs by BM precursors or 
whether it is an indirect effect mediated by education of immune 
cells in the intestine, followed by delivery of signals to the BM, still 
needs to be investigated.
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Oxysterols and Bile Acids
Food enriched in oils and fat is an important source of dietary 
lipids, mainly triglycerides and cholesterol, which exert impor-
tant roles in regulating the immune system (230). Metabolism 
of cholesterol gives rise to oxysterols and bile acids, key players 
in the regulation of nutrient absorption and lipid digestion 
through the activation of the nuclear receptors LXR (LXRα 
and LXRβ) and FXR, respectively. Commensal bacteria are 
important regulators of the synthesis of bile acids by convert-
ing primary into secondary bile acids and by favoring their 
excretion. Bile acids binding of FXR-RXR heterodimerized 
receptor expressed on lamina propria CD11b+ Mφ results in 
a decreased induction of pro-inflammatory genes, like IFNγ, 
IL-6, TNF-α, and IL-1β. Therefore, mice treated with an FXR 
agonist displayed a milder phenotype of inflammation during 
DSS-induced colitis (231, 232). Similarly, LXR activation on 
LPS treated Mφ results in the inhibition of COX-2, NOS, and 
IL-6 expression with the subsequent reduced inflammation in 
an in vivo model of dermatitis (233). Consistently, LXR-deficient 
Mφ display an aberrant capacity of apoptotic cell clearance 
associated with induction of inflammation and breakdown of 
self-tolerance (234). On the other hand, LXRβ deficiency was 
associated with an enhanced proliferative capacity of T lympho-
cytes and lymphoid hyperplasia, implying the importance of 
LXR and sterol metabolism in lymphocytes homeostasis (235). 
Furthermore, LXR activation has been associated with impaired 
differentiation of Th17 cells and protection against experimental 
autoimmune encephalomyelitis (EAE) in mice (235). Given 
the need to maintain intestinal homeostasis, metabolism of 
cholesterol might be crucial to counteract pro-inflammatory 
exogenous insults highly present in the GI tract. However, the 
specific target cells sensing oxysterol and/or bile acid to exert 
homeostatic function is still unresolved. Interestingly, a recent 
study demonstrated that naturally occurring oxysterols (7β, 
27-OHC, and 7α, 27-OHC) are strong RORγt agonists, hence 
enhancing Th17 differentiation in vitro in both human and mice 
(236). This study was also further substantiated by in vivo find-
ings. Mice deficient for CYP27A1, an enzyme responsible for 
bile acid synthesis and 27-OHC production, showed diminished 
numbers of Th17 cells among splenic CD4+ and γδ T cells (236), 
suggesting that oxysterols might, independently of LXR, modu-
late intestinal Th17 homeostasis.

Overall, the concept of diet as an active player involved in 
shaping our immune system rather than just being a mere source 
of energy is broadly accepted. The study of nutritional regimens 
in different areas of the world paired with the differential inci-
dence of inflammatory intestinal disorders is currently providing 
important insights in their pathogenesis and etiology. Current 
efforts point to uncover dietary derivatives associated to cellular 
and molecular changes leading to intestinal inflammation or 
reestablishing homeostasis. Moreover, a better understanding of 
diet-mediated immune effects will be crucial to exploit changes 
in dietary habits as an important complementary therapeutic 
approach for the treatment of inflammatory disorders affecting 
the GI tract.

Oral Tolerance to Food Antigens

As mentioned, the gut mucosa is constantly exposed to commen-
sal microflora and food constituents. Therefore, efficient suppres-
sive mechanisms are needed to avoid undesired inflammatory 
responses against these innocuous antigens. Oral tolerance is a 
process characterized by local and systemic hyporesponsiveness 
to antigens administered via the intestinal mucosa. Defects in 
proper induction and/or maintenance of oral tolerance might 
underlie pathological immune responses not only in the gut (e.g., 
IBD and food allergy), but also beyond the gut (e.g., multiple 
sclerosis).

Cellular Mechanisms of Oral Tolerance
The induction of oral tolerance relies on a stepwise active 
mechanism exploited by intestinal immune cells belonging to the 
adaptive and the innate immune system (237, 238). It is broadly 
accepted that induction of antigen-specific Foxp3+ TREG in gut 
draining lymphoid organs, and subsequent migration of these 
antigen specific Foxp3+ TREG into circulation, are key features to 
establish oral tolerance. However, in recent studies, a multi-step 
model for the induction of oral tolerance has been proposed, in 
which prior to entering into the circulation, Foxp3+ TREG migrate 
to the gut mucosa with the purpose to acquire immunosuppres-
sive abilities (Figure 4) (5). The different steps involved in this 
process include: (1) antigen sampling by innate immune cells; (2) 
migration to intestinal secondary lymphoid organs (mostly the 
mesenteric lymph node) and antigen presentation; (3) generation 
of Foxp3+ TREG with gut tropism; (4) migration of Foxp3+ TREG 
to the intestinal lamina propria where they expand and acquire 
tolerogenic potential; (5) eventual migration of newly generated 
Foxp3+ TREG into circulation and prevention of inflammation in 
the periphery (5).

Antigen Sampling
Luminal antigen sampling rely on several mechanisms involving 
different cell types, including Peyer’s Patches-associated M cells, 
intestinal epithelial cell-mediated intake, and protrusion of den-
drites by CX3CR1+ Mφ across the epithelial layer (237). However, 
lamina propria Mφ of the uppermost part of the small intestine are 
less efficient in antigen presentation and, as mentioned above, do 
not migrate to draining lymph nodes when compared to CD103+ 
DCs. Since antigen presentation by CD103+ DCs appeared to 
be crucial to induce oral tolerance, sampled antigens need to be 
transferred from CX3CR1+ Mφ to CD103+ DCs. Interestingly, 
Rescigno’s group demonstrated that orally delivered antigens, 
internalized and processed by CX3CR1+ Mφ, could be transferred 
via Connexin 43+ gap junctions to migratory CD103+ DCs in 
order to allow MHC-II mediated antigen presentation within the 
MLN. Cytoplasmatic peptides are not loaded to MHC-II mol-
ecules, thus a mechanism dependent on trogocytosis and transfer 
of peptide-MHC-II complexes has been proposed to explain the 
induction of Foxp3+ TREG (239). Furthermore, the gel-forming 
mucins MUC2 activate a β-catenin-dependent tolerogenic path-
way in the intestine by binding a Galectin3–Dectin1–FcgRIIB 
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FiGURe 4 | Step-wise induction of oral tolerance. Five different steps 
can be characterized during the induction of oral tolerance (yellow squares). 
These steps have been identified using key deficiencies (red), such as genes 
or vitamins. Step 1: CX3CR1+ macrophages (Myeloid cells depicted in blue) 
might sample food antigens though dendrites crossing the IEC barrier. Food 
antigens may then be transferred via Connexin 43+ gap junctions from 
macrophages to migratory CD103+ DCs (Myeloid cells depicted in green). 
Step 2: Food antigen-bearing CD103+ DCs migrate to the MLN in a 
CCR7-dependent manner and mediate the priming of Foxp3+ TREG through 
the production of TGF-β and retinoic acid (RA). Step 3: newly generated TREG 
are endowed with the ability to migrate to the small intestine lamina propria. 
This process relies on the induction of gut-homing receptors (CCR9 and 
α4β7) in a Vitamin A-dependent manner. Step 4: TREG cells migrate to the 
SI-LP, where they proliferate and acquire tolerogenic properties, likely 
involving IL-10 produced by CX3CR1+ macrophages. Step 5: fully tolerogenic 
TREG generated in the SI-LP may be released in the circulation preventing 
peripheral inflammation in a Foxp3- and IL-10-dependent manner. VAD, 
Vitamin A deficient diet; MLN, mesenteric lymph node; SI-LP, small intestine 
lamina propria; Itgβ7, integrin β7; MΦ, macrophage.
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receptor complex on intestinal CD103+ DCs. Therefore, mice 
deficient for MUC2 are no longer able to establish intestinal and 
systemic tolerance upon oral intake of antigens, implying a cru-
cial immunoregulatory role for the mucus in addition to a mere 
barrier function (240).

Migration to the MLN and Ag Presentation
Following antigen uptake, DCs need to migrate to intestinal 
draining lymphoid structures in order to present the antigen to 
cognate naïve T cells and induce antigen-specific Foxp3+ TREG. 
This has been proven using CCR7−/− mice as well as mesenteric 
lymphadenectomy, which result in inhibition of oral tolerance 
induction (241). Unlike the CD103− subset, migratory CD103+ 

DCs are endowed with enhanced ability to induce Foxp3+ TREG in 
a TGF-β and RA-dependent manner (7). Wnt–β-catenin signal-
ing in DCs was shown to increase the expression of regulatory 
cytokines (Il10 and Tgfb1) and the enzymes responsible for RA 
production (Raldh1 and Raldh2) (242). CD103+ DC can also be 
distinguished by expressing the integrin αvβ8, which converts 
latent to active TGF-β, hence, further specializing them to induce 
Foxp3+ TREG (10). Thus, CD103+ DC might play a critical role dur-
ing the establishment of oral tolerance, as suggested by eliminating 
RA-producing DC precursors expressing α4β7 in the BM, which 
result in defective Foxp3+ TREG induction (179). Interestingly, 
among BM hematopoietic cells, other precursors are character-
ized by the expression of α4β7, including ILC progenitors (31). 
Hence, it is tempting to speculate that RA regulates ILC homing 
to the intestine and the consequent induction of oral tolerance. 
Indeed, a role for intestinal ILCs has recently been proposed in the 
establishment of tolerance toward food antigens. LTi and NKp46+ 
ILC3s production of GM-CSF was shown to be essential for the 
maintenance of resident DCs and for their ability to synthetize 
RA and produce TGFβ. Noteworthy, GM-CSF production by 
RORγt+ ILCs was dependent on Mφ sensing microbial signals 
and subsequent production of IL-1β (243), implying a role for the 
microbiota in this process. Furthermore, monocolonization with 
Clostridia confers allergy protection by inducing ILC3-mediated 
production of IL-22 and by regulating allergens access through 
the epithelial cell layer (244).

Generation of TReG with Gut Tropism
Interestingly, CD103+ DC also induces the expression of gut-
homing receptors, namely CCR9 and α4β7, conferring small 
intestine tropism to newly generated Foxp3+ TREG (7). In agree-
ment with the role of RA in inducing gut-homing tropism, mice 
fed with a VAD are impaired in the establishment of oral toler-
ance. However, the proportion of intestinal Foxp3+ TREG found in 
VAD and control mice is comparable, suggesting that RA plays a 
pivotal role in the induction of gut tropism on T cells rather than 
in the generation of Foxp3+ TREG (5).

Migration of TReG to Si-LP
After the generation of Foxp3+ TREG within the MLN, a previously 
unpredicted additional step has been recently described: migra-
tion to the small intestine lamina propria (SI-LP) rather than to 
the periphery. The observation that RA induces the expression of 
α4β7 and CCR9 on Foxp3+ TREG, prompted two different groups 
to speculate that newly generated Foxp3+ TREG are required 
to migrate to the small bowel in order to establish oral toler-
ance. Indeed, mice lacking either CCR9 or integrin β7 showed 
impaired induction of oral tolerance, which was due to the inabil-
ity of Foxp3+ TREG to migrate to the proximal small bowel (8, 9). 
Foxp3+ TREG strongly proliferate in the intestinal lamina propria 
and most likely they sense CX3CR1+ macrophage-derived IL-10, 
which have been proposed to be key processes required during 
the establishment of oral tolerance (5, 9). Interestingly, Pabst and 
colleagues showed that CX3CR1+ deficiency in resident intestinal 
Mφ abrogates oral tolerance without affecting antigen uptake and 
presentation, but rather impairing IL-10 production and Foxp3+ 
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TREG proliferation in the lamina propria (9). Thus, migration of 
activated Foxp3+ TREG to the small bowel lamina propria seems 
to be crucial to fully develop a tolerogenic potential. This is in 
agreement with a growing body of literature proposing the intes-
tine as a site of education or reprograming even for pathogenic 
T cells (245). In support of this theory, CCR6-deficient Th17 
cells, which are impaired to home to the intestine, possess higher 
pro-inflammatory properties compared to wild type Th17 (245). 
Moreover, EAE-induced mice (a mouse model for multiple scle-
rosis) treated with monoclonal anti-CD3 antibodies are protected 
due to an increased migration of MOG-specific Th17 cells to the 
duodenum and reduced Th17 cells in the central nervous system 
(245). In addition, lung-derived pro-inflammatory cells from 
mice infected with influenza accumulate in the small intestine 
where they mediate gastrointestinal symptoms (246). Although 
the authors did not demonstrate that blocking this migratory 
pattern could affect the disease in the lungs, it might be possible 
that influenza-induced gastrointestinal inflammation reflects the 
cost of reducing inflammation in the lungs and resolving viral 
infection. Overall, oral tolerance relies on the induction of gut-
tropic Foxp3+ TREG specific for fed antigens.

Failure to prompt an effective regulatory response is associated 
with development of food allergy characterized, predominantly, 
by a Th2 response. For example, mice carrying a mutation in 
the IL-4Rα chain that enhances the IL-4R signaling pathway are 
more prone to develop allergic sensitization to oral antigens, 
which is associated with Foxp3+ TREG reprogramming toward a 
Th2 cell-like phenotype (247). Moreover, polymorphisms in the 
IL4RA locus have been linked to the pathogenesis of human food 
allergy, and analogously, reprogramed cells (Foxp3+ TREG → Th2) 
were also found in the peripheral blood of children with food 
allergy (247).

Deletion and Anergy
A possible alternative step has been proposed for the induc-
tion of oral tolerance, involving deletion or anergy induction 
rather than the generation of regulatory T cells. These different 
outcomes appear to depend on the different doses of antigens 
orally administered. In particular, feeding low doses of antigens 
results in the differentiation of regulatory T cells (as described 
earlier). Although the most characterized subtype of regulatory 
T cells is CD4+ Foxp3+ peripherally induced TREG, a role for Tr1 
Foxp3− IL-10-producing TREG and Th3 Foxp3− LAP+ TGF-β-
producing TREG has been described in the low-dose induction 
of OT. In  vivo, treatment with anti-LAP mAb was recently 
shown to abrogate anti-CD3-induced OT in mice (248). 
Conversely, administration of high doses and thus systemic 
spreading of the antigen relies on the induction of apoptosis or 
anergy in effector cells. High-dose feeding with myelin basic 
protein (MBP) in mice, transgenic for MBP-specific TCR, 
induces an initial wave of activation of CD4+ T cells and TCR 
downregulation, followed by anergy and consequent deletion 
(249). The molecular mechanism underlying the induction 
of anergy relies on an active process that involves the activa-
tion of anergy-associated genes. Ca++/Calcineurin signaling 
promotes the activation of NFAT that imposes an anergic 

program if prevented to bind its transcriptional partner AP-1 
(250). Among genes that are upregulated on anergic T cells, 
GRAIL, an E3 ubiquitin ligase, is crucial for the induction of 
OT. GRAIL−/− mice, genetically engineered to express a TCR 
specific for the MHC-II restricted peptide of ovalbumin protein 
(OT-II) on CD4+ T cells, are prevented to establish tolerance to 
fed OVA antigen (251). Deletion of effector cells is important to 
avoid reactions against food antigens. Oral gavage of high doses 
of allergen, in a mouse model of allergic contact dermatitis, 
promotes plasmacytoid DCs-mediated deletion of Ag-specific 
CD8+ T cells in the liver and in the MLN. Residual effector 
CD8+ T cells, that have escaped this first round of tolerance 
induction, are then subjected to suppression by activated TREG 
cells, generated as described earlier, in the mucosal associated 
lymphoid tissues (252).

Most of the studies reported above, aimed at defining OT 
mechanisms are conducted exploiting TCR-transgenic mouse 
models that facilitate the tracking of Ag-specific T cells in vivo. 
A general concern about the use of these models is that they 
are far from being physiologic, since TCR-transgenic T cells 
recognize their specific antigen with high avidity and gener-
ally outnumber the normal repertoire of TCRs specificities. 
In particular, this might have an impact on studies focused 
on the induction of anergy and deletion that are influenced 
by the strength of TCR engagement and signaling.

Concluding Remarks

In order to exert all its biological functions, our body demands 
energetic fuel that is mainly provided by nutrition. The first diet 
is represented by breast milk, which is subsequently replaced by 
solid food intake. It is well accepted that orally delivered nutrients 
exert a profound biological role in shaping our intestinal immune 
system, with consequences affecting our susceptibility to gastro-
intestinal and extra-intestinal disorders. Choosing the diet-
regimen in all the stages of our life, starting from breast-feeding 
(or formula) to the solid diet later on, may have immunological 
implications, which are not completely understood.

For instance, breast milk-mediated transfer of maternal 
immune-regulating factors assists the development of the imma-
ture immune system of the infant, and help in the protection 
against the first external pathogenic insults. Numerous breast 
milk components have been described so far, however, studies 
aimed at dissecting the molecular and cellular mechanisms 
involved in the fitness of the immune system, including immune 
maturation and induction of tolerance, are needed.

In contrast, solid food intake is no longer characterized by the 
presence of preformed immune mediators, but instead dietary 
metabolites are endowed with immune-shaping properties that 
influence the composition of a mature immune system. Several 
immune effects of food components have been characterized in 
the last few decades. Even though genetically engineered mice 
and dietary regimens deprived or supplemented with a specific 
food metabolite in mouse models have been instrumental, we 
urgently need to corroborate these findings in humans, to then 
translate and design novel therapeutic approaches. Observational 
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and prospective studies in humans may also have an impact on 
our knowledge on the preventive and therapeutic potential of 
food. Thus, providing mechanistic insights into how the immune 
system can be shaped by dietary compounds or breast milk com-
ponents will offer valuable tools to develop therapeutic strategies 
against inflammatory disorders or food allergies.
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