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ABSTRACT The detection of ancient gene flow between human populations is an important issue in population
genetics. A common tool for detecting ancient admixture events is the D-statistic. The D-statistic is based on the
hypothesis of a genetic relationship that involves four populations, whose correctness is assessed by evaluating
specific coincidences of alleles between the groups. When working with high-throughput sequencing data, calling
genotypes accurately is not always possible; therefore, the D-statistic currently samples a single base from the reads
of one individual per population. This implies ignoring much of the information in the data, an issue especially
striking in the case of ancient genomes. We provide a significant improvement to overcome the problems of the
D-statistic by considering all reads from multiple individuals in each population. We also apply type-specific error
correction to combat the problems of sequencing errors, and show a way to correct for introgression from an
external population that is not part of the supposed genetic relationship, and how this leads to an estimate of the
admixture rate. We prove that the D-statistic is approximated by a standard normal distribution. Furthermore, we
show that our method outperforms the traditional D-statistic in detecting admixtures. The power gain is most
pronounced for low andmedium sequencing depth (1–10·), and performances are as good as with perfectly called
genotypes at a sequencing depth of 2·. We show the reliability of error correction in scenarios with simulated errors
and ancient data, and correct for introgression in known scenarios to estimate the admixture rates.
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An important part of the understanding of a population’s history and its
genetic variability is past contacts with other populations. Such contacts
could result in gene flow and admixture between populations and leave
traces of a population’s history in genomic data. In fact, the study of
gene flow between populations has been used to uncover demographic
histories of many species, including human and archaic human pop-
ulations (Patterson et al. 2012; Raghavan et al. 2013, 2015; Green et al.
2010; Reich et al. 2009, 2010, 2011; Wall et al. 2013; Rasmussen et al.
2010, 2014; Lalueza-Fox and Gilbert 2011; Skoglund et al. 2015).

The study of the history of human populations using both modern
and ancient human genomes has become increasingly topical with the
recent availability of new high-throughput sequencing technologies
(Stoneking and Krause 2011) such as next-generation sequencing
(NGS) (Black et al. 2015). These technologies have made it possible
to obtain massive quantities of sequenced DNA data even from an-
cient individuals, including an Anzick Clovis individual from the late
Pleistocene (Rasmussen et al. 2014), a Neandertal individual (Green
et al. 2010), and a Paleoamerican individual (Chatters 2000).

There are many different methods for inferring and analyzing
admixture events using genome-scale data. Popular methods such as
STRUCTURE (Pritchard et al. 2000) and ADMIXTURE (Alexander
et al. 2009) estimate how much a sampled individual belongs to K
clusters, which can often be interpreted as the individual’s admixture
proportional to the K populations. However, these approaches are not
appropriate for detecting ancient gene flow and do not work well with a
limited number of individuals per population.

A recent alternative to the above methods is the D-statistic. The
D-statistic is based on the di-allelic patterns of alleles between four
groups of individuals, and provides a way to test the correctness of a
hypothetical genetic relationship between the four groups (see Figure 1).
A variant of the D-statistic (called the F4-statistic) was first used in
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Reich et al. (2009) to show that subgroups of the Indian Cline group are
related to external populations in terms of gene flow. The amount of
gene flow can also be estimated using the F4-statistic (Wall et al. 2013).

In a pivotal study (Green et al. 2010), the D-statistic was used to
show that three non-African individuals were more genetically similar to
theNeandertal sequence thanAfrican San andYoruban individuals were.
Moreover, it has been shown that the East Asian populations have greater
amounts of Neandertal shared genetic material (Wall et al. 2013).

Based on use of the D-statistic on many Old World and Native
American individuals, gene flow into some Native American popula-
tions has been suggested, for instance, evidence of admixture from
Australasian populations into NewWorld populations (Raghavan et al.
2015; Skoglund et al. 2015).

In another study, the affinity between the Anzick genome and the
Native American genome was analyzed with the D-statistic to compare
different hypotheses regarding their ancestry (Rasmussen et al. 2014).
Using the D-statistic, it has been reported based on the remains of an
individual from theMal’ta population in south-central Siberia, that this
population contributed to the gene pool of modern-day Native Amer-
icans, with no close affinity to East Asians (Raghavan et al. 2013).

Thefirst use of theD-statisticwas based on a sampling approach that
allowed the test to be performed without the need to call single-
nucleotide polymorphisms (SNPs) or genotypes (Green et al. 2010).
This approach is still widely used, and the available computational tools
implementing it include the doAbbababa program ANGSD (Analysis
of Next Generation Sequencing Data) (Nielsen et al. 2011) (supporting
low-depth NGS data) and the fourpop program of TreeMix (Pickrell
and Pritchard 2012) (supporting di-allelic genotype data and micro-
satellite data). The program qpDstat of ADMIXTOOLS (Patterson
et al. 2012) computes the D-statistic from populations with multiple
individuals from di-allelic genotype data. The program doAbbababa
relies on sampling one base from every locus, using the sequenced reads
to define the sampling probabilities.

The D-statistic is often applied to scenarios involving ancient
individuals, which are commonly affected by deamination, i.e., the
natural degradation of DNA after death of the organism, which leads
to there being fewmolecules remaining in ancient specimens and often
results in a low sequencing depth. Furthermore, deamination can cause
high frequency of specific transitions of the bases, low quality of the
SNPs, and very low depth of the data. The current methods for the
D-statistic can be very ineffective and unreliable when applied to an-
cient data, since both sampling and genotype calling procedures are
subject to high uncertainty.

The focus of this paper is to address the problems stated above. We
propose a D-statistic—implemented in the program doAbbababa2 of
ANGSD—that supports low-depth NGS data and is calculated using
all reads of the genomes, and therefore allows for the use of .1
individual per group. We prove that the improved D-statistic is ap-
proximated by a standard normal distribution and, using both simu-
lated and real data, we show how this approach greatly increases the
sensitivity of gene-flow detection and thus improves the reliability of
the method, in comparison with sampling a single read. We also illus-
trate that it is possible to correct for type-specific error rates in the data,
so that the reads used to calculate the D-statistic will not bias the result
owing to type-specific errors. Moreover, our improved D-statistic can
remove the effects of known introgression from an external population
into H1; H2, or H3; and indirectly estimates the admixture rate.

MATERIALS AND METHODS
This section introduces the traditional D-statistic and the theory that
leads to its approximation as a normal distribution. Thereafter, we

explain how to extend the D-statistic to use multiple individuals per
population, without genotype calling andwhile still preserving the same
approximation property of the D-statistic. Last, we will show how to
deal with type-specific errors and introgression from a population
external to the tree topology.

Standard D-statistic
The objective of the D-statistic is to assess whether the tree of Figure 1
that relates four present-day populations, H1;H2;H3;H4; is correct.
When H4 is an outgroup, the correctness of the tree corresponds to
the absence of gene flow between H3 and either H2 or H1: This objec-
tive is achieved by developing a statistical test based on the allele fre-
quencies and a null hypothesis H0 that the tree is correct and without
gene flow. We limit the explanation to a di-allelic model with alleles A
and B to keep the notation uncluttered; the extension to a four-allele
model is fairly straightforward. We do not make an assumption on
which allele is derived, but we assume that B is the nonoutgroup allele.
PopulationH4 is an outgroup that splits off from the other branches at
the root of the tree. For each population Hj;   j ¼ 1; 2; 3; 4; in the tree,
we consider the related allele frequencies xj:

For each population Hj; the observed data consist of a certain
number of individuals sequenced without error. At every locus i there
are nij sequenced bases observed from aligned reads. We consider only
theM loci for which there is at least one sequenced base from aligned reads
in all four groups. Moreover, in this theoretical treatment, we allow the
number M of loci to grow to infinity. Assume that at a locus i the allele
frequencies in the four groups of individuals xi :¼ ðxi1; xi2; xi3; xi4Þ; and let
x̂i :¼ ðx̂i1; x̂i2; x̂i3; x̂i4Þ be an unbiased estimator of xi; such as the relative
frequencies of the allele A in each population.

The D-statistic focuses on di-allelic sites where the differences are
observed within the pairs ðH1;H2Þ and ðH3;H4Þ: Consider a random
allele drawn from each of the four groups of genomes and the resulting
combination of the four alleles. We are interested in two patterns:

• ABBA, meaning that we have the same allele in populationsH1 and
H4, and another allele from the individuals in populations H2 and
H3;

• BABA, where one allele is shared by individuals in populations H1

and H3, and the other allele by individuals in populations H2

and H4:

The tree of Figure 1 is subject to independent genetic drifts of the
allele frequencies along each of its branches. Consequently, the prob-
abilities of ABBA and BABA patterns, which are conditional only on
population frequencies, would rarely be the same. Therefore, it is in-
teresting to focus on their expected values with respect to the frequency
distribution:

ℙðABBAiÞ ¼ E½xi1xi4
�
12 xi2

��
12 xi3

�þ �12 xi1
��
12 xi4

�
xi2x

i
3�
(1)

ℙðBABAiÞ ¼ E½�12 xi1
�
xi2
�
12 xi3

�
xi4 þ xi1

�
12 xi2

�
xi3
�
12 xi4

��
(2)

To verify that allele A is shared between genomes inH1;H3 as often as
it is shared between genomes in H2;H3; we require as null hypothesis
that at each ith locus the probability (1) equals the probability (2).
This condition can be written as:

H0 : E
h�
xi1 2 xi2

��
xi3 2 xi4

�i ¼ 0; for i ¼ 1; . . . ;M;

where the expectation is the difference between (1) and (2).
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Using the empirical frequencies of the alleles as unbiased estimators
for the population frequencies, we define the D-statistic as the following
normalized test statistic:

DM :¼ XðMÞ
YðMÞ

¼

PM
i¼1ðx̂i1 2 x̂i2Þðx̂i3 2 x̂i4ÞPM

i¼1ðx̂i1 þ x̂i2 2 2x̂i1x̂
i
2Þðx̂i3 þ x̂i4 2 2x̂i3x̂

i
4Þ

(3)

The values XðMÞ and YðMÞ are the numerator and denominator, re-
spectively. Using YðMÞ to normalize the numerator leads to the in-
terpretation of DM , as the difference over all loci of the probabilities of
having an ABBA or a BABA event, conditional on the assumption that
only ABBA or BABA events are possible.

Appendix 1 shows that under the hypothesisH0, the test statistic can
be approximated by a standard normal variable. Specifically, the ap-
proximation holds with a proper rescaling, sinceDM would narrow the
peak of the Gaussian around zero for largeM (note that this rescaling is
an embedded factor in the estimation of the variance of DM using the
block jackknife method (Busing et al. 1999) in the software implemen-
tation of ANGSD). More generally, the treatment could be extended to
blockwise independence of the allele counts to take into account linkage
disequilibrium.

The convergence results of Appendix 1 apply to the following special
cases of the D-statistic:

1. the original D-statistic DM calculated by sampling a single base
from the available reads (Green et al. 2010) to estimate the sam-
pling probabilities;

2. the D-statisticDM evaluated by substituting the frequencies x̂ij with
the estimated population frequencies q̂ij defined in equation 4 for
multiple individuals (see Appendix 2);

3. the D-statistic DM evaluated only over loci where the outgroup is
mono-allelic, such as when the chimpanzee is set as an outgroup to
test for gene flow from the Neandertal population into modern
out-of-Africa populations (Green et al. 2010).

Multiple individuals per group
The D-statistic defined in equation 3 is calculated using population
frequencies. In the case where only one individual per population is
chosen, it is easy to get an estimate of the populations’ frequencies by
simply counting observed bases. In what follows, we are interested in
getting a meaningful estimate of the frequencies in the case where we
want to use all the available sequenced individuals without calling
genotypes.

This is done using a weighted sum of the estimated allele frequencies
for each individual ineverygroup.Assumethatgiven theallele frequency
xij ;   j ¼ 1; 2; 3; 4; at locus i for the jth population, we model the ob-
served data as independent binomial trials with parameters nij and xij;
where nij is the number of trials.We take the frequency of allele A in the

reads of each jth population as an unbiased estimator of the population
frequency. Let Nj be the number of individuals in population j. For the
first individual within the jth population, let xij;l be the frequency of
allele A at locus i, with estimator x̂ij;l the frequency of allele A for
l ¼ 1; :::; Nj. Define q̂

i
j as the weighted sum

q̂ij :¼
XNj

l¼1

wi
j;l � x̂ij;l; (4)

where eachwi
j;l is a weight that is proportional to a quantity depending

on nij;l , the number of sequenced bases at locus i for individual l:

wi
j;l }

2nij;l
nij;l þ 1

: (5)

The estimator q̂ij in equation (4) is an estimator for the jth population
frequency at locus i with minimal variance (the derivation of the
weights as minimizer of the frequency estimator’s variance can be
found in Appendix 2). Substituting the estimated population fre-
quencies in equation (3) with the weighted estimators determined
by equation (4), it is possible to account for multiple individuals per
population. Since the weighted estimator is also unbiased, it does
not affect the approximation of the D-statistic with a standard nor-
mal distribution.

A first application of this method has been the estimation of
population frequencies to reveal signatures of natural selection (Li
et al. 2010). The weights have a strong impact on loci with a low
number of reads, where they assume a low value, leading to a stron-
ger impact of population frequency estimated from high-depth in-
dividuals in each group.

Error estimation and correction
The study of genetic relationships between populations often involves
the use of ancient genomes that are subject to high error rates. We
introduce error correction following the idea illustrated inOrlando et al.
(2013), to take errors into account and to obtain a more reliable
D-statistic.

Estimation of type-specific error rates is possible using two
individuals (one affected by type-specific errors and one sequenced
without errors) and an outgroup, denoted by T, R, and O, respec-
tively. Those individuals are considered in the tree ((T,R),O) (see
Appendix 3).

After the errormatrix is estimated for each individual, it is possible to
obtain error-adjusted frequencies of alleles in locus i through the fol-
lowing matrix–vector product:

piG ¼ e21piT : (6)

where piG and piT are the true and observed vectors of allele frequen-
cies locus i, respectively, and e is the 4 · 4 type-specific error matrix
whose entry eða; bÞ is the probability of observing a base of type b
when the true base is of type a. Note that estimating e and correcting
the allele frequencies is a process best applied before the calculation of
weighted allele frequencies for multiple individuals.

Using error-corrected estimators of the population frequencies to
calculate the D-statistic does not prevent it from being approximated by
a standard normal distribution, because the error-corrected estimators
are unbiased for the true population frequency (see Appendix 3).

According to equation (6), one is able toperform the error correction
at every locus for every individual. In this way, it is possible to build a
weighted frequency estimator for each population after the error

Figure 1 Tree topology for the D-statistic. Hypothesis of genetic
relationship between four populations, H1;H2;H3;H4:
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correction. However, the implementation of equation (6) involves the
inversion of a matrix and a matrix–vector multiplication at every locus
for each individual in all populations. Moreover, as a consequence of
the error estimation, there might be negative entries of the inverse e21,
which might cause the product of equation (6) to result in negative
entries in the vector piG:

Consequently, we decided to implement a less precise version of the
errorcorrection that is appliedtoeachwholegroupof individuals instead
of every single individual.Assume that thepopulations’ frequencieshave
been estimated from equation (4), and that it is possible to estimate the
probabilities of the 256 allele combinations AAAA, AAAC,. . ., TTTT
between the four populations.

In each jth population of individuals, let eð jÞ be the mean of their
error matrices. Then build the error matrix for the four groups, E: This
has dimension 256 · 256, and its entry ða1:4; b1:4Þ; where
a1:4 ¼ ða1; a2; a3; a4Þ and b1:4 ¼ ðb1; b2; b3; b4Þ are two possible allele
patterns of the four populations, is defined as the probability of observ-
ing b1:4 instead of a1:4; assuming independence of the error rates be-
tween the four populations:

Eða1:4; b1:4Þ ¼ e1ða1; b1Þ � e2ða2; b2Þ � e3ða3; b3Þ � e4ða4; b4Þ:
The equation states that the change from pattern a1:4 to b1:4 happens
with a probability that is the product of the error rates of each pop-
ulation. Note that each error rate is the sum of the error rates of each
individual in that population, and so does not take into account how
every individual is weighted according to the frequency estimator of
equation (4).

Let Perror be the vector of length 256 that contains the estimated
probabilities of observing allele patterns between the four populations,
affected by type-specific errors. Denote by Pcorr the vector containing
the estimated probabilities of patterns not affected by errors. With an
approach similar to the one leading to equation 6, it holds that

Pcorr ¼E21Perror

Using the error-corrected estimated probabilities of combinations of
alleles of the type ABBA and BABA, it is then possible to calculate the
numerator anddenominator of theD-statistic. This procedure is fast, but
ithas thedrawbackthat ineverygroup theerrormatrix takes intoaccount
every individual within a population without its associated weight from
equation 5. This means that the portion of alleles related to individuals
with lower weights might undergo an excessive error correction.

Correction for introgression from an
external population
The improvedD-statistic proves tobevery sensitive to introgression, but
a hypothesized genetic relationship might be rejected because of an
admixture involving a population not part of the considered tree. We
propose a way to correct this issue and obtain an estimate of the amount
of introgression when the source of gene flow is available.

In this section,weanalyze the case inwhich thenullhypothesismight
be rejected in favor of the alternative hypothesis, but the cause of
rejection is not the presence of gene flow between H3 and either H1

or H2; but instead gene flow between an external population H5 and
either H2 or H1: Consider the case of Supplemental Material, Figure
S3A in File S1, where the null hypothesis might be rejected because of
introgression from an external population H5 into H2 with rate a. We
assume that the external sample forH5 represents the population that is
the source of introgression. ConsiderH2 to be the population subject to
introgression from H5; and define H29 as the same population when it
has not undergone admixture.

The four-population subtrees of interest (see Figure S3 in File S1)
are T1:4 ¼

�ððH1;H2ÞH3ÞH4
�
;which includes the four-population tree

excluding the admixing population; Tout ¼
�ððH1;H5ÞH3ÞH4

�
; where

the population source of introgression replaces the admixed popula-
tion; and Tun ¼

�
H1ðH29ðH3;H4ÞÞ

�
; in which H2 has not yet under-

gone admixture and therefore reflects the null hypothesis H0.
Consider the patterns of four alleles for the three subtreesmentioned

above, whose estimated probabilities are respectively denoted as p1:4;
pout , and pun: Using the frequency estimators of equation (4), it is
possible to estimate p1:4 and pout; but not pun since H29 is not an
observed population.

Assume that testing with the D-statistic on the tree T1:4 leads to a
rejection of H0 because the allele frequencies of H2 are altered by the
gene flow from H5: In fact, any combination of four alleles observed in
T1:4 has probability

p1:4 ¼ ð12aÞpun þ apout :

By solving for pun it follows that

pun ¼ 1
12a

�
p1:4 2apout

�
: (7)

Note that if the admixture proportion a is known, then admixture
correction is possible. If a is not known and we assume the tree is
accepted for E [Dun] = 0, where Dun is the D-statistic related to the
tree Tun; then a can be estimated. In this case, pun has to be deter-
mined for all values of a, and the correct value will be the one for
which E [Dun] = 0. In this way, an estimate of the admixture rate was
obtained for the topology of Figure S3A in File S1.

Simulations
Different scenarios have been generated using the coalescent simulator
msms (Ewing and Hermisson 2010) to reproduce the trees of Figure 2,
A–C, in which times are in units of generations. Each topology has been
simulated 100 times for a constant population size of Ne ¼ 104: Mu-
tation and recombination of the simulations are consistent with human
data (Ewing and Hermisson 2010). Migrations and admixtures, respec-
tively, for the scenarios of Figure 2, A and C, were simulated with
specific options ofmsms. For each simulation, we generated 200 regions
of size 5 Mb for each individual and considered only variable sites,
except for the case of Figure 2B, where the null hypothesis was affected
by type-specific errors on some of the individuals. We used a type-
specific error of eA/G = 0.005 in populationsH1;H3: The choice of the
region size is compatible with the one estimated for applications with
human genomes in Rasmussen et al. (2010). The regions are used by the
jackknife estimator (Busing et al. 1999) to estimate the SD of the
D-statistic accommodating the nonindependence of loci.

As a second step, the simulated genotypes frommsms were given as
inputs tomsToGlf, a tool that is providedwithANGSD.UsingmsToGlf,
it is possible to simulateNGS data frommsms outputfiles by generating
the pileup files, which are used as input for ANGSD. As parameters for
msToGlf, we set up the depth as themean of a Poisson distribution, and
we hardcoded the error rates in the program when necessary for the
scenario in Figure 2B.

Sequenced human populations
For the real data scenarios of Figure 3,A–Cweused Illumina-sequenced
individuals from several human populations. See Table 1 for an over-
view of the data. The depth of each individual has been calculated using
the program doDepth of ANGSD. The Peruvian individuals used in
our study were unadmixed with proportion $0.95. Estimation of
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the admixture proportions of these individuals was performed using
ADMIXTURE (Alexander et al. 2009). In each individual, only the
autosomal regions of all individuals were taken into consideration,
and bases were filtered out according to a minimum base quality score
of 20 and a mapping quality score of 30. Type-specific error estimates
for the Saqqaq,Mi’kmaq, and French individuals were performed using
the program doAncError of ANGSD, where the chimpanzee was used
as the outgroup and the consensus sequence of human NA12778 as an
error-free individual (see Figure S4 in File S1 for the bar plot of the
estimates of the type-specific error).

Data availability
The real data used is specified in Table 1. The simulated data has been
produced using msms (Ewing and Hermisson 2010). The msms code

for simulations is in the caption of Figure 2. From the output of msms,
NGS pileup files were simulated with the tool msToGlf integrated in
ANGSD (Nielsen et al. 2011). The one-sample D-statistic and the
extended D-statistic implemented in this paper were performed on
both real and simulated data with the program doAbbababa2 of
ANGSD. ANGSD can be downloaded from https://github.com/
ANGSD/angsd. A detailed guide including a tutorial for the pro-
gram doAbbababa2 can be found at http://www.popgen.dk/angsd/
index.php/Abbababa2.

RESULTS AND DISCUSSION
In the study of our results, we compare different implementations of the
D-statistic on simulated and real scenarios.We briefly define asDext the
extended D-statistic that we implemented, D1base as the D-statistic

Figure 2 Simulated scenarios. (A) Simulation of a
tree in which migration occurs from population H3

to H1: The variable m is the (rescaled) migration
rate varying from 0, 8, 16, 24, 32, 40, up to
280 with steps of size 20. Expressed as a percent-
age, the migration rate varies from 0, 0.02, 0.04,
0.06, 0.08, 0.1% up to 0.7%. Command: msms -N
10000 -ms 40 200 -I 4 10 10 10 10 0 -t 100 -r
100 1000 -em 0.2 3 1 $m -em 0.201 3 1 0 -ej
0.5 1 2 -ej 0.75 2 3 -ej 1 3 4. The same command
line has been applied with the option -I 4 40 40 40
40 0 to generate populations of 20 diploid indi-
viduals, used to study the power of the method
using subsets of 1, 2, 5, 10, and 20 individuals of
such populations. (B) Simulation of a tree in which
no migration occurs, but type-specific errors on
some individuals provide a rejection when testing
for correctness of the null hypothesis. Command:
msms -N 10000 -ms 8 200 -I 4 2 2 2 2 0 -t 100 -r
100 1000 -ej 0.5 1 2 -ej 0.75 2 3 -ej 1 3 4. (C)
Simulation of a tree in which H5 admixes with H1

with an instantaneous unidirectional admixture of
rate a = 0.1. In this case, we expect the null hy-

pothesis to be rejected since H5 will alter the counts of ABBA and BABA patterns, but the alternative hypothesis does not involve gene flow with H3:

Command: msms -N 10000 -ms 50 200 -I 5 10 10 10 10 10 0 -t 100 -r 100 1000 -es 0.1 1 0.9 -ej 0.2 6 5 -ej 0.25 1 2 -ej 0.5 2 3 -ej 0.75 3 4 -ej 30 4 5.

Figure 3 Real data scenarios. (A) Tree repre-
senting the southwestern European migration
into the Americas during the European colo-
nization. (B) Tree representing two indepen-
dent migrations into northwestern Canada
and Greenland. (C) Tree representing the
presence of Neandertal genome in a modern
non-African population, specifically the Han
Chinese.
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calculated by sampling one sequenced base per locus (Green et al.
2010), and Dgeno the D-statistic calculated with equation (3) using the
allele frequencies estimated from the true genotype (the true genotype
is only available in the case of simulated data).

TheD-statistic iscomputedonblocksof5Mb, toensure thatnoblock
is subject to linkage disequilibrium from the other blocks, and that the
number of loci in each block is large enough to make the D-statistic
approach the approximation by a standard normal distribution (see
Appendix 1). The use of blocks allows for estimation of a proper
normalization constant for the D-statistic using the m-block jackknife
method (Busing et al. 1999). The threshold for rejection of the null
hypothesis is set to a p-value of 0.001, corresponding approximately to
the two-tailed acceptance region [23, 3].

The formula for calculating theD-statistic is given in equation (3). Its
current implementations include those in Patterson et al. (2012) and
Nielsen et al. (2011), with sampling of one base per locus from only one
individual in each population. Such an implementation is computa-
tionally fast but has many drawbacks:

• when genomes are sequenced at low or medium depth (1–10·),
sampling one base might lead to a process with high uncertainty;

• base transition errors might affect the sampling of the base, adding
more uncertainty;

• only one individual per population is used;
• for a chosen individual from a population, the reads are not used to

evaluate the D-statistic, but only to sample one base.

We have proposed a solution to these problems with the extended
version of the D-statistic Dext implemented in ANGSD, and we will

show in the following results how all the problemsmentioned above are
addressed.

Comparison of power among the different methods
Using simulated and real data, we compare the different types of
D-statistics to study their sensitivity to gene flow. We illustrate how the
improved D-statistic Dext is not affected by the issues faced by the current
D-statisticD1base; andhow it even reaches theperformances of theD-statistic
based on the true genotype Dgeno at a rather low sequencing depth.

To evaluate the power of the different methods, we first simulated
NGS data based on coalescent simulations with mutation and recombi-
nation rates consistent with human populations (Ewing and Hermisson
2010). We simulated without sequencing error four populations with a
varying amount of migration fromH3 toH1 (see Figure 2A) and applied
the D-statistic based on five individuals from each population for two
different sequencing depths. Figure 4, A and B show the power of the
methods for depths 0.2· and 2·. Here, the power is the rejection rate of
the null hypothesis when there is a migration fromH3 toH1 in the tree�ððH1;H2ÞH3ÞH4

�
:

The extendedD-statistic proves to be effective in detecting geneflow
even when the simulated depth is very low. For the scenario with
sequencing depth 0.2·, D1base detects hardly any cases of migration
from H3; whereas Dext reacts with an acceptable rejection rate, even
for a migration rate as low as m ¼ 0:15%: Of course, such a very low
depth does not allow the D-statistic to perform as well as Dgeno: In the
case of sequencing depth 2·, D1base does not always detect the alter-
native hypothesis and has also a considerable delay in terms of the
migration rate necessary to do that, when compared with Dext :

n Table 1 List of the genomes used in real data scenarios

Genome ID Major Population Division Depth Reference

HG01923 Peruvian (PEL) 6.3· Altshuler et al. (2010)
HG01974 Peruvian (PEL) 11.9· Altshuler et al. (2010)
HG02150 Peruvian (PEL) 7.3· Altshuler et al. (2010)
HG02259 Peruvian (PEL) 6.5· Altshuler et al. (2010)
HG02266 Peruvian (PEL) 3.8· Altshuler et al. (2010)
NA18526 Han Chinese (CHB) 6.6· Altshuler et al. (2010)
NA18532 Han Chinese (CHB) 7.3· Altshuler et al. (2010)
NA18537 Han Chinese (CHB) 2.9· Altshuler et al. (2010)
NA18542 Han Chinese (CHB) 7.3· Altshuler et al. (2010)
NA18545 Han Chinese (CHB) 6.2· Altshuler et al. (2010)
NA06985 CEPH (CEU) 12.8· Altshuler et al. (2010)
NA06994 CEPH (CEU) 5.5· Altshuler et al. (2010)
NA07000 CEPH (CEU) 9.4· Altshuler et al. (2010)
NA07056 CEPH (CEU) 4.9· Altshuler et al. (2010)
NA07357 CEPH (CEU) 5.7· Altshuler et al. (2010)
NA12778 CEPH (CEU) 6.9· Altshuler et al. (2010)
NA18501 Yoruba (YRI) 6.4· Altshuler et al. (2010)
NA18502 Yoruba (YRI) 4.9· Altshuler et al. (2010)
NA18504 Yoruba (YRI) 10.1· Altshuler et al. (2010)
NA18505 Yoruba (YRI) 6.1· Altshuler et al. (2010)
NA18507 Yoruba (YRI) 3· Altshuler et al. (2010)
HGDP00778 Han Chinese (CHB) 23.4· International HapMap Consortium (2003)
DNK02 Dinka 25.8· Meyer et al. (2012)
HGDP00927 Yoruban (YRI) 28· International HapMap Consortium (2003)
AltaiNea Neandertal 44.9· Green et al. (2010)
pantro2 Chimpanzee — Kent et al. (2002)
saqqaq Saqqaq 15.7· Rasmussen et al. (2010)
MARC1492 Ancient Canadian Dorset 1.1· Raghavan et al. (2014)

(Mi’kmaq—New England)
HGDP00521 French 23.8· International HapMap Consortium (2003)

CEPH
Utah Resident with Northern and Western European Ancestry
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Furthermore, Dext follows almost exactly the behavior of the power
related to Dgeno: This means that with a depth above 2· we can
expect the D-statistic Dext to perform as well as knowing the exact
genotypes of the data.

Adeeperanalysis tostudy theeffectsofusingmultiple individualsper
group is illustrated in Figure S1 in File S1. Here, we simulated again the
scenario with depth 0.2·, and compared the use of 1, 2, 5, 10, and
20 individuals per population. The graph shows that using multiple
individuals increases the power of the method and at the same time
decreases the SD of Dext :

From 5000 simulations of the null hypothesis at depth 0.2·, we
produced the quantile–quantile plot shown in Figure S2 in File S1. Here
we can see that, despite us having simulated only 200 blocks of 5 Mb in
length for each individual, the D-statistic already shows its asymptotic
property of convergence to a standard normal distribution.

The powers of Dext and D1base are compared in a real data scenario
using Illumina-sequenced modern human populations from the
1000 Genomes Project, with a varying sequencing depth in the range
3 to 13·. We specifically used Peruvian, European, Han Chinese, and
African Yoruban individuals to form the tree (((Peruvian,Han Chinese)
European)Yoruban) shown in Figure 3A. This scenario represents the
southwestern European gene flow into the ancestors of the Native
Americans (Raghavan et al. 2013). Each of the four populations consists
of five sequenced individuals when evaluating Dext ; and a distinct one
of those individuals when evaluating D1base five times (see Figure 4C).
The extendedD-statisticDext has much lower SE, which corresponds to
a smaller p-value than in the case of D1base; and therefore a more
significant rejection. See Table S1 in File S1 for a better comparison
of the values of the different D-statistics.

It is worth underlining that the presence of structured populations
might leadto falsepositives,because the structure isnot considered in the
model. If there is structure within H1;H2; the properties of the
D-statistic are preserved. However, if the population was structured
prior to the split of H1 and H2, then it will affect the D-statistic.

Error impact and correction
Sequencingor genotypingerrorsare knowntohave a large impacton the
D-statistic (Orlando et al. 2013). Using simulation, we show that if the

type-specific error rates are known then we can correct the D-statistic
accordingly. We simulate the tree under the null hypothesis. However,
we add a base A/ G error rate of 0.005 in populations H1 and H3 in
order to alter the observed number of ABBA andBABA combination of
alleles, leading to a possible rejection of the null hypothesis.

The plot in Figure 5A represents the estimated distributions of the
Z-scores related to Dext before and after error estimation and error
correction, for 100 simulations of a tree

�ððH1;H2ÞH3ÞH4
�
without

any gene flow, where we have also introduced type-specific errors for
transitions from allele A to another allele for the individuals in
H1;H2;H3 at different rates. The test statistic has high values owing
to the error, whereas all simulations fall in the acceptance interval if we
perform error correction.

The uncorrected D-statistic performs poorly because of the errors in
the data that cause rejection of the null hypothesis in all simulations. It is
remarkable to observe that Dext has good performance even at depth
0.5·. This means that even small error rates in the data make the
D-statistic very susceptible to the rejection of H0. Therefore, we need
to apply error correction to our data. The result is that the Z-scores fall
into the acceptance threshold and the null hypothesis is fulfilled. The
distribution of corrected Z-scores is not perfectly centered on 0 because
of imperfect error correction.

The most obvious need for error correction in real applications is in
the use of ancient genomes, which have large numbers of errors,
especially transitions. To illustrate the effects of errors in real data
and our ability to correct for them, we use two ancient genomes that
contain high sequencing error rates owing to postmortem deamination.
The tree (((Saqqaq,Dorset)French)chimpanzee) of Figure 3B illustrates
themigrations towestern Canada (CanadianDorsetMi’kmaq genome)
and southwestern Greenland (Saqqaq genome). Owing to the effects of
deamination prior to sequencing (Rasmussen et al. 2010; Raghavan
et al. 2014), the two ancient genomes have high type-specific error
rates, as shown in Figure S4 and Table S2 in File S1. The error rates
alter the counts of ABBA and BABA patterns, which bias the uncor-
rected D-statistic.

We expect the tree to be true under the null hypothesis, since Saqqaq
and Dorset have a recent common ancestor (Raghavan et al. 2015). In
Figure 5B, we compare the extended D-statistic Dext in four cases: first,

Figure 4 Detection of admixture and migration.
(A and B) Rejection rate of the null hypothesis as a
function of the migration rate in the tree
ðððH1;H2ÞH3ÞH4Þ; where a migration from H3 to
H1 occurs. The yellow and blue solid lines repre-
sent, respectively, the power of the method re-
lated to Dext and D1base: The yellow dashed line
represents the rejection rate when the genotypes
of the five individuals in each population are
known and thus equation (3) can be applied. The
blue dashed line illustrates the power of the
method when only one genome per population
has known genotypes. Dext performs almost as
well as knowing the true genotypes already with
depth 2·. (C) Value of lack square) and values of
D1base (black circles) using, respectively, five ge-
nomes per population and one from each popula-
tion. Each D-statistic shows its associated SD
multiplied by 1 and 3. On the left side of the
graph, the stick men represent for each column
the composition of the group by number of
individuals.
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using observed data; second, removing all transitions, which are related
to most of the errors; third, applying error correction; and, last, com-
bining error correction and transition removal. Note that the removal
of transitions related to the pairs of alleles A,C and G,T is the current
standard technique to avoid high error rates when calculating the
D-statistic from damaged low-coverage data. The uncorrected
D-statistic rejects the null hypothesis, whereas correction or transition
removal gives a nonsignificant test. Error correction performs better
than transition removal, providing a value of the D-statistic that is
closer to 0 and has smaller SD. Table S3 in File S1 shows the values
related to the four D-statistics in this scenario. Figure S5 in File S1
illustrates the effects of increasing and decreasing the removal of error
for the base transitions C / G and C / T for one of the Saqqaq,
Dorset, and French genomes. This corresponds to adding a value to the
estimated error rate matrix of one of the individuals. Observe that the
French individual is less affected by the addition or removal of error
than the other two individuals. Moreover, all three individuals are more
sensitive to the error rate in the case of transversion C / T.

Correction for external introgression
Weuse simulations of a scenariowith external introgression toverify the
performance of correction for gene flow in restoring a four-population
tree configuration that leads to the acceptance of the null hypothesisH0.
In the simulation case, we know the value of a, that is, the amount of

introgression; therefore, correction is possible. Thereafter, we use a
known genetic relationship involving the Neandertal introgression into
out-of-Africa modern individuals in Europe and Asia (Green et al.
2010;Wall et al. 2013) to correct for the effect of admixture. In addition,
we show that, if we assume the absence of geneflow in the tree topology,
we can estimate the amount of introgression and compare it with the
estimation involving the original D-statistic tools.

For some species, there are introgression events from an external
source, which can affect the D-statistic when performing tests for
admixture among the species. We performed 100 simulations of the
null hypothesis

�ððH1;H2ÞH3ÞH4
�
of Figure 2C, for which an external

populationH5 is admixed withH2 with rate a = 0.1. The plot in Figure
6A shows the estimated distribution of the Z-scores related to the
observed and admixture-corrected Dext : The observed D-statistic is
positive and has Z-scores that reject the null hypothesis. Applying
equation (7), we are able to remove the effect of gene flow from H2:
The result of removal of the gene flow effect is that the estimated
probabilities of ABBA and BABA combinations of alleles are altered,
and the resulting calculated values of the D-statistic lead to acceptance
of the null hypothesis H0.

For human populations, it is problematic to apply the D-statistics to
bothAfrican andnon-African populations because of ancient gene-flow
from other hominids into non-Africans. Therefore, H0 might not be
fulfilled for any tree

�ððH1;H2ÞH3ÞH4
�
, where an ingroup consists of

Figure 5 Effect of error estimation and correc-
tion. (A) Estimated distributions of the Z-scores
related to Dext for the null hypothesis�ððH1;H2ÞH3ÞH4

�
in which H1;H3 and H2 have

probabilities 0.005 and 0.01 of transition from
base A, respectively. The blue polygon repre-
sents the interval where a Z-score would accept
the null hypothesis. The red line represents the
distribution of Z-scores before type-specific er-
rors are corrected. In blue, we have the Z-scores
after correction. (B) Values of Dext in four different
cases for the tree (((Saqqaq,Dorset)French)-
chimpanzee). The black circles are the values of
the uncorrected D-statistic, removal of ancient
transitions, error correction, error correction and
ancient transition removal. The red and blue lines
represent the SD and the value they need to
reach the threshold of jZ j ¼ 3; respectively.

Figure 6 Effect of correction from external in-
trogression. (A) Estimated distribution of the
Z-scores related to Dext from the 100 simulations
of the null hypothesis

�ððH1;H2ÞH3ÞH4
�
with intro-

gression of rate a = 0.1 from an external popula-
tion H5 into H2: The Z-scores of the observed tree
are far off the acceptance interval because of the
admixture from H5: Once the portion of genome
from the external population is removed from H2;

the tree fulfills the null hypothesis and the
Z-scores all fall in the acceptance interval defined
by jZ j# 3. . (B) Behavior of the Dext of the tree
(((Han Chinese,Dinka)Yoruban)chimpanzee) as a

function of the admixture rate a used to correct for the introgression of the Neandertal population into the Han Chinese population. The red
polygon is the interval in which (Green et al. 2010) estimates a to fall. The black dot coincides with the value of a = 0.0307 calculated by Wall et al.
(2013) using the tree (((Han Chinese,Yoruban)Neandertal)chimpanzee), with SD 0.0049. The blue polygon is three times the SD of Dext :When Dext

is 0, we estimate a = 0.03 with SD 0.0042.
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both an African and a non-African population. This leads to rejection
of the tree and to the natural conclusion that there is gene flow between
H3;H2 (respectively, H3;H1). However, if there is known external
admixture from a populationH5; it is possible to correct for admixture
from this external contribution.

We illustrate the problem and our ability to correct for it using the
tree shown in Figure 3C, which shows introgression of the Neandertal
genome into the ancestors of the Han Chinese population. The correc-
tion is performed for the admixture proportion a in the range [0, 0.05]
in steps of 0.01. The value of a for which Dext is closest to 0 might be
considered as an estimate of the admixture rate. We chose these pop-
ulations because we could compare our result with the estimate from
previous studies of the same populations (Green et al. 2010; Wall et al.
2013). The study of Green et al. (2010) estimated a to be in the range
[0.01, 0.04], whereas (Wall et al. 2013) estimated it as being a = 0.0307
with SD 0.0049. The result is shown in Figure 6B for the tree (((Han
Chinese,Dinka)Yoruban)chimpanzee) for different admixture rates a
used to correct for the introgression of the Neandertal population
into the Han Chinese population. The red polygon is the interval in
which a is estimated to be (Green et al. 2010). The black dot coin-
cides with the value of a = 0.0307 calculated in Wall et al. (2013).
The blue polygon is three times the SD of Dext: For almost the whole
range of reported admixture proportions, the tree is not rejected
after adjustment for admixture, indicating that the uncorrected
D-statistic concluded the presence of gene flow. When Dext is 0,
we estimate a = 0.03 with SD 0.0042, which is similar to previous
estimates.

In the cases of both simulatedand real data,wehave thusbeen able to
distinguish the case in which the alternative hypothesis is due to an
external introgression and not to admixture from H3: In our simula-
tions, the admixture correction seems not to suffer from the effect of
drift, which is not modeled in the correction. In fact, the branch leading
toH5 splits 8000 generations in the past and admixes 4000 generations
in the past on the branch leading to H1: Thus, there is a drift affecting
gene frequencies of both the admixing and admixed populations.

In the case of real data, the exact amount of admixture a was not
previously known. Therefore, we calculated the D-statistic for the
tree (((Han Chinese,Dinka)Yoruban)chimpanzee) using admixture-
corrected values of the probabilities of allele patterns, considering values of
the admixture rate falling in the interval estimated in Green et al. (2010).
Without admixture correction, the obvious conclusion would have been
that for the tree (((Han Chinese,Dinka)Yoruban)chimpanzee) there is
gene flow between the Yoruban and Dinka populations.

Conclusions
In summary, we have implemented a different D-statistic that addresses
the drawbacks of the current implementations of theD-statistic, but still
preserves the approximation as a standard normal distribution (see
Appendix1) thatallows fora statistical test.TheextendedD-statisticDext

allows for multiple individuals per population and, instead of sampling
one base according to the estimated allele frequencies, uses all the avail-
able sequenced bases.

Using both simulations and real data we have shown that:

1. the extended D-statistic Dext has more power than the alternative
methods, with an increased sensitivity to admixture events. More-
over, even without a large amount of data, the extended D-statistic
shows a good asymptotic convergence and, therefore, a low false
positive rate;

2. the performance of the extended D-statistic is the same as when
the true genotype is known, for a depth of at least 2·;

3. we can accommodate type-specific errors to prevent an eventual
wrong acceptance or rejection of the null hypothesis caused by
error-affected allele frequencies. The error estimation and correc-
tion appear to be especially suited to the case of ancient genomes,
where error rates might be high owing to chemical treatments
prior to sequencing and degradation over time;

4. we can calculate the D-statistic after correcting for admixture from
an external known population, such as in the case of Neandertal
gene flow into the Han Chinese population.

The extended D-statistic Dext is especially effective compared with
the standardD-statisticD1base when applied to data with low or variable
depth, multiple individuals, and ancient DNA.
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APPENDICES

The setup of the theoretical treatment consists of four sampled genomes representing four populationsH1;H2;H3;H4; for which we assume the
relationship illustrated in Figure 1. Each genome is considered to haveM di-allelic loci. We will consider the situation in whichM grows to infinity.
Each locus i consists of a certain number nij of alleles A and B, where j ¼ 1; 2; 3; 4; is the index of the jth genome. Moreover, we assume
independence between the loci.

Assume that at a locus i the allele frequencies in the four groups of individuals xi :¼ ðxi1; xi2; xi3; xi4Þ follow a locus-dependent distribution
FiðxÞ; i ¼ 1; . . . ;M, and let x̂i :¼ ðx̂i1; x̂i2; x̂i3; x̂i4Þ be an unbiased estimator of xi at locus i, such as the relative frequencies of the allele A in each
population. The populations’ frequencies are considered to be a martingale process.

The null hypothesis that the tree of Figure 1 is correct can be rewritten as follows:

H0 : E
��
xi1 2 xi2

��
xi3 2 xi4

�� ¼ 0; for i ¼ 1; . . . ;M;

, where the expectation is done on the difference between the probabilities of ABBA and BABA events deduced in equations (1) and 2.
Using the empirical frequencies as proxies for the expected values, we build the following normalized test statistic, also known as
D-statistic:

DM :¼ XðMÞ
YðMÞ

¼

PM
i¼1ðx̂i12 x̂i2Þðx̂i3 2 x̂i4ÞPM

i¼1ðx̂i1þx̂i2 2 2x̂i1x̂
i
2Þðx̂i3þx̂i4 2 2x̂i3x̂

i
4Þ

where the values

XðMÞ ¼
XM
i¼1

ðx̂i1 2 x̂i2Þðx̂i3 2 x̂i4Þ;

YðMÞ ¼
XM
i¼1

ðx̂i1 þ x̂i2 2 2x̂i1x̂
i
2Þðx̂i3 þ x̂i4 2 2x̂i3x̂

i
4Þ

are the numerator and denominator of the D-statistic, respectively.

Appendix 1

Convergence of the D-statistic
In this paragraph we prove that the D-statistic defined as

DM ¼ XðMÞ
YðMÞ

converges in distribution to a standard normal variable up to a constant.
Rewrite the numerator and denominator as

XðMÞ ¼
XM
i¼1

Xi

YðMÞ ¼
XM
i¼1

Yi

where the values Xi and Yi are defined for each i ¼ 1; . . . ; M by

Xi ¼ ðx̂i1 2 x̂i2Þðx̂i3 2 x̂i4Þ

Yi ¼ ðx̂i1 þ x̂i2 2 2x̂i1x̂
i
2Þðx̂i3 þ x̂i4 2 2x̂i3x̂

i
4ÞÞ

Consider the series of independent variables Xi in the numerator of DM ; having means mi: Every term Xi of the numerator is an unbiased
estimate of ðxi1 2 xi2Þðxi3 2 xi4Þ, assuming the observed allele counts are binomially distributed (Reich et al. 2009). We show in the following
proposition that every term of the numerator of the D-statistic has expectation mi ¼ 0 for i ¼ 1; . . . ; M by calculating the expectation of
ðxi1 2 xi2Þðxi3 2 xi4Þ.

Theorem 1. Given the tree topology of Figure 1, it holds that E½ðx11 2 xi2Þðx13 2 xi4Þ� ¼ 0 for i ¼ 1; . . . ; M.
Proof. Let xi1:2; x

i
1:3, and xi1:4 be the frequencies of the ancestral populations of ðxi1; xi2Þ, ðxi1; xi2; xi3Þ and the root of the tree, respectively, as

illustrated in Figure 1. Let x be the set of those three frequencies. Using the martingale properties of the frequencies, it follows that

E
��
xi1 2 xi2

��
xi3 2 xi4

�� ¼ E
�
E
��
xi1 2 xi2

��
xi3 2 xi4

�
X
��
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¼ E
�
E
�
xi1 2 xi2 Χ

�
E
�
xi3 2 xi4 X

��
¼ E

�
E
�
xi1 2 xi2x1:2

�
E
�
xi3 2 xi4 X

��
¼ E

�
0 � E�xi3 2 xi4 X

�� ¼ 0: (8)

Therefore Xi has mean 0 for all i ¼ 1; . . . ; M.
To prove convergence of the D-statistic for large M we assume the following:

1. Let s2
i be the variance of every term Xi: Denote with vM the sum

PM
i¼1

s2
i , then

vM/N forM/N: (9)

2. Let Yi; i ¼ 1; . . . ; M be the series of independent variables in the denominator of DM ; having means gi: Then

1
M

XM
i¼1

gi/g for M/N: (10)

3. Denote with t2i the variance of Yi: Then

1
M2

XM
i¼1

t2i/t for M/N: (11)

If thenumeratoranddenominatorare sumsof independent and identicallydistributed (IID)variables, conditions (9), (10), and (11)are fulfilled. In
fact, if every termXi has variances2, the sumof variances is vM ¼ Ms2 and (9) holds. If every termYi hasmean and variance g and t2, respectively,
equation (10) is still valid because the arithmetic mean is done on identical values. Moreover, equation (11) holds because

1
M2

XM
i¼1

t2 ¼ 1
M

t2;

which converges to zero for M/N.
The convergence of the D-statistic DM is proved in steps, analyzing separately the numerator and the denominator. We begin by stating all the

necessary theorems. First, we consider an extension of the central limit theorem (CLT) (Johnson 2004), which will be applied to the numerator
XðMÞ: Subsequently, we state the law of large numbers (LLN) (Lamperti 1996) for not-IID variables that is used for the denominator YðMÞ of the
D-statistic. Thereafter, we enunciate one of the consequences of Slutsky’s theorem (Slutsky 1925; Pesaran 2015). The last step is a theorem for the
convergence of the D-statistic, proved by invoking all the previous statements and applied to the specific case of the D-statistic.

Theorem 2 (CLT for independent and not identically distributed variables). Let fXigMi¼1 be a sequence of independent (but not necessarily
identically distributed) variables with zero mean and variances s2

i . Define vM as
PM

i¼1 s
2
i Consider the following quantity

LeðMÞ :¼
XM
i¼1

E

"�
Xiffiffiffiffiffiffi
vM

p
�2

I

�				 Xiffiffiffiffiffiffi
vM

p
				
�
$ e

#

where Ið�Þ defines the indicator function. If for any e. 0 it holds that lim
M/N

LeðMÞ ¼ 0, then the normalized sum UM ¼PM
i¼1 Xi=

ffiffiffiffiffiffi
vM

p
converges in distribution to a standard normal N ð0; 1Þ:

Theorem 3 (LLN for independent and not identically distributed variables). Let fYigMi¼1 be a sequence of uncorrelated random variables. Define
�YM as the empirical average 1

M

PM
i¼1 Yi. Denote with gi and t

2
i the expectation and variance of each variable. If conditions (10) and (11) are fulfilled,

then for each e, 0

lim
M/N

ℙ

 					ŶM 2
1
M

XM
i¼1

gi

					 $ e

!
¼ 0:

Equivalently, the empirical average �YM converges in probability to lim
M/N

1
Mgi ¼ g:

Theorem 4 (Slutsky’s theorem). LetXðMÞ andYðMÞ be two sums of not-IID random variables. If the former converges in distribution toX and the
latter converges in probability to a constant g for M/N, then the ratio XðMÞ=YðMÞ converges in distribution to X/g.

The last step is a theorem for the convergence of the D-statistic, proved by invoking all the previous statements, applied to the specific case of the
D-statistic.

Theorem 5 (Convergence in distribution of the D-statistic). Consider the D-statistic defined by
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Dn ¼ XðMÞ
YðMÞ

¼
PM

i¼1 XiPM
i¼1 Yi

2 ½2 1;þ1�;

where numerator and denominator are sum of independent (but not necessarily identically distributed) variables. Under the assumptions of (9),
(10), and (11), the D-statistic converges in distribution to a standard normal if rescaled by the constant:

cMDM /
d
Nð0; 1Þ for M/N:

The arrow denotes the convergence in distribution, and cM is defined as

cM :¼ g
Mffiffiffiffiffiffi
vM

p :

Here vM is the sum of the variances of the first M terms of the numerator, and g is the convergence value of the arithmetic mean of the
denominator’s expectations for M/N.

Proof. First consider Theorem 2 applied to the rescaled numerator UM ¼ XðMÞ=
ffiffiffiffiffiffi
vM

p
: It is necessary to prove that for any e. 0 it holds that

lim
M/N

LeðMÞ ¼ 0 to ensure the convergence in distribution. First observe that �Xi � # 1 for any index i. Consequently we have the inequality

LeðMÞ#
�

1ffiffiffiffiffiffi
vM

p
�2XM

i¼1

E



I

�				 1ffiffiffiffiffiffi
vM

p
				$ e

��
¼ 1

vM
ℙðjXij$ e

ffiffiffiffiffiffi
vM

p Þ# 1
vM

E½Xi�
e
ffiffiffiffiffiffi
vM

p ;

where Markov’s inequality is applied to the last line of the equation. Thus UM converges in distribution to a standard normal N(0,1).
Since conditions (10) and (11) are fulfilledby assumption, it is possible to invokeTheorem3 to state that the empirical average of the denominator

YðMÞ=M converges in probability to a constant g, which is positive since every term of the denominator is positive.
Finally, we apply Theorem 4 using the proper constants that follow from Theorems 2 and 3 applied to the numerator and denominator,

respectively. We proved that the sum XðMÞ=
ffiffiffiffiffiffi
vM

p
converges in distribution to a standard normal N ð0; 1Þ and YðMÞ=M converges in probability to

the constant g, which is the limit of the arithmetic mean of equation 10. Thus the ratio

Mffiffiffiffiffiffi
vM

p XðMÞ
YðMÞ

converges in distribution to a Gaussian Nð0; ffiffiffi
g

p 21Þ: The convergence in distribution of DM to a standard normal variable is accomplished by
rescaling by the following multiplicative constant

cM ¼ g

ffiffiffiffiffiffi
vM

p
M

:

The results of this proof apply also in the following cases of the D-statistic.

1. The original D-statistic DM calculated by sampling a single base at each site from the available reads (Green et al. 2010) to estimate the
sampling probabilities. In this case every term on the numerator has possible values21, 0, +1. Each population frequency xij is parameter of a
binomial distribution Binð1; xijÞ; and is estimated by the frequency of the observed base A at locus i in population j,

2. The D-statistic is evaluated using the estimated population frequencies qij defined in equation 4 for multiple individuals in a population (see
Appendix 2). In fact, the estimator for multiple individuals is still an unbiased estimate for the population frequency (Li et al. 2010), therefore
every term of the numerator is still an unbiased estimate for the difference between the probabilities of ABBA and BABA events.

3. The D-statistic is evaluated only over loci with allele frequency x4 ¼ 1 for population H4: This special case of D-statistic has been used, for
example, to assess the presence of gene flow from the Neandertal population into modern out-of-Africa individuals, setting a chimpanzee as
the outgroup, and considering only loci where the outgroup showed uniquely allele A (Green et al. 2010). In fact, Theorem 1 still holds
because in equation (8) the term E½xi1 2 xi2jx1:2� is zero, independently of which values xi4 assumes.

Appendix 2

Multiple genomes
We assume a di-allelic model with alleles A and B and the four populations H1;H2;H3;H4 that each consist of a number of distinct individuals
Nj;   j ¼ 1; 2; 3; 4; where j indexes the populations. Given the allele frequency xij ;   j ¼ 1; 2; 3; 4; at locus i, wemodel the observed data as independent
binomial trialswith parametersnij and x

i
j for j ¼ 1; 2; 3; 4;wherenij is the number of trials. One possible unbiased estimator of the population frequency is

x̂ij :¼
ni;Aj
nij

;

where ni;Aj is the total number of As and nij the total number of bases observed for the selected population and locus.
For locus i denote the allele frequency of individual ℓ in population j as xij;ℓ: We use as its unbiased estimator
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x̂ijl :¼
ni;Ajl
nij

namely the ratio between the number of observedAs and the total number of observed alleles at locus i in genome ℓ:The idea is to condense all the
quantities x̂ij into a single value q̂ij that minimizes the variance of the sum of the estimated individuals’ frequencies with respect to a set of
normalized weights n

wi
j;l

oNh

l¼1
;
XNh

l¼1

wi
j;l ¼ 1

such that

q̂ij :¼
XNh

l¼1

wi
j;l � x̂ijl:

The estimated population frequency q̂ij is an unbiased estimator of the frequency of population j at the ith locus (Li et al. 2010). The aim of the
weight estimate is to determine the set of weights that minimizes the variance of q̂ij. To do this, we first determine the variance of each
individual’s frequency.

Consider a genome l in population j. We approximate the frequency estimator of genome l in population j, namely x̂ijl, defining

Yi
j;l :¼

Pnij;l
m¼1 Im
nij;l

;

where nij;ℓ is the total number of reads for individual l and Im � Binð1; xijÞ form ¼ 1; :::; nij;l . Note that the binomial variables are parametrized
by xij and not by xij;ℓ: The variance of Y

i
j;ℓ is

V

h
Yi
j;l

i
¼ 1�

nij;l


2
0
@Xnij;l

m¼1

V½Im� þ 2
Xnij;l
r, t

Cov½Ir ; It �
1
A: (12)

The variance of the indicator function Imis

V½Im� ¼ xij

�
12 xij



:

It remains to find the covariance

Cov½Ir; It � ¼ E½IrIt �2 E½Ir �E½It � ¼ E½IrIt �2 xi
2

j ;

where, marginalizing on the underlying genotype G and assuming Hardy–Weinberg equilibrium, it follows that

E½IrIt � ¼
X

g 2fAA;AB;BBg
ℙðIrIt ¼ 1; G ¼ gÞ ¼ ℙðIrIt ¼ 1 j G ¼ AAÞℙðG ¼ AAÞ þ 2ℙðIrIt ¼ 1 j G ¼ ABÞðG ¼ ABÞ

þ ℙðIrIt ¼ 1 j G ¼ BBÞℙðG ¼ BBÞ

¼ 0þ 1
2
� 1
2
� 2xij

�
12 xij



þ 1 � xi2j ¼ 1

2
xij

�
12 xij



þ xi

2

j :

Considering that the sum over r, t in equation (12) is made over 1=2nij;ℓðnij;ℓ 2 1Þ equal expectations, we can write

V

h
Yi
j;l

i
¼ 1�

nij;l


2
2
4nij;lxð12 xÞ þ 2

nij;l

�
nij;l 2 1



2

1
2
xij

�
12 xij


35 ¼ 1�
nij;l


2
2
4nij;lxij�12 xij



þ 2

nij;l

�
nij;l 2 1



2

1
2
xij

�
12 xij


35

¼
nij;l þ 1

2nij;l
xij

�
12 xij



¼ Ri

j;lx
i
j

�
12 xij



;

where for practical purposes we have defined, for each lth individual, Ri
j;ℓ as the ratio

nij;ℓ þ 1

2nij;ℓ
:

Consider at this point the approximation of the variance of the weighted “pseudo-individual,” having estimated frequency q̂ij :¼
PNj

l¼1 w
i
j;l � x̂ij;l .
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V

h
x̂ij

i
¼
XNj

l¼1

ðwi
j;lÞ2V½x̂ij;l� �

XNj

l¼1

�
wi
j;l


2
V

h
Yi
j;l

i
: (13)

Our objective is to perform a Lagrange-constrained optimizationwith respect to theweights, being sure to find aminimum since equation (13), as
function of the weights, is convex. This is easily done as the Lagrange-parametrized function is

L
�
wi
j;1:Nj

; l


¼
XNj

l¼1

ðwi
j;lÞ2xij

�
12 xij



Ri
j;l 2 l

 XNj

l¼1

wi
j;l 2 1

!

and it originates a linear system of equations of the form

2 � wi
j;1 � xij

�
12 xij



Rij;1 2 l ¼ 0

⋮ ⋮ ¼ ⋮

2 � wi
j;Nj

� xij
�
12 xij



Ri
j;Nj

2 l ¼ 0

XNj

l¼1

wi
j;l 2 1 ¼ 0

whose solution provides us with the minimum values of the weights as follows "l 2 f1; . . . ; Njg:

wi
j;l ¼

QNj

m¼1; m 6¼l R
i
j;mPNj

k¼1

QNj

m¼1; m6¼k R
i
j;m

¼
ðRij;lÞ21

PNj

k¼1 ðRi
j;kÞ21

Appendix 3

Error estimation and correction
Estimation of the type-specific errors follows the supplementalmaterial ofOrlando et al. (2013). Assume having one observed sequenced individual
affected by base transition errors. This individual has an associated 4 · 4 error matrix e; such that the entry eða; bÞ is the probability of observing a
base of type bwhen the true base is of type a. Consider the tree ((T,R),O), in which the leaves are sequenced genomes affected by type-specific errors
(T), an individual without errors, used as reference for the error correction (R), and an outgroup individual (O).

Assume that loci are independent and that the errorsbetweenpairs of alleles are independent givena baseo in the outgroup and the errormatrix e:
Then the likelihood of the base t in the observed individual can be decomposed as a product through the loci:

ℙðT ¼ t j O ¼ o; eÞ ¼
YM
i¼1

ℙðT ¼ t j O ¼ o; eÞ

Marginalize any ith factor of the above equation over the true alleles before error gi 2 fA;C;G;Tg of the underlying true genotype:

ℙðT ¼ t jO ¼ o; eÞ ¼
X

g2fA;C;G;Tg
ℙ
�
Ti ¼ ti

		 Gi ¼ gi; Oi ¼ oi; e
�

¼
X

g2fA;C;G;Tg
ℙ
�
Ti ¼ ti

		 Gi ¼ gi; Oi ¼ oi; e
�
ℙ
�
Gi ¼ gij Oi ¼ oi

�

¼
X

g2fA;C;G;Tg
eðgi; tiÞ ℙ

�
Gi ¼ gi j Oi ¼ oi

�
;

where the true genotype gi is independent of the error rates for each i ¼ 1; . . . ; M. One can approximate the probability of observing gi
conditionally to oi with the relative frequency of the base gi in the error-free individual R, for loci where the outgroup is oi; that is:

ℙ
�
Gi ¼ gij Oi ¼ oi

� ¼ ℙ
�
Ri ¼ gi j Oi ¼ oi

�
:

It is possible to perform a maximum likelihood estimation by numerical optimization to obtain an estimate of the error matrix. Note that every
entry eðgi; tiÞ is the same over all loci.
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The rationale behind the error correction is that the count of each base in the genomesT andR should be the same, otherwise an excess of counts
in T is due to error. This approach to error estimation has been applied in Orlando et al. (2013) to study type-specific errors in ancient horses’
genomes.

Assume that the errormatrix el has been estimated for every individual l in each jth group. For a specific genome lwehave the following equation
for each locus i

ℙðTi ¼ ti j elÞ ¼ ℙðTi ¼ ti j el; G / tiÞelðti; tiÞ þ
X
t̂i 6¼ti

ℙðTi ¼ ti j el; G ¼ t̂iÞelðti; tiÞ

The same equation can be expressed in matrix form as follows:

piT ¼ eℓp
i
G;

where piT and piG are the vectors of probabilities of observing alleles at locus i in the T and R genomes, respectively. If the error matrix el is
invertible, we can find the error-corrected allele frequencies as

piG ¼ e21
ℓ piT : (14)

The correction performed in equation (14) makes the estimated allele frequencies unbiased. The unbiasedness allows the numerator of the
D-statistic to havemean zero, andmakes theD-statistic calculated with error-corrected frequencies convergent to a standard normal distribution
(see Appendix 1). In fact, consider for a certain locus the di-allelic scenario with alleles A and B. Let n be the number of observed bases. The
number of alleles A in the absence of errors is

m � Binðn; xÞ;

where x is the population frequency. Let eA;B and eB;A be the probabilities of having a transition from A to B and from B to A, respectively. Then
the total number of observed A alleles is given by the sum of the two following variables:

m0 � Binðm; 12 eA;BÞ;

m1 � Binðn2 m; eA;BÞ:

The expected population frequency is given by
1
n
E½m0 þ m1� ¼ 1

n
E½E½m0jm�� þ 1

n
E½E½m1jm��

¼ x
�
1 2 eA;B

�þ ð12 xÞeB;A:

The error matrix and its inverse for the di-allelic case are expressed as follows:

e ¼


12 eA;B eB;A

eA;B 12 eB;A

�
; e21 ¼ 1

C



12 eB;A 2eB;A
2eA;B 12 eA;B

�
;

where C ¼ ð12 eA;BÞð12 eB;AÞ2 eA;BeB;A is the constant arising from the inversion of a 2 · 2 matrix.
The formula in equation (14) is rewritten as


x̂
12 x̂

�
¼ 1

C



12 eB;A 2eB;A
2eA;B 12 eA;B

�

ẑ

12 ẑ

�
; (15)

where x̂ is the estimator of the error-corrected population frequency, and ẑ is the estimated population frequency prior to error correction:

ẑ ¼ m0 þ m1

n
:

From equation (15) it is possible to deduce the following equality:

E½x̂� ¼ 1
C

�
12 eB;A

�
E½ẑ� 2 1

C
ð12 E½ẑ�ÞeB;A ¼ 1

C
x
�
12 eB;A 2 eA;B

� ¼ x:

This proves that the error-corrected estimators of the allele frequencies are again unbiased; therefore, calculating the D-statistic using
error-corrected allele frequencies leaves the convergence results unchanged.
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