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ABSTRACT
Having an estimate of the number of under-reported cases is crucial in determining
the true burden of a disease. In the COVID-19 pandemic, there is a great need to
quantify the true disease burden by capturing the true incidence rate to establish
appropriate measures and strategies to combat the disease. This study investigates the
under-reporting of COVID-19 cases in Victoria, Australia, during the third wave of the
pandemic as a result of variation in geographic area and time. It is aimed to determine
potential under-reported areas and generate the true picture of the disease in terms of
the number of cases. A two-tiered Bayesian hierarchical model approach is employed
to estimate the true incidence and detection rates through Bayesian model averaging.
The proposed model goes beyond testing inequality across areas by looking into other
covariates such as weather, vaccination rates, and access to vaccination and testing
centres, including interactions and variations between space and time. This model aims
for parsimony yet allows a broader range of scope to capture the underlying dynamic of
the reported COVID-19 cases. Moreover, it is a data-driven, flexible, and generalisable
model to a global context such as cross-country estimation and across time points under
strict pandemic conditions.

Subjects Epidemiology, Infectious Diseases, Statistics, COVID-19
Keywords Under-reported cases, Incidence, Detection probability, Robust logistic regression,
Bayesian model averaging, Poisson regression, Logit model, Trend models

INTRODUCTION
In late 2019, the unexpected surge of COVID-19 shook the world, causing health systems
to collapse, and many people were passing away and in urgent need of health care services.
The spread of this infectious disease developed at a fast and insurmountable pace where
health systems struggled given their unpreparedness and limited resources. In addition,
the limited information on this infectious disease made effective control and prevention
more challenging to plan and implement. With this, researchers and scientists worldwide
made an active and enormous effort to model and predict the rapid surge of the disease (De
Oliveira et al., 2020; Jewell, 2021).

Investigating the issue of under-reporting in disease surveillance and notification is
essential to accurately and timely evaluate disease burden by looking at better estimates for
mortality in addition to morbidity rates (Kupek, 2021; Albani et al., 2021) and implement
mitigation measures as swiftly as possible. Lau et al. (2021) mentioned that estimates for
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under-reporting rate can be recorded through testing. However, given the lockdowns
and limited movement brought about by the menace of getting infected, implementing
area-wide testing seems implausible. Testing is an important driver in detecting the daily
cases of COVID-19. When people do not move forward to get tested, it makes it harder to
reflect the real trend or spread of the disease in the community in the daily figures (Rader et
al., 2020). On the other hand, other factors can impact the increase or decrease in the daily
testing trend. There is a possibility that trend is a result of time and area-related factors
such as cold weather or the winter season in which more people can experience flu-like
symptoms (Moriña et al., 2021). In addition, the availability of testing centres or healthcare
services can impact the accessibility to the community to get tested (Rader et al., 2020;
Mena et al., 2021; Lau et al., 2021). In that sense, inequality in accessing health services can
be influential on the number of unreported cases. With these, the incorporation of various
conditions that can impact the number of daily cases of COVID-19 needs to be considered.
There is a need for exploratory analysis in a broader scope of factors or covariates that can
impact the dynamics of the spread and detection to generate better estimates of the disease
burden.

Spatial inequality
Several studies have explored the impact of spatial variations on the rise of COVID-19.
In a study conducted by Rader et al. (2020) on geographic access differences in the United
States relative to COVID-19 testing sites, results suggest that this disparity is associated
with sociodemographic factors consequently linked to poor health access and outcomes.
Similarly,Mena et al. (2021) analysed the incidence and mortality attributed to COVID-19
to understand spatial variations in disease burden in Chile. Results show higher infection
fatality rates in lower-income municipalities, given their comorbidities and poor access to
health care. Furthermore, this spatial inequality across areas is apparent in the delay and
capacity of testing.

In another study in the United States, Figueroa et al. (2020) reviewed spatial inequality
by looking at the communities’ economic, demographic, and occupational factors. Results
suggest that it may help mitigate the spread of COVID-19 in minority communities
by improving health care for foreign-born non-citizens, addressing crowded housing,
and protecting food service workers. Relatively, Sy, White & Nichols (2021) found that
populated areas increase the rates of contact leading to disease transmission of COVID-19.
The study suggests that geographic differences should be considered in estimating the
transmission rate for resource allocation and proper planning. Neighbouring areas also
impact this geographic inequality of COVID-19 as studied by Martins-Filho et al. (2020).
As recorded, mortality estimates in the North and West zones of Aracaju in Brazil are the
highest where many socio-economically deprived neighbourhoods are located. In a similar
study by Bilal et al. (2021) in the cities in the United States: New York, Philadelphia, and
Chicago, lower testing rates and higher positive ratios, mortality rates and confirmed case
rates are recorded in neighbourhoods with higher social vulnerability.

Lope and Demirhan (2022), PeerJ, DOI 10.7717/peerj.14184 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14184


Temporal inequality
Apart from the spatial differences, several studies explored the effect of temporal variation
in data at every specific time point of the COVID-19 pandemic. This enables us to see
and infer from the growth of the daily disease cases to improve planning and intervention
and predict potential outbreaks. In Australia, Trauer et al. (2021) conducted a study in
the second wave of COVID-19 on the aggressive policy interventions implemented in the
Victorian state across time. To determine the reasons for the pandemic’s peak and decline
in this second wave, they explored the effect of time-varying processes on their parameters,
including testing rates, face coverings, physical distancing and population mobility. Results
showed that these interventions greatly helped overturn the pandemic growth led by the
use of face coverings. In addition, the study showed that the impact of these time-varying
interventions could represent other behavioural changes.

During the earlier stages of the pandemic, Brandenburg (2020) attempted to model the
growth of the pandemic using piece-wise quadratic behaviour relative to the changes in
the population dynamic and interventions. Results showed that quadratic growth laws
were mainly the result of partial safety measures and that the maximum possible infection
levels have been attained with the existing safety measures. It is deemed that the quadratic
behavior can be driven by surrounding growth when additional spreading occurs in
the outskirts of an infected area. On the other hand, Li et al. (2021) explored the use of
time-series models such as Holt exponential smoothing and autoregressive integrated
moving average (ARIMA) models to predict the COVID-19 cases in China. Findings
suggest that the recalibrated ARIMA model can detect the effects of the interventions
and unusual changes in trends. This result is deemed beneficial in trend analysis of the
pandemic and evaluating the interventions across time points.

The aforementioned studies demonstrated the importance of the spatial and temporal
effects in understanding the spread of COVID-19. Moreso, these space and time variations
played an important role in either increase or decrease of COVID-19. Lau et al. (2021)
evaluated under-testing and under-reporting of COVID-19 cases in multiple global
epicenters (which includes South Korea, Japan, China, Spain, France, Italy, Germany, Iran
and the United States) and found that the differences in testing and overall health care
and medical system resulted in significantly different COVID-19 cases and mortality rates,
which further emphasize the apparent impact of inequality across countries.

These analyses have yet to explore an approach surrounding models that involve both
spatial and temporal inequality in the model that estimates the under-reported cases
of COVID-19. However, these methodologies provide an array of frameworks and a
combination of covariates which will be considered in our study.

In this study, we aim to incorporate the spatial and temporal effects in investigating
and inferring the number of under-reported cases of COVID-19. Estimating the number
of under-reported cases is essential in disease surveillance to provide a better-informed
picture of the spread of COVID-19. We utilized a two-component Bayesian model that
investigates the case detection rate and incidence of COVID-19. In these two components,
we incorporate covariates with variations in space and time which can impact the spread
and rise of the daily disease cases. In our model, we considered not only the inequality in
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the health services access of people in the community but also the available access to them,
such as the availability and number of testing and vaccination centres. These facilities
aid the detection, reporting, and control of the disease. As an improvement to existing
studies, the model from the studies of Shaweno et al. (2017), Stoner, Economou & Da Silva
(2019) and Zipfel, Colizza & Bansal (2021) are improved. We added a floating covariate
that captures the possible effect of the covariate on either of the two components in the
model. Furthermore, the Bayesian Model Averaging (BMA) is employed to determine the
categorization of this floating covariate. Lastly, we introduced the use of robust logistic
regression to address the impact of outliers in the distribution of the disease as a new
contribution over the previous forms of the approach by Stoner, Economou & Da Silva
(2019) and Lope, Demirhan & Dolgun (2022). Mainly, this study aims to fill in the gap by
(i) proposing a model that allows the inclusion of wide-scope covariates but preserves
parsimony, (ii) allowing the interaction and model specification of the covariates in and
between space and time and (iii) allowing the data to determine the effect of differences in
space and time in the incidence and detection or reporting of the disease.

MATERIALS AND METHODS
Shaweno et al. (2017) and Stoner, Economou & Da Silva (2019) explored using a Bayesian
technique to estimate tuberculosis occurrence in Ethiopia and Brazil, respectively. This
model is composed of incidence rate and case detection rate models. With this approach,
they were able to identify under-reported areas of tuberculosis. Furthermore, given the
two-component modelling, it distinguishes the true incidence from the case detection rate,
which helps to explore whether the increase or decrease of the reported cases is due to the
health system’s performance. Findings show a significant difference in reported rates and
estimated incidence rates in areas with no health facilities. In addition, this model was used
further by Zipfel, Colizza & Bansal (2021) to explore the transmission and surveillance of
influenza in the United States. Lope, Demirhan & Dolgun (2022) introduced the floating
variable concept into this model and used Bayesian model averaging to model influenza
in Victoria, Australia. Both studies identified areas with influenza hotspots that were
mostly overlooked by conventional influenza surveillance and notification. The current
study leveraged the approach from Shaweno et al. (2017); Stoner, Economou & Da Silva
(2019) and Lope, Demirhan & Dolgun (2022) to estimate the effect of spatial and temporal
inequality in disease detection which can lead to under-reporting.

We follow the assumption that individual cases are detected independently at a fixed rate
and are conditional on individual incidence (Shaweno et al., 2017; Stoner, Economou & Da
Silva, 2019). The twomain componentmodels of the Bayesian framework are incidence and
case detection probability models, in which t shows the time index and s is the space index
to encapsulate the temporal and spatial effects, respectively. The incidence component is
defined as in Eq. (1):

Incidencet ,s∼Poisson(λt ,s), (1)
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where the model for the mean incidence rate at time t and in area s is given in Eq. (2):

log(λt ,s)=α0+
K∑
k=1

αku
(k)
t ,s , (2)

such that {u(k)} is the vector of covariates that induces the number of disease cases with
the offsets such as population counts. The expected number of detected cases, Zt ,s, follows
a binomial distribution conditional on the hidden true incidence rate and the probability
of the case being detected:

Zt ,s∼Binomial(πt ,s,Incidencet ,s), (3)

where the model for the case detection probability is defined in Eq. (4):

log
(

πt ,s

1−πt ,s

)
=β0+

J∑
j=1

βjv
(j)
t ,s. (4)

In Eq. (4), {v(j)} is the vector of covariates attributable to the disease detection process.
This captures the intensity of under-reporting and the influence of the related covariates.
By using integration and Bayes’ rule (Stoner, Economou & Da Silva, 2019), we have

Incidencet ,s−Zt ,s∼Poisson((1−πt ,s)λt ,s). (5)

For this model, the conditions to get reliable estimates of under-reported cases include
(i) every individual case needs to have an equal chance of being independently reported,
and (ii) the information in the observed data needs to be supplemented by additional
information to distinguish under-reporting and the true incidence rate (Stoner, Economou
& Da Silva, 2019). The first point is the main assumption for the model to statistically
formulate the likelihood function. The chance of being reported for each individual
may differ across the states. However, since we consider the cases by Local Government
Areas(LGAs), every individual in each LGA has an equal chance of being reported. For the
second point, we propose to use BMA to relax the need for supplementary information
by giving a chance for covariates to appear in both case detection and incidence rate
components of the model. The main limitation of this model is the need for observed cases
to produce accurate estimates of the number of under-reported cases. In the case study
of this article, we provide a detailed assessment of deviances, especially for zero and low
numbers of observed cases, to ensure that the model does not produce unreasonably high
deviances.

In this study, to improve the case detection probability model in Eq. (4) against outliers,
we introduced the robust logistic regression by including a parameter γ such that

πt ,s= γ ·
1
2
+ (1−γ ) · logit

β0+ J∑
j=1

βjv
(j)
t ,s

. (6)

In Eq. (6), the logistic model becomes a mixture of sources; one from the covariates
and the other source is mere randomness in which, let us say the x value is generated
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from flipping a fair coin: x ∼ Bernoulli(µ= 1/2). Then, every data point has a small
probability (γ ) of being generated by the random process, but usually, with probability
(1−γ ) coming from the logistic function of the covariates. This approach helps reduce
the slope of the estimated logistic curve to avoid getting data points with zero probability
estimates (Kruschke, 2015, p. 635).

Furthermore, Stoner, Economou & Da Silva (2019) and Lope, Demirhan & Dolgun
(2022) mentioned the challenge of categorising a covariate between the two models,
especially when the covariate seems to impact both incidence and case detection rates. Lope,
Demirhan & Dolgun (2022) establish a covariate called a floating covariate. This floating
covariate aims to address this issue of ambiguity in categorisation. The introduction
of floating covariates results in multiple models that can fit the data well. To capture
the model uncertainty created by having floating covariates, we induce Bayesian model
averaging (BMA) into themodelling framework.We create amodel space℘(S) in a way that
all elements are given the opportunity to impact the parameter of interest 1 considering
the data D (Hoeting et al., 1999). With such, the parameter of interest will have a posterior
distribution formulated in Eq. (7),

P(1|D)=
∑

m∈℘(S)

P(1|m,D)P(m|D). (7)

BMAprovides the flexibility to visit themodels in amodel space℘(S) that is proportional
to their respective posterior model probabilities calculated as such,

P(m|D)=
P(D|m)P(m)∑

m′∈℘(S)P(D|m′)P(m′)
, (8)

where m is the model of interest and m′ shows each model in the model space.

CASE STUDY: VICTORIAN COVID-19 DATA
The study area is Victoria, Australia, around the time of the third wave of the pandemic in
the state, which dates from 28 August 2021 to 8 November 2021, leading to 73 time points.
The areas in Victoria are spatially aggregated into 79 LGAs. The Victorian data is sourced
from the COVID LIVE website (https://covidlive.com.au/), which is verified by state and
federal health departments. Population data is sourced from the Australian Bureau of
Statistics (Australian Bureau of Statistics, 2022) whereas the climate data is taken from the
Bureau of Meteorology (Australian Government—Bureau of Meteorology, 2021).

Descriptive analysis
Figure 1 shows the Spatio-temporal distribution of COVID-19 cases and the trends by
LGA from 28 August 2021 to 8 November 2021. The left-hand side of Fig. 1 represents
the spatial distribution of the total number of reported COVID-19 cases within the study
time points. It shows that most of the reported cases are concentrated in metropolitan
areas and slowly ease as it goes outward to the regional areas. In the western areas, a very
small total of reported COVID-19 cases is observed as compared to the eastern areas. On
the other hand, as shown on the right-hand side of the diagram, there are a number of
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Figure 1 Spatial distribution (left) and the number (right) of reported COVID-19 cases in Victoria,
Australia, from 28 August 2021 to 8 November 2021.On the right side of the diagram, each line repre-
sents an LGA.

Full-size DOI: 10.7717/peerj.14184/fig-1

LGAs where the daily trend is recognisably higher though most of the LGAs were running
at the same trend and intensity. It is of interest to model the LGAs with different trend
characteristics separately. Thus, we identified 8 LGAs with the most reported COVID-19
cases, namely Hume, Brimbank, Casey, Greater Dandenong, Melton, Moreland,Whittlesea
and Wyndham. Nonetheless, a relatively small daily number of reported COVID-19 cases
are seen in the state, ranging from 0 to 350 cases a day.

This study aims to cover a wide range of covariates that can explain the incidence
rate and case detection probability of COVID-19 cases while maintaining a parsimonious
model as much as possible. With this, after thoroughly exploring available data within the
considered time span, the incidence is explained using the percentage of second vaccination
rate, the number of vaccination centres and the balancing effect of the population counts.
The structured and unstructured effect of the spatial area is also taken into account. On the
other hand, the number of tests conducted, minimum temperature and direction of the
wind were considered as the exploratory covariates for the case detection probability. The
minimum temperature and wind direction are correlated with the rise of flu-like symptoms
in the community. Northerly winds bring a significant amount of pollen to the study area
and cause a notable increase in the number of people having flu-like symptoms, which has
the potential to increase the number of people getting tested.

Table 1 shows the summary statistics of the aforementioned covariates whilst Fig. 2
shows their spatial distribution, where each color corresponds to every 20th percentile of
the covariates’ distribution. In Table 1, the average number of COVID-19 cases on a daily
basis across areas is very small, roughly 0.02 per cent of the average population and 2 per
cent of the average daily tests. The study time points are recorded to have a relatively cold
minimum temperature at 10 ◦C and experienced close to half gust of north wind as it is
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Table 1 Covariates’ summary statistics across space and time.

Covariates Mean Median SD

COVID-19 cases 13 1 32
Population count 84,757 47,725 80,558
Number of daily tests 769 644 643
Second vaccination (%) 60.1 58.1 17.6
Minimum temperature (◦C) 10.1 10.0 3.1

Max wind direction (binary, north-referenced): 44% of the observations are north-wind

spring season in Australia. For the minimum temperature and direction of the wind, the
values for these covariates were the same across all LGAs, varying only on a daily basis. This
is because we would expect a minimal variation across the very small and compact LGAs
of the state given. In Fig. 2, it is observed that the areas with a high percentage of second
vaccination dose are the areas with a lesser population; thus, it was quickly saturated. On
the other hand, unsurprisingly, in relation to Fig. 1, denser areas in the metropolitan region
recorded a higher total number of reported COVID-19 cases. In addition, these denser areas
have more tests conducted and strategically have a higher number of vaccination centres
in place. To better understand the state’s inequality of health resources and services, Fig. 3
shows the distribution of vaccination and testing centres in addition to the percentage of
second vaccination using the Gini coefficient and Lorenz curve. The vaccination centres
are relatively not equally distributed across areas with Gini = 0.56, wherein the closer the
value of Gini to 0 means more equality in distribution. However, these vaccination centres
seemed to have been strategically allocated where densely populated areas have a higher
number of vaccination centres, and the state achieved an almost equal percentage of second
vaccination as shown in Fig. 2. On the other hand, testing centres are relatively equal across
with Gini = 0.30, where 80 per cent of the population shares around 65 per cent of testing
centres in the state.

Bayesian modelling and model space
Applying the Bayesian framework of this study using the Victorian COVID-19 dataset, the
true incidence and case detection probability are implemented through Eqs. (1), (2), (3),
(4) and (5). For the incidence component in Eq. (1), we establish the model in Eq. (9):

log(λt ,s)= pops+α0+α1secondvact ,s+α2vaccentress+φs+θs+ I (·)f (tλ), (9)

where f (tλ) is a function of time defined as f (tλ)= α3t +α4t 2+α5t 3 and is treated as a
floating covariate controlled by the indicator function I (·), likewise in Eq. (10). As seen
in the trend patterns in Fig. 1, there were eight LGAs that had a greater increase in daily
reported cases of COVID-19 and showed a distinct trend as compared to the remaining
LGAs. Therefore, we isolated those 8 LGAs and added the time function to the model
to capture the drastic trend. The covariate pop represents the population count and is
treated as a balancing effect, secondvac shows the percentage of the second vaccination, and
vaccentres shows the number of vaccination centres of the area s. Considering underlying
spatial characteristics, φs represents the structured spatial effect while θs is the spatial
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Figure 2 Distribution of covariates by LGA in Victoria, Australia. Bins for the population count, % sec-
ond dose and daily average tests are equally divided into five breaks to show each 20th percentile bracket.

Full-size DOI: 10.7717/peerj.14184/fig-2

unstructured random effect. φs is modelled as an intrinsic Gaussian autoregressive model
(Besag, York & Mollié, 1991) to capture the effects of neighbouring areas wherein areas are
considered neighbours when s′ 6= s shares a common spatial boundary.

The expected number of detected cases, Zt ,s, follows a binomial distribution conditional
on the hidden true incidence rate and the probability of the case being reported or detected
as given in Eq. (3) where we define Incidencet ,s as in Eqs. (1) and (9), and set the model in
Eq. (10) for the case detection probability:

log
(

πt ,s

1−πt ,s

)
=β0+β1testedt ,s+β2mintempt +β3northwindt + I (·)f (tπ ), (10)

where the floating covariate, function of time, is defined as f (tπ )= β4t +β5t 2+β6t 3.
The covariate tested is the number of tests conducted, mintemp is the recorded minimum
temperature, and northwind is the wind direction. The northwind covariate is recorded
as a binary variable with north as the reference direction. The reason for that is the wind
characteristics of the study area.

In order to improve the case detection rate model in Eq. (10) by introducing the robust
logistic regression approach mentioned in Eq. (6) to address the impact outliers, we set the
model in Eq. (11) for the case detection probability:

πt ,s = γ ·
1
2
+ (1−γ ) · logit

[
β0+β1testedt ,s+β2mintemps
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Full-size DOI: 10.7717/peerj.14184/fig-3

+β3northwinds+ I (·)f (tπ )
]
. (11)

In both model components in Eqs. (9) and (11), space index s= 0,1,...,79 represents
the LGAs in Victoria and the time index t = 1,2,...,73 represents time points from 28
August 2021 to 8 November 2021.

Model evaluation and implementation
In the initial stage of the model development, diagnostics are reviewed to evaluate the
accuracy and representativeness of the Markov Chain Monte Carlo (MCMC) samples
and the performance of the parameters. The initial values, thinning, and the number of
iterations were re-evaluated to generate the optimal settings for the sub-models and their
entirety. After model fitting and diagnostic checking are completed, the goodness-of-fit of
the model is reviewed against the observed data.

The data is processed in R software version 3.6.0 (R Core Team, 2019) using several
packages. The Bayesian models are fitted using MCMC in JAGS using its feature to support
model averaging (Plummer, 2003). In order to incorporate the spatial model, GeoJAGS
module is used to generate the structured spatial effect of the model (De Freitas Severino,
2018).

Two models are considered in the final run as shown in Table 2. To give parameter
estimation and prior specification details, both models’ model diagrams are given in
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Table 2 Candidate models and their posterior model probabilities.

Model no. Combination of λt,s and πt,s P(m|z)

Model 1 λt ,s= pops+α0+α1secondvact ,s+α2vaccentress+φs+θs 0.001
πt ,s=β0+β1testedt ,s+β2mintempt +β3northwindt + f (tπ )

Model 2 λt ,s= pops+α0+α1secondvact ,s+α2vaccentress+φs+θs+ f (tλ) 0.999
πt ,s=β0+β1testedt ,s+β2mintempt +β3northwindt

Figs. A1 and A2 of the Appendix. The BMA implementation is outlined in Fig. A3 of the
Appendix. The final run of the model in Fig. A3 using JAGS concluded settings of 48,000
iterations, four chains and 11 thinning. We excluded the first 5,000 iterations as a burn-in
period. The modes of the generated Markov chains by JAGS for each parameter are taken
as the posterior estimates of the parameters.

RESULTS
Table 2 shows the candidate models considered in this study. The framework of this study
is two-tiered, which includes the incidence model, λt ,s, and the case detection probability
model, πt ,s. The main difference between Model 1 and Model 2 is the categorisation of the
floating covariate, the function of time. The models were established to determine whether
this floating covariate that is tailored for selected LGAs with a distinct trend pattern should
be categorised under the incidence model or the case detection probability model. By
letting the data lead to this categorisation, it determines whether the increased number of
reported COVID-19 cases is due to increasing incidence in the community or the increased
number is driven by the probability of detecting these cases. Alongside this, we also take
into account other changes in the environment, such as changes in weather, temperature,
and the progression of vaccination rates. In Model 1, the function of time is added in the
incidence model λt ,s, while in Model 2, it is under the case detection probability model
πt ,s.

The posterior model probabilities, P(m|z), as shown in Table 2, suggest that the function
of time for LGAs with a distinct dramatic trend is best explained by the incidencemodel λt ,s
since Model 2 has a significantly larger posterior model probability. The main difference
between the models is the inclusion of the floating covariate, which is the function of time.
With the two models, we aim to determine whether the 8 LGAs with a drastic increase
of daily COVID-19 cases can be explained by ‘the better performance in testing, which
detects more cases of COVID-19’ or ‘the areas experienced great and inevitable community
transmission leading to more reported COVID-19 cases’ or both. Based on the results of
the posterior model probabilities, this drastic increase of COVID-19 cases in the 8 LGAs
is explained by the increased community transmission, which means the function of time
falls under the incidence component of the model as in Model 2. This is consistent with the
significance results of the time predictors in Figs. 4 and 5. This result is a good indication of
the importance of vaccination in order to prevent the increase of community transmission
in conjunction with other safety measures. Despite the importance of testing, if there is an
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Figure 4 Posterior distributions of the incidence model parameter estimates.
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Figure 5 Posterior distributions of the case detection probability model parameter estimates.
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increasing community transmission where people are experiencing symptoms of COVID-
19, this will inevitably surface, and more and more people will get tested. Moreover,
during this September outbreak of the pandemic in the state, the highly transmissible and
severe disease-causing COVID-19 Delta variant has been around (Australian Government,
Department of Health, 2021).

Figs. 4 and 5 show the posterior distributions of the parameters for the incidence model
λt ,s and the case detection probability model πt ,s, respectively. In Fig. 4, the importance
of second dose vaccination rates is highlighted by identifying vaccination rates (α1) as
a significant predictor of the COVID-19 daily incidence. From Fig. 5, the testing rates
(β1), minimum temperature (β2), and wind direction (β3) are all significant predictors
of the case detection probability. Looking at the floating covariate, the function of time
f (tλ), it clearly reflects the outcome in Table 2 that both the quadratic (α4) and cubic (α5)
components of the dramatic trends for the selected LGAs is best explained in the incidence
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Figure 6 Notified versus estimated COVID-19 cases (per 100,000). The black 45-degree line shows the
perfect fit for reference.

Full-size DOI: 10.7717/peerj.14184/fig-6

model λt ,s while all time components (β4,β5,β6) are insignificant in the case detection
probability model πt ,s.

Figure 6 shows the comparison of the notified(reported) and estimated (reported +
unreported) COVID-19 cases by the model. This plot helps evaluate the model’s fit against
the observed data. The black 45-degrees line shows the perfect fit. The points under this
line show under-fitted data points, those above the line are over-fitted data points, and
the points on the line are perfectly fitted data points. Therefore, the points above the line
are under-reported cases since the predicted number of COVID-19 cases is greater than
the reported number of COVID-19 cases. Based on Fig. 6, it is apparent that there is an
indication of under-reported cases as represented by points above the line. On the other
hand, determining where the model fell short in terms of the points under the line is also
of interest. Of note, this study’s daily notified COVID-19 cases are relatively small, ranging
from 0 to 350 daily. In order to evaluate the points under the line in Fig. 6, we created
a detailed analysis of under-estimated cases by the model in Fig. 7. Figure 7 shows the
distribution of the notified COVID-19 cases depending on the deviation of the estimates or
the model’s magnitude of the error. Each deviance is grouped accordingly by 1–10, 11–25,
25–50, 51–100, 101–200 and 201–300 points deviation. It shows that most of the cases
where the model fell short in the estimates are in the 1-10 deviance range, and these cases
have very small notifications ranging from 0-50 daily cases. Our model mostly produces
an error margin of 1 to 10 for notified cases less than 25. As the number of notified cases
increases, our model’s margin of error dramatically decreases.

Figure 8 shows the spatial distribution of the model estimates compared to the notified
cases of COVID-19 in Victoria, Australia, from 28 August 2021 to 8 November 2021.
This spatial mapping of the estimates shows a good performance of the model fitting to
the observed data. Furthermore, it is clear that some areas have under-reported cases as
determined by the model. We looked into the spatial estimates on a monthly basis to check
any hints of possible under-reporting or outbreak earlier on before it peaked in October.
Given this, we spatially mapped the monthly estimates as shown in Figs. 9 and 10.

Figure 9 shows the spatial distribution of the model estimates compared to the state’s
notified cases during September 2021. On the other hand, Fig. 10 shows the spatial

Lope and Demirhan (2022), PeerJ, DOI 10.7717/peerj.14184 13/22

https://peerj.com
https://doi.org/10.7717/peerj.14184/fig-6
http://dx.doi.org/10.7717/peerj.14184


Figure 7 Histogram of under-estimated against notified COVID-19 cases by the model.
Full-size DOI: 10.7717/peerj.14184/fig-7
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Figure 8 Total distribution of COVID-19 cases in Victoria, Australia from 28 August 2021 to 8
November 2021.

Full-size DOI: 10.7717/peerj.14184/fig-8

distribution of the model estimates compared to the notified cases of COVID-19 of the
following month, October 2021. In both Figs. 9 and 10, the upper maps are the notified
cases of COVID-19 cases on a fortnightly basis while the lower maps are the corresponding
estimated cases of COVID-19 cases by our model in the same fortnight.

Remarkably, Figs. 9 and 10 show a progressive detection of COVID-19 cases of the state.
Our model was able to show under-reported areas at least two weeks prior to the increase
of the notified cases in the area. As an example, in the upper left areas of weeks 1 & 2
and weeks 3 & 4 September notifications, the areas Mildura, Swan Hill, and Gannawarra
were showing relatively the same notification counts. Then, in the weeks 1 & 2 and weeks
3 & 4 October notifications, there is a relatively notable increase in these areas. Looking
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Figure 9 Fortnightly comparison of notified and estimated COVID-19 cases in Victoria, Australia
during September 2021.

Full-size DOI: 10.7717/peerj.14184/fig-9

at the estimates for September by our model located in the lower maps of Figs. 9 and
10, early on from weeks 1 & 2 and weeks 3 & 4 September estimates, Mildura, Swan Hill
and Gannawarra areas have already been detected to have an increase in the number of
COVID-19 cases which leads to the confirmation of the under-reporting in these areas
as shown in the weeks 1 & 2 and weeks 3 & 4 October estimates. Using this retrospective
analysis of under-reported areas, the model is able to find the missing pieces of a bigger
picture of the daily COVID-19 notifications.

We reviewed the results of our model further against the COVID-19 update of Victoria
by the Department of Health and Human Services(DHHS). During the pandemic,
the Victorian state had been conducting wastewater testing to detect possible cases of
COVID-19 cases. According to a DHHS media release dated the 27 of September 2021
(Australian Government, Department of Health and Human Services, 2021), viral fragments
were detected in the Ballarat area during 20–22 September. Looking at the notifications
during weeks 3 & 4 of September, there is an increase of notifications in that area and
further supported by the notifications in October. However, looking at the model estimates
early on, weeks 1 & 2 of September, our model has already estimated the increase of
COVID-19 cases in the Ballarat area, and it was consistently increasing during the period
of the study. The same case is recorded for the Greater Bendigo area. Viral fragments were
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Figure 10 Fortnightly comparison of notified and estimated COVID-19 cases in Victoria, Australia
during October 2021.

Full-size DOI: 10.7717/peerj.14184/fig-10

detected around 21–23 September in the Greater Bendigo area. In weeks 1 & 2 and weeks
3 & 4 of September notifications, the area was showing around 0-19 total fortnightly cases.
However, in the model estimates for September, the total number of fortnightly cases is
recorded as over 60 cases. These findings show how the model was able to determine the
under-reported areas and can be used for early detection, which means more informed
planning and surveillance.

DISCUSSION
Under-reporting is an important issue in disease surveillance to determine the true
incidence and burden of disease in addition to strategic planning and intervention.
Several studies explored the impact of spatial and temporal differences in the spread of
COVID-19 in which inequality in access to testing and other health services is one of the
causes of under-reporting. In this study, we proposed using a two-tiered Bayesian model
that incorporates the inequalities and interactions between space and time to determine
under-reported areas.

Results were able to identify areas with potential under-reporting as shown in Figs. 8,
9 and 10. We reviewed the results at varying time points and locations. Our model was
able to detect under-reported cases during weeks 3 & 4 of September, which later surfaced
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during weeks 1 & 2 of the following month, October. A clear graphical demonstration of
these was seen for areas in the state’s upper right side, such as Mildura, Swan Hill and
Gannawarra. Moreso, we evaluated the results against the wastewater testing conducted by
the state of Victoria. Apparently, the model was able to detect increases in the number of
cases beforehand, as shown in areas of Bendigo and Ballarat.

These findings show how the model satisfactorily captured the true incidence of the
COVID-19 cases inVictoria using thewide-scope covariateswith variations and interactions
in space and time, despite the small number of notified COVID-19 cases in the state. This
is one of the challenges in data analysis as it becomes harder to accurately model the small
number of notified cases. Furthermore, improvements are made in the model compared
to the existing framework, such as introducing a floating covariate, Bayesian Model
Averaging (BMA), and modification to robust logistic regression of the case detection
model to enhance the estimated notifications of the model across space and time.

The availability of the data for the various covariates considered in this study, such as
vaccination and testing rates, vaccination and testing centres, wind direction andminimum
temperature across spatial locations and time, is a limitation of the study since it is not
possible to some of the covariates at all time points and locations. However, the model is
very flexible, and other covariates that are more suitable in the disease of interest can be
considered for other locations and time periods. In addition, applying this model to other
data might require changes to the model covariates to present their spatial and temporal
attributes.

CONCLUSION
We applied a Bayesian hierarchical framework with Spatio-temporal effects to determine
potential under-reporting during the third wave of the COVID-19 pandemic in Victoria,
Australia, from 28 August 2021 to 8 November 2021. Findings suggest that under-reported
cases in some LGAs of the state turned into local outbreaks before the testing effort reported
them. In that sense, our model revealed early detection of increased COVID-19 cases in
some LGAs, whichwere further supported by the wastewater testing results.We also noticed
the snowball effect of areas with a high number of reported cases to their contiguous areas
with a shared border.

Model-wise, the application of this model is seen to detect the areas that have an
increased surge of COVID-19 cases early in addition to areas with a potential under-
reporting. Furthermore, our model is applied to Victoria, Australia, where the recorded
number of cases is very low, ranging from 0 to 350 cases daily. For statistical models, it
becomes harder to get accurate results when the number of reported cases is low. However,
our model showed robustness against this issue by producing low levels of deviance. Hence,
given the robustness of our model for a small number of COVID-19 cases, we expect this
model to perform satisfactorily in datasets with a high recorded number of COVID-19
cases. Moreso, it can confidentially be used for the areas with a low number of reported
cases.

The results of this study can help improve the early detection of COVID-19 hotspots
and areas with a possibility of under-reporting. These matters are essential in disease
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surveillance to better design strategies and measures to combat the spread of infectious
diseases. In addition, this method is data-driven and can be easily and quickly implemented
during an outbreak and in other disease studies.
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APPENDIX
Figures A1 and A2 are the JAGS model diagrams for the considered model. Figure A3
shows the BMA implementation in JAGS.

Figure A1 JAGSmodel diagram of Model 1.
Full-size DOI: 10.7717/peerj.14184/fig-11
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Figure A2 JAGSmodel diagram of Model 2.
Full-size DOI: 10.7717/peerj.14184/fig-12

Figure A3 JAGSmodel diagram of Bayesian model averaging implementation withModels 1 and 2.
Full-size DOI: 10.7717/peerj.14184/fig-13
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