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Abstract: RhoB, a member of the Ras homolog gene family and GTPase, regulates intracellular
signaling pathways by interfacing with epidermal growth factor receptor (EGFR), Ras, and
phosphatidylinositol 3-kinase (PI3K)/Akt to modulate responses in cellular structure and function.
Notably, the EGFR, Ras, and PI3K/Akt pathways can lead to downregulation of RhoB, while
simultaneously being associated with an increased propensity for tumorigenesis. Functionally, RhoB,
part of the Rho GTPase family, regulates intracellular signaling pathways by interfacing with EGFR,
RAS, and PI3K/Akt/mammalian target of rapamycin (mTOR), and MYC pathways to modulate
responses in cellular structure and function. Notably, the EGFR, Ras, and PI3K/Akt pathways can lead
to downregulation of RhoB, while simultaneously being associated with an increased propensity for
tumorigenesis. RHOB expression has a complex regulatory backdrop consisting of multiple histone
deacetyltransferase (HDACs 1 and 6) and microRNA (miR-19a, -21, and -223)-mediated mechanisms
of modifying expression. The interwoven nature of RhoB’s regulatory impact and cellular roles
in regulating intracellular vesicle trafficking, cell motion, and the cell cycle lays the foundation
for analyzing the link between loss of RhoB and tumorigenesis within the context of age-related
decline in RhoB. RhoB appears to play a tissue-specific role in tumorigenesis, as such, uncovering and
appreciating the potential for restoration of RHOB expression as a mechanism for cancer prevention
or therapeutics serves as a practical application. An in-depth assessment of RhoB will serve as a
springboard for investigating and characterizing this key component of numerous intracellular
messaging and regulatory pathways that may hold the connection between aging and tumorigenesis.
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1. Introduction

Foundational knowledge of the Ras homolog gene family or Rho subgroup of GTPases is critical
for further analyzing the multiple interactions that allow for their complicated functions, including
regulating cellular actin that then modulates cytoskeleton-mediated motion and adhesion, as well as
regulating protein trafficking [1–6]. The Rho GTPases are a subgroup of the Ras family of proteins,
with considerable conservation of sequencing [1,2]. The defining feature of the Rho subgroup is the
insert region spanning 13 amino acid residues, which is highly involved in regulating activation [2].
Rho GTPase functions are regulated by conversion from GDP-bound inactive state to GTP-bound
active states, such that activation leads to a cascade of activated signaling pathways [1–7]. Rho GTPases
are modulated between active and inactive states by guanine nucleotide exchange factors (GEFs),
GTPase activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs); notably, the
Rho insert region holds a site for guanine nucleotide exchange factors [2,3]. Regulation of GDIs, GEFs,
and GAPs exists in the form of localized effector protein interaction and post-translation modification,
effectively creating yet another layer of control [8]. Rho GTPases are switches regulated by the status
of GTP, and act as a critical component of numerous intracellular signaling pathways [9].

The Rho subgroup is made up of approximately twenty GTPases, with considerable diversity
of structure and regulation [1–3,6,10–15]. Within the Rho subgroup, RhoA, RhoB, and RhoC share
significant homology, despite their distinct roles and functional implications in tumorigenesis and
aging [10,11]. RhoA and RhoC have disparate roles from RhoB, functionally acting as pro-oncogenes [3,12,16].
RhoA complexes with numerous GEFs and GAPs in order to regulate cell migration, and thus, invasion
through filopodia, membrane bleb formation, stress fiber formation, and adhesion, amongst other
roles [14,15]. RhoA’s regulation of cellular polarity, adhesion, and migration may help explain its
correlated role in tumorigenesis [12]. RhoC has a role in formation of invadopodia and membrane
blebs; in fact, RhoC has been implicated in the development of metastatic potential through both
extravasation of tumor cells and angiogenesis [3,6,12].

Shared structural elements of RhoA and RhoC are unique from RhoB, highlighting fundamental
differences in the structure-function relationship of these genes and their products. Amino acid
substitutes in the highly conserved Rho insert region mentioned above include notable residue variances
between RhoB and both RhoA and RhoC at residue positions 127, 129, and 133 [2]. Furthermore, plasma
membrane-based lipid anchors regulate RhoA and RhoC; in contrast, RhoB is regulated by endosomal
vesicular lipid anchors, thus driving differential localization [2]. RhoB’s localization to endosomal
vesicles allows for differential intracellular concentration [2,17,18]. Additionally, while RhoA and
RhoC can be geranylgeraylated, RhoB can be differentially prenylated by a farnesyl or geranylgeranyl
group, thereby increasing its dynamism [17,18]. Protein binding also differs between RhoA, RhoB,
and RhoC within the hypervariable region, most notably with RhoB harboring a C-terminus that is
comprised of significantly more polar amino acid residues, which likely contributes to differential
targeting, localization, and rate of ubiquitylation [2,8,19]. In fact, some GDIs targeting Rho GTPases
demonstrate selectivity for RhoB, while others preferentially target RhoA and RhoC [15,19].

RhoB’s physiologic role is distinct from that of RhoA and RhoC and primarily acts through
regulating intracellular actin configuration, thereby facilitating vesicle motion in a cell-cycle dependent
manner [15,19]. RhoB’s regulation of intracellular vesicle trafficking may help regulate cell-to-cell
adhesion proteins through variable trafficking of cadherin and integrin proteins [20]. RhoB is also
unique from its homologs RhoA and RhoC in its responsive expression following inflammation and
radiation [15,19]. The unique nature of RhoB is particularly highlighted in its functional role as a
putative tumor suppressor. In stark contrast to the oncogenic association of RhoA and RhoC, RhoB
has been shown to be significantly downregulated in cancers of various cell origins [10,19,21,22].
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RhoB’s role in tumorigenesis is compounded by age related declines of expression in muscle and lung
tissue [23,24]. Unsurprisingly, most tumors in developed countries are diagnosed in aged patients and
advanced age is a consistent risk factor for most types of cancer. It follows logically that the frequency
and incidence of cancer is expected to increase, with projections extending into 2050 as the global
population ages [25]. Further analysis of RhoB’s unique cellular functions, characterization of its role
in tumorigenesis, and exploration of the increasing age with decreasing RHOB expression will shed
light on elusive pathways and highlight efforts to expand therapeutic targets.

2. Literature Review

2.1. RhoB Suppressed by Oncogenic Signaling

As a member of the Rho GTPase family responsible for actin cytoskeleton-mediated motion,
adhesion, cell-cycle progression, and protein trafficking, RhoB serves a critical role in the intracellular
signaling pathways, including the EGFR, RAS, PI3K/Akt/mTOR, and MYC pathways [1]. Figure 1
graphically represents these pathways and their interactions with additional layers of transcription
control. Refining our understanding of the complex interplay between RhoB and these pathways
holds the key to further refining our understanding of both its role and the potential for elucidating
fundamental mechanisms of cell growth, intracellular protein trafficking, and regulation.

2.1.1. EGFR Reduces RHOB Promoter Activity Through Ras Signaling

Epidermal growth factor receptor is a member of the erbB family of receptor tyrosine kinases that
serves as an interface between the extracellular and intracellular environment by moderating signal
transduction to moderate cell growth, differentiation, survival, and progression through the cell cycle.
EGFR consists of an extracellular ligand-binding domain, a transmembrane lipophilic domain, and
an intracellular tyrosine kinase domain, and binds primarily to EGF and TGF-α. Once bound, the
receptor is activated, resulting in the phosphorylation of the tyrosine kinase domain and homo- or
heterodimerization between different receptors [26]. This autophosphorylation recruits intracellular
signaling proteins and activates downstream signaling cascades, chiefly the Ras/Raf/mitogen-activated
protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and the PI3K/Akt pathways
(Figure 1). It has been demonstrated in cancer cells that EGFR is altered through various mechanisms,
such as gain-of-function mutations, EGFR gene gain, and overexpression of ligands and receptors [27].
EGFR overexpression is seen both in Ras-mutated tumorigenesis, such as colon, lung, and pancreatic
cancers, as well as tumors in which Ras is not mutated, such as ovarian, cervical, breast, esophageal,
renal, and prostate cancers [28]. Moreover, high levels of EGFR suggest poor survival in non-small
cell lung carcinoma (NSCLC) patients, whereas high coexpression of EGFR and Her2-neu (another
member of the erbB receptor tyrosine kinase family) is associated with outright inferior survival [29].
One possible mechanism through which increased EGFR expression promotes tumorigenesis through
the down-regulation of RHOB was demonstrated by Jiang and colleagues (Figure 1). In a study
exploring the possible role that prevalent oncogenes may have on RHOB suppression, EGFR was
found to inhibit RHOB promoter transcriptional activity in a dose-dependent manner in NIH3T3
cells. Additionally, EGFR was found to inhibit RHOB promoter activity in cancer cells derived from
pancreatic (Panc-1) tumors, cervical (C33A) tumors, and lung (A549) tumors. This phenomenon,
however, was discovered to be heavily dependent on the presence of Ras, another oncogene, suggesting
that EGFR suppresses RHOB promoter activity through Ras pathway. The study also demonstrated a
sharp inhibition of transformation in EGFR-transfected NIH3T3 cells through the ectopic expression
of RHOB relative to RhoA [30]. Gampel and colleagues suggested one possible mechanism through
which RHOB regulates EGFR trafficking by binding to PRK1 and hindering the kinetics of endosomal
movement following EGFR internalization [31]. Additionally, low RHOB expression has been shown
to correlate with a positive response to treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKI)
in EGFR-mutated lung cancer patients, and reversely high RHOB expression correlates with a poor
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response. It was concluded that resistance to EGFR-TKI treatment involved the RHOB/Akt signaling
and that expression of the RHOB/Akt axis could be utilized as predictor of the response to EGR-TKI
treatment [32].
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Figure 1. Interactions between RHOB and EGFR, Ras, PI3K/Akt/mTOR, MYC, and HDAC. RHOB’s
function is differentially regulated by factors including EGFR, K-Ras, and PI3K/AKT. EGFR is a receptor
tyrosine kinase that autophosphorylates upon binding ligands, such as EGF and TGF-α. The activated
EGFR can then facilitate activation of Ras-GDP into Ras-GTP via GEFs. Ras-GTP can lead to increased
activity of the PI3K/AKT pathway. AKT then co-localizes near the nuclear membrane along with RHOB,
where AKT becomes phosphorylated and downregulates RHOB. Finally, RHOB can then inhibit or
(in angiogenic states) enhance AKT activity, inhibit the EGFR receptor, antagonize Ras/PI3K/mTOR
signaling, facilitating MYC turnover, and inhibit overall cell growth, proliferation, and survival. Aside
from the PI3K pathway, Ras-GTP can also affect regulation of RHOB by means of cross-talk between
Raf and AKT. Ras-GTP can activate Raf, which may either upregulate or downregulate function
of AKT, which is known to inhibit RHOB. Conversely, AKT may also inhibit the function of Raf.
Furthermore, transcription of RHOB is tightly controlled by histone acetyltransferases (HATs) and
HDAC1/6. Acetylation of chromatin by HATs causes relaxation of the chromatin structure, allowing for
transcriptional activation of RHOB. On the other hand, deacetylation of chromatin by HDAC1/6 creates
a condensed structure that represses transcription of RHOB.

2.1.2. Oncogenic K-Ras Suppresses RhoB and Induces Resistance to 5-Fluorouracil

The RAS subfamily consists of H-Ras, N-Ras, and K-Ras monomeric GTPases, and mediates signal
transduction between cell surface growth receptors and intracellular signaling pathways. The Ras
proteins activate once bound to GTP, a process that is catalyzed by GEFs and inactivated through GTP
hydrolysis, which is catalyzed by GAPs [33–35] (Figure 1). Oncogenic mutations of the three RAS
genes occur in codons 12, 13, or 61. These mutations prevent the proteins from becoming inactive due
to resistance of GAP-mediated GTP hydrolysis, allowing them to stimulate growth, differentiation,
and survival uninhibited [33,34]. While wild-type K-Ras serves as a suppressor of oncogenic activity,
mutated K-Ras has been observed in cancers of the pancreas [36–39], esophagus [40], cardia and distal
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stomach [41], stomach [42,43], biliary tract, bile duct, ampulla, gallbladder [44], colon [45], and lung
cancer [46–48]. K-Ras mutations have been associated with a poor prognosis and are found frequently
in individuals with colorectal cancer [45] and NSCLC [33,49,50].

As previously stated, the autophosphorylation of the tyrosine residues on EGFR results in the
activation of the Ras/Raf/MAPK/ERK pathway, which modulates cell growth and proliferation [27], and
is commonly hyperactive in cancers [51]. This intracellular cascade begins once the phosphorylated
tyrosine residues interact with Grb2, an adaptor protein, which in turn recruits GEFs to initiate the
formation of Ras-GTP, the active form [28,45,52] (Figure 1). In addition to being a critical mediator in
the suppression of RHOB promoter transcriptional activity via EGFR and ErB2 transfection, K-Ras
decreased the promoter transcriptional activity of RHOB in a dose-dependent manner in NIH3T3 cells
and suppressed RHOB protein levels in various types of cancer cells from pancreatic, cervical, and lung
tumors. Moreover, oncogenic K-Ras demonstrated some degree of anticancer drug resistance through
effectively blocking the induction of RHOB protein levels and promoter site activity by 5-fluorouracil.
Ectopic expression of RHOB was found to inhibit K-Ras transformation of NIH3T3 cells, further
indicating that RHOB suppression is required for some oncogenes to transform cells [30].

2.1.3. PI3K Activates Akt through Several Mechanisms

Phosphatidylinositol 3-kinase (PI3K) can be activated either through its regulatory subunit (p85)
being bound to a receptor tyrosine kinase directly or indirectly through scaffolding proteins, including
Grb2 and GAP; additionally, its catalytic subunit (p110) can be stimulated directly and act independently.
Although it is unclear which pathway dominates physiologically, all three pathways result in the
activation of Akt, a survival signal that plays a critical role in tumor progression [53].

2.1.4. GTP-bound Ras Activates PI3K via MAPK

Of the mechanisms discussed above, it has been demonstrated that Ras/MAPK can activate the
PI3K pathway by utilizing the p110 catalytic subunit [54] (Figure 1). Compared to mice with normal
PI3K p110, mice with mutated PI3K p110 demonstrate resistance to K-RAS induced carcinogenesis in
lung and skin tissues, thereby confirming the necessity of PI3K for RAS induced cell transformation [54].

Aksamitiene and colleagues demonstrated that Ras/MAPK also interact with the PI3K pathway
through crosstalk (Figure 1). In the presence of depleted growth factors, PI3K has a positive influence
on MAPK; however, in the presence of increased growth factors, MAPK negatively influences PI3K [55].

2.1.5. Differential Regulation between PI3K/AKT and RhoB

The PI3K/AKT pathway is closely intertwined with RHOB. Studies have shown that genetic and
pharmacologic inhibition of the PI3K/Akt pathway leads to upregulation of RHOB, thus demonstrating
that the PI3K/Akt pathway normally downregulates RHOB [30,56–60]. Recent studies have explored
the upstream effects of RHOB on the PI3K/Akt pathway. Although conditions of angiogenesis
can cause RHOB to sustain Akt signaling, studies have predominantly demonstrated that ectopic
expression of RHOB can inhibit the PI3K/Akt pathway, as well as the upstream EGFR, thereby
blocking other pathways downstream of PI3K/Akt responsible for cell proliferation, transformation,
and invasion [61–64] (Figure 1).

Confocal microscopy has been utilized to explore the mechanism by which RHOB regulates Akt,
demonstrating that RHOB is localized in the nuclear margin, whereas Akt is found throughout the
cell’s cytoplasm, nucleus, and co-localized with RHOB in the nuclear margin [65]. However, confocal
microscopy of cells with depleted RHOB revealed that Akt was largely absent from the nucleus and
nuclear margin, indicating that RHOB plays a role in trafficking and localization of Akt [65]. As such,
the PI3K/AKT pathway becomes a major modality by which RHOB, or lack thereof, mediates cancer
invasiveness [61,62].
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2.2. RHOB Epigenetically Regulated by HDAC1/6

RHOB itself is often unaltered in the process of neoplastic transformation and tumorigenesis [66].
Consequently, it was proposed that RHOB expression is controlled by epigenetic events. Nucleosomes,
a complex of core histones wrapped by chromosomal DNA, contribute to the stability of chromatin
structure and regulation of genetic transcription in eukaryotes [67]. Depending on the acetylation status
of the histone amino termini that extend from the nucleosome core, this activity can be modified and
is dynamically coordinated by Histone Acetyltransferases (HATs) and Histone Deacetyltransferases
(HDACs). HDACs are generally located in large multi-protein complexes that regulate a variety of
genes. Normally, decreased levels of histone acetylation are linked to transcriptional repression, while
increased levels of histone acetylation are linked with active transcription [68,69] (Figure 1). A large
body of research investigating agents that upregulate RHOB through the reversal of this process,
namely HDAC inhibitors, has resulted from the correlation of RHOB repression with deacetylation.
HDAC inhibitors target histone deacetylases and serve as powerful antitumor agents that induce
differentiation and apoptosis through transcriptional modulation.

2.2.1. HDAC1 Represses RHOB Transcription by Binding Its Promoter

A study was conducted examining the age-dependent reduction of Rhob in lung and skeletal
muscle tissue of mice. The study was able to conclude that HDAC1 regulates RHOB promoter
activity through an inverted CCAAT element within the RHOB promoter. Utilizing a ChIP assay
with polyclonal antibodies against HDAC1, Yoon and colleagues demonstrated that levels of HDAC1
binding to CCAAT boxes changed with age. There was no association between HDAC1 and the CCAAT
elements in young tissue (<4 weeks), but the binding increased as the mice aged [24]. Delarue and
colleagues examined cancer cells from various origins, including human breast, colon, lung, pancreatic,
and brain tumors, with farnesyltransferase and geranylgeranyltransferase I inhibitors in an effort to
restore RHOB expression. The treatment resulted in the dissociation of HDAC1, the acetylation of
the RHOB promoter, and the expression of RHOB protein, cementing the repressive relationship that
HDAC1 has on RHOB [70]. Mazières and colleagues further demonstrated that regulation of RHOB
expression occurs primarily by histone deacetylation rather than by promoter hypermethylation and
that this process can be modulated by specific 5′ sequences within the promoter [23], which is consistent
with the previous study [69]. This relationship is made further evident by another study demonstrating
that the utilization of pan-HDAC inhibitor FK228 leads to upregulation of RHOB expression and
promotes growth inhibition of anaplastic thyroid carcinoma cell lines [71]. Additionally, the decrease
and loss of RHOB in ovarian cancer has been correlated with progression. The utilization of Trichostatin
A (a class I/II HDAC inhibitor) on ovarian cancer cell lines induced a reactivation of the expression
of RHOB associated with induction of apoptosis [72]. In contrast, one study demonstrated that the
HAT p300 is also able to bind RHOB promoter and to promote its transcription. Enhancement of p300
binding during NSC126188 anti-cancer treatment favors induction of RHOB-mediated apoptosis in
stomach carcinoma cells [73].

2.2.2. HDAC6 Represses RHOB Transcription through an Unknown Mechanism

A recent study regarding anaplastic thyroid carcinoma was able to restore RHOB promoter activity
after using shRNA constructs against HDAC6, effectively showing that HDAC6 does in fact repress the
RHOB promoter [74]. Unlike HDAC1, which resided in the nucleus, HDAC6 remained predominantly
in the cytoplasm associated with microtubules and the cytoskeleton [75] and has no association on
the RHOB promoter [76]. The mechanism by which HDAC6 inhibition led to upregulation of RHOB
transcription has yet to be identified.
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2.3. RHOB Is Targeted by MicroRNAs

The expression of RHOB is further controlled by microRNAs (miRNAs), 18–24 base-pair
non-coding small RNAs that function in post-transcriptional regulation of gene expression. Briefly,
genes encoding miRNAs are transcribed into pri-miRNA by RNA Polymerase II and subsequently
processed by Drosha to form pre-miRNA [77–80]. These pre-miRNAs are then further processed by
the cytoplasmic enzyme complexes Dicer and RISC [81]. Once fully processed, miRNA can then bind
to the 3’ untranslated region (3′-UTR) of target mRNA, leading to destabilization of the mRNA and
thus decreased mRNA translation [77,82].

Glorian and colleagues demonstrated that the 3′-UTR of RHOB transcript plays a regulatory role
in RHOB expression (Figure 2). Using a luciferase assay to compare translation of mRNA with the
RHOB 3′-UTR to mRNA with a vector-derived 3′-UTR, they demonstrated that translation of mRNA
with the RHOB 3′-UTR decreased expression of reporter transcripts [83]. Therefore, regulation of the
3′-UTR of RHOB, which may be facilitated by miRNA, can in turn regulate expression of RHOB.

2.3.1. miR-19a Downregulates RHOB by Binding to the 3′-UTR with Human Antigen R (HuR)

Studies have demonstrated the role of miRNA-19a (miR-19a) in oncogenesis of several tissues
and cell lines, including NSCLC, gliomas, and keratinocytes [83–85]. Recently, several targets have
been identified that play a role in the oncogenic potential of miR-19a, including RHOB, suppressor of
cytokine signaling 1 (SOCS1), FOXP1, TP53INP1, TNFAIP3, TUSC2, TNFRSF12A, and SIVA1 [84,86,87].
One study closely examined the interaction between miR-19a and RHOB, establishing that human
antigen R (HuR) enables miR-19a loading to the 3′-UTR of RHOB; in turn, this binding of the 3’-UTR
downregulated expression of the RHOB tumor suppressor [83]. Suppression of RHOB by direct
binding of miR-19a or miR-19b on 3′-UTR of RHOB has also been shown to promote cell growth,
invasion, and migration in clear cell renal cell carcinoma, while inhibition of miR-19a or miR-19b favors
apoptosis induction [88,89]. MiR-19a has also been proposed to enhance epithelial-mesenchymal
transition (EMT) and invasion of bladder cancer cells through RHOB suppression [90].

2.3.2. miR-21 Downregulates RHOB and Other Proteins that Participate in Cell Proliferation

Investigations have established the role of miR-21 in oncogenesis of colorectal cancer, multiple
myeloma, hepatocellular carcinoma, breast cancer, and lung cancer [91–94]. Similar to miR-19, miR-21
is an oncomiR that regulates cell proliferation by regulating expression of targets, such as RHOB, PTEN,
BTG2, and Cyclin D [91–93,95–97]. Studies conducted on hepatocellular carcinoma, breast cancer, and
multiple myeloma cell lines demonstrated that cell lines with reduced expression of miR-21 had an
associated increase in RHOB expression, resulting in decreased cell migration, invasion, and elongation
of cell size [91,92]. Furthermore, a study conducted on colorectal cancer cells utilized a luciferase
assay to demonstrate that overexpression of miR-21 suppresses RHOB 3′-UTR luciferase-reporter
activity, thereby preventing RHOB’s suppressive effect on cell proliferation [93]. The same study also
demonstrated that mutation of miR-21’s target sites on the RHOB 3′-UTR inhibited miR-21’s regulatory
effect on RHOB, thereby providing further evidence of miR-21’s mechanism of action on the RHOB
3′-UTR [93].

2.3.3. miR-223 Downregulates RhoB Expression, but Can Also Mimic RhoB Expression

Another regulator of RhoB, miRNA-223 has been shown to repress RhoB expression at two
separate target sites on the RHOB 3′-UTR [98]. By regulating RhoB, miRNA-223 plays a role in cell
proliferation, migration, and fiber formation in cells exposed to hypoxia. In models utilizing hypoxic
mouse and rat lungs, knockdown of miR-223 was found to increase proliferation of pulmonary artery
smooth muscle cells. However, despite the suppressive actions on RhoB, overexpression of miR-223
can actually mimic RhoB expression and cause decreased cell proliferation by regulating other targets,
such as MLC-2 [99]. As such, miR-223 differentially regulates cell proliferation and migration via
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mechanisms more complex than simple regulation of RhoB. The regulation of RhoB by miR-223 has
also been shown to control cell cycle arrest and apoptosis induction in colon cancer cells [100].Cancers 2019, 11, x 8 of 19 
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Figure 2. Translation of RHOB is epigenetically downregulated by miRNA-19, -21, and -223. (A) Each
miRNA inhibits translation of RHOB mRNA by binding specific target sites in the mRNA 3′-UTR.
(B,C) Each miRNA binds to known codon sequences in the 3′-UTR; miR-19a and miR-21 each have
one binding site, whereas miR-223 has two separate target sites, TS1 and TS2. (D) The target sites
for miR-223 (TS1), miR-19a, miR-223 (TS2), and miR-21, respectively, begin 625, 847, 1261, and 1310
nucleotides downstream of the coding region.

2.4. RhoB Loss During Tumorigenesis and Aging in Specific Tissues (Lungs and Muscles)

Recent studies have demonstrated the relationship between the loss of RhoB, tumorigenesis, and
aging. We systematically profiled gene expression in normal (NHBE), immortalized (BEAS-2B) and
fully transformed (NNK-BEAS-2B) human bronchial epithelial cells, as well as a NSCLC cell line
(H157) from a smoker, and found that RhoB mRNA was decreased from immortalization stage [101],
suggesting RhoB loss is an early event during lung tumorigenesis. We further investigated Rhob
gene expression during aging and carcinogenesis in A/J mice, and demonstrated that Rhob protein
was decreased in pulmonary tissue with age (12 months vs 2 months) and further decreased in lung
adenocarcinoma induced by tobacco specific carcinogen nicotine-derived nitrosamine ketone (NNK).
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In contrast, Akt activation was increased during pulmonary aging and further in lung tumorigenesis
(data not shown).

As previously mentioned, Mazières and colleagues explored epigenetic regulation of RhoB in lung
cancer utilizing direct sequencing after bisulfite treatment and PCR to determine whether RhoB was
primarily epigenetically regulated via HDAC or promoter hypermethylation [23]. In lung cancer cells
devoid of RhoB, the application of HDAC inhibitors led to increased expression of RhoB, highlighting
the notion that HDACs epigenetically control RhoB expression, and thus play a role in tumorigenesis.
The application of methyltransferase inhibitors, however, did not increase RhoB expression, thereby
indicating that promoter hypermethylation does not play an important role in tumorigenesis secondary
to loss of RhoB.

Yoon and colleagues investigated mouse tissues of varying ages using bisulfite sequencing and
ChIP to demonstrate the relationship between RhoB and aging in skeletal muscle and lung [24]. Similar
to the mechanics described in tumorigenesis, ChIP demonstrated an HDAC1-mediated reduction in
acetylation of histones H3 and H4 in each of the aged mouse tissues, elucidating the role of HDACs
in RhoB loss during aging. However, once again, bisulfite sequencing revealed no changes in CpG
methylation patterns in the RHOB promoter region in the variously aged tissues. Interestingly,
Bravo-Nuevo and colleagues examined thymic tissue of RhoB-deficient mice and found that mice that
were deficient in RhoB had greater reductions in thymic weight and cellularity compared to mice of
the same age with normal RhoB levels [102]. However, they also determined that measurement of
RhoB in thymic tissue of varying ages in mice with wild-type RhoB expression were unaltered by the
aging process, despite the phenotypic involution of thymic tissue. Therefore, the proper interactions of
RhoB with other regulatory proteins might also play an important role in maintaining a young status
for some organs, such as thymus.

A decrease in RhoB mRNA levels from aged mouse skeletal muscle and lung tissues proposes the
possibility that RhoB loss leads to increased cancer rates with age. As RhoB is required for apoptosis
in cells transformed by DNA-damaging agents [103], its loss increases double-strand break (DSB)
mediated genomic instability and tumor progression [104] and promotes tumorigenesis [105]. RhoB
appears to function as a suppressor or negative modifier in cancer progression [106]. Thus, a reduction
in RhoB mRNA from aged mice might increase the occurrence of cancer in a tissue specific manner, as
was explained in a human NSCLC line [69].

In a more recent study, Calvayrac and colleagues found that the cell cycle inhibitor p27, a tumor
supressor that inhibits cyclin-dependent kinase (CDK) complexes in the nucleus, acquires an oncogenic
role when located in the cytoplasm. The study postulated that cytoplasmic p27 binds to and inhibits
RhoB at regions generally conserved amongst the Rho GTPases and confirmed that there was indeed
an interaction between p27 and RhoB. Particularly in NSCLC, RhoB expression was lost in tumors
with concurrent loss of p27 and maintained in tumors expressing wild-type p27 or p27CK− , a mutant
that cannot inhibit CDKs. Loss of RhoB promoted tumorigenesis in p27−/− animals, but had no effect
in p27CK− knock-in mice. An additional subset of patients with lung cancer demonstrates both the
presence of cytoplasmic p27 and maintained RHOB expression, which was strongly associated with
decreased patient survival [107]. Conversely, one study identified a role for RHOB in promotion
of metastases in lung adenocarcinoma in a murine model evaluated bony metastasis. The study
raised an association between high RHOB levels and decreased surival, treatment resistance, and
progression [108]. The results from these studies indicate that further research is necessary to fully
characterize RhoB’s role in neoplastic transformation in relationship to other intracellular proteins
such as p27.

2.5. Restoration of RhoB for Cancer Prevention and Healthier Aging

Given RhoB’s role as a tumor suppressor, investigations have been conducted exploring RhoB for
cancer prognosis and prevention. Loss of RhoB expression contributes to increased invasiveness of
lung cancer through pathways such as PI3K/AKT and Rac1 [61,62]. As such, Calvayrac and colleagues
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conducted a study to investigate the use of RhoB as a predictive marker of NSCLC progression [88].
By utilizing IHC and RT-qPCR to compare RhoB in control patients and patients with known advanced
lepidic adenocarcinoma, they found that patients with more aggressive forms of lepidic adenocarcinoma
had greater losses of RHOB expression. Furthermore, in studies of mice with inducible EGFRL858R and
either Rhob+/+, Rhob+/−, and Rhob−/− genotypes, they found that the mice with the most aggressive
tumors were Rhob−/−, followed by Rhob+/− [109]. In these murine models, lung tumors with decreased
RhoB expression were associated with greater size, increased quantity of nodules, and higher histologic
grades. Based on their findings from this two-part study, Calvayrac and colleagues concluded that
Rhob expression can, indeed, be utilized to help predict behavior of NSCLC [109].

Moving beyond the use of RhoB as a prognostic biomarker, several studies have investigated the
therapeutic usage of restoring RhoB levels in treating cancer. Couderc and colleagues restored RhoB
in ovarian adenocarcinoma cells with undetectable levels of RhoB, leading to suppression of tumor
growth [110]. Recombinant adenovirus transduced with RhoB cDNA was shown to activate apoptosis
in vitro, whereas injections of Ad-RhoB in nude mice with ovarian cancer xenografts demonstrated
suppression of tumor growth in vivo, thereby illustrating that restoration of RhoB may prove useful in
cancer treatment.

Furthermore, Tan and colleagues demonstrated that utilization of gemcitabine and anti-angiogenic
rh-endostatin can prevent cell proliferation through a RHOB-related mechanism in ASPC-1 pancreatic
cancer cells [111]. Using high-throughput sequencing to detect miRNA, they determined that treatment
with these agents caused a decrease in expression of miR-19a by downregulating SP-1, a transcription
factor for miR-19a, which causes a decline in RHOB; therefore, chemotherapeutic agents that can cause
a decrease in miR-19a expression, such as gemcitabine, may actually inhibit tumor progression by
means of RHOB restoration [83–85,111].

Additionally, studies have been conducted investigating the role of healthy lifestyles in restoration
of RHOB. In particular, studies have explored the mechanisms by which dietary changes may increase
RHOB expression in human gastric carcinoma cells through actions of phenolic acids, such as gallic
acid and protocatechuic acid, which are found in fruits and vegetables [57,58]. AGS cells treated with
gallic acid exhibited increased RHOB expression, decreased expression of AKT/small GTPase signals,
and decreased NF-kB activity [57]. Similarly, AGS cells and melanoma cells treated with protocatechuic
acid exhibited activation of RHOB and downregulation of the Ras/Akt/NF-kB pathway, which led
to a decrease in matrix metalloproteinase-2 activity in cancer cells [58]. As such, plant-based diets
containing gallic acid and protocatechuic acid may be useful in preventing cancer through a variety of
mechanisms, including the activation of RHOB.

Finally, RHOB restoration may contribute to a longer and healthier lifespan. Various animal
studies have demonstrated that pathways driven by oncogenes, such as RAS, PI3K/AKT/mTOR, and
MYC, not only promote tumorigenesis but also contribute to a shorter lifespan. By inhibiting the
Ras-Erk-ETS-signaling pathway, Slack and colleagues were able to extend Drosophila lifespans [112],
while a separate study demonstrated that haploinsufficiency of Akt1 prolongs the lifespan of mice [113].
In mammals, genetically down-regulating mTOR expression [114] or pharmacologically inhibited
mTOR by Rapamycin [115] was shown to produce a profound increase in lifespan. Transgenic
mice carrying additional copies of Pten, the negative regulator of PI3K/AKT/mTOR pathway, were
observed to live longer and have lower incidence of cancer relative to normal [116]. Reduced
expression of Myc increases longevity and enhances healthspan without any apparent developmental
tradeoffs. Therefore, RHOB restoration might benefit cancer prevention and healthspan by antagonizing
RAS/PI3K/AKT/mTOR [63,95] and facilitating Myc turnover [117]. Regulation of RhoB during
tumorigenesis and aging processes was summarized in Table 1.



Cancers 2019, 11, 818 11 of 19

Table 1. Regulation of RhoB during tumorigenesis and aging processes.

Suppression of RhoB through oncogenic pathways Reference

• EGFR expression promotes tumorigenesis through the down-regulation of RhoB via
the Ras pathway.

• RhoB can apply a negative retrocontrol to EGFR.
• Mice model for NSCLC with inducible EGFRL858R with Rhob+/+ or Rhob+/− or

Rhob−/− genotypes, respectively present increasing aggressiveness, suggesting RhoB
status as a potential prognosis marker.

• K-Ras suppresses RhoB expression through decrease of the promoter transcriptional
activity of RHOB in cancer cells.

[30,109]

Regulation of RhoB activity through the PI3K/Akt pathway

• The PI3K/Akt pathway downregulates RHOB activity.
• RhoB can apply a negative retrocontrol to Akt.
• Loss of RhoB promotes PI3K/AKT and Rac1, and contributes to enhance tumorigenic

potential via cell proliferation, transformation, and invasion.

[56,58,61–64]

Epigenetic regulation of RhoB during aging and cancer

• The regulation of RhoB during aging is controlled by HDAC1 activity on CCAAT
boxes on RHOB promoter.

• The repression of RHOB in cancer progression is controlled by HDAC1 deacetylation
activity on RHOB promoter (rather than by promoter hypermethylation). The
dissociation of HDAC1 from RHOB promoter favors RHOB promoter acetylation and
RhoB expression.

• HDAC6 represses the RHOB expression.

[23,24,69,70,74,75]

Regulation of RHOB expression by miRNA

• Human antigen R (HuR) enables miR-19a loading to the 3′-UTR of RHOB, which
downregulates RHOB expression.

• Low expression of miR-21 is associated with an increase in RHOB expression and a
decrease metastatic potential.

• miR21 activity on RHOB 3′-UTR leads to prevent RhoB’s suppressive effect on
cell proliferation.

• miRNA-223 regulates RHOB, and modulate cell proliferation, migration, and fiber
formation in cells exposed to hypoxia.

[83,91–93,99]

Impact of RhoB in the control of genome stability and response to stress

• RHOB expression can be decreased during aging process and tumorigenesis process
(possibly owing to histone acetylation stability on RHOB’s promoter) and loss of
RhoB during aging is proposed to contribute to increased cancer rates.

• Loss of RhoB promotes DSB-mediated genomic instability, tumorigenesis, and
tumor progression.

• RhoB is required for the apoptotic program in cells transformed by
DNA-damaging agents.

[23,24,101,103–105]

Potential therapeutic benefits using RhoB targeting

• Restoration of RhoB in ovarian adenocarcinoma cells models was shown to suppress
tumor growth.

• Utilization of Gemcitabine and anti-angiogenic rh-endostatin in ASPC-1 pancreatic
cancer cells decreases the expression of miR-19a by downregulating SP-1, a
transcription factor for miR-19a, thus counteracting miR-19a-induced downregulation
of RhoB and preventing cell proliferation induction.

• Treatment of AGS cells with gallic acid has shown increased RhoB expression,
decreased expression of AKT/small GTPase signals, and decreased NF-kB activity.

• Treatment of AGS cells and melanoma cells with protocatechuic acid has shown
activation of RhoB and downregulation of the Ras/Akt/NF-kB pathway, leading to a
downregulation of MMP2 activity in cancer cells.

[57,58,83,84,110,111]

3. Conclusions

RhoB is an integral component of multiple cellular systems and its complex interactions are
numerous. It serves vital roles in the cell-cycle and signaling, and functionally has an impact in
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tumorigenesis and aging [23,24,102]. Tumorigenesis and aggression are related to loss of RhoB
heterozygosity [62,109]. The reduction in tumorigenesis associated with RHOB expression can be
defined through its interactions with the EGFR, Ras, PI3K/Akt/mTOR, and MYC pathways. EGFR acts
to inhibit transcription of RhoB in concert with the Ras signaling pathway by altering RhoB’s promoter,
which impacts regulation of EGFR through the reciprocal PRK1 pathway [26–31]. K-ras mutations,
as part of the Ras pathway, likewise decreases RhoB transcription inhibiting the myriad of pathways
regulated by RhoB and is linked with worse prognosis in several cancer types [28,33–43,45–50,52,80].
This complex interplay between K-ras and RhoB highlights one avenue of RhoB’s anti-tumorigenic
potential through cessation of K-ras mediated transformation [63]. Ras has been shown to upregulate
the PI3K/Akt pathway leading to increased cell survival in several cancer types, while RhoB conversely
decreases Akt mediated survival [53–55,62–65].

Epigenetic modification is central to the regulation of RHOB expression. Acetylation status of the
RhoB promoter by HAT and HDAC proteins can variably induce and represses expression [66–69].
HDAC1 acts as an inducer and shows correlation with aging. HDAC6 acts as a repressor and its
repression by shRNA increases RHOB expression [24,70,74]. Micro RNA, specifically miR-19a, miR21,
and miR223, further regulates RHOB expression by binding at the 3’-UTR of RhoB transcripts to
modulate translation [77–87,89–92,95–99]. RHOB expression is further modulated in response to DNA
damage due to inflammatory processes, including radiation [15,19]. This response may be integral in
understanding RHOB’s role as a tumor suppressant and its decreased expression in aging.

Furthermore, RHOB plays a significant role in the regulation of cell cycle and apoptosis, and,
as RHOB is lost during aging and tumorigenesis but is upregulated during the response to DNA
damaging agent, its role regarding the regulation of aging-related cellular senescence, oncogene-induced
senescence, or stress-induced (e.g., irradiation) senescence deserve to be explored. Besides, others
Rho-family protein-related factors have been suggested to modulate senescence under various
conditions. For example, loss of Rho-associated kinase (ROCK) 1/2 leads to cell cycle arrest and
senescence and suppresses tumorigenesis in mouse models of NSCLC or melanoma. The utilization of
a reversible ATP-competitive multikinase inhibitor small compound SP600125 on thyroid cancer cell
lines leads to suppression of the ROCK/HDAC6 pathway and induction of cell death and senescence
through the p53-p21 pathway. It has also been shown that RHO-GDI is important for the maintenance
of the senescent morphological phenotype through the regulation of Rac1. Also, the knockdown
of RacGAP1 was shown to limit cell proliferation and to promote senescence in basal-like breast
cancer cells [118–121]. Thus, the induction of the loss of RHOB during aging and tumorigenesis after
oncogenic stress or epigenomic modifications suggests a pivotal role of RHOB in the control of failsafe
programs, such as apoptosis and senescence. Understanding those molecular mechanisms could open
new potential therapeutic strategies to treat cancer and age-related diseases.

Given the association of RhoB and tumorigenesis through multilayered integration with numerous
signaling pathways and mechanisms of control, the potential for restoration of RHOB through targeted
therapeutics is palpable. Murine studies have demonstrated the potential of RhoB restoration to
suppress ovarian cancer xenografts and the chemotherapeutic agent gemcitabine has been shown to
act on miR-19a, potentially inhibiting tumor growth by means of RHOB [83–85,107,108]. The realm
of therapy may even extend into greater exploration of plant derivatives, such as gallic acid and
protocatechuic acid, which have been shown to positively modulate RHOB, resulting in suppression of
several pathways associated with tumorigenesis and metalloproteinase 2 activity [57,58].

Future directions for RHOB-based research are numerous. Greater study of the Ras superfamily
and Rho subgroup of proteins and how the cross-interactions of GEFs, GDIs, and GAPs specifically
regulate RhoB, given its unique nature from other Rho members, may hold the opportunity for specific
mechanisms of control that do not overlap with highly homologous related proteins. Similarly, further
elucidation of the complex interplay between RHOB and the EGFR, Ras, PI3K/Akt/mTOR, and MYC
pathways in both abstract and functional analyses can yield better information on how these signaling
pathways are involved in mediating RHOB’s impact on tumorigenesis. Regulatory mechanisms,



Cancers 2019, 11, 818 13 of 19

both inducing and inhibitory, which control RHOB expression hold tremendous potential as critical
therapeutic targets. In particular, the epigenetic control and small molecule feedback systems clearly
show tremendous opportunities for both understanding functional in vivo physiology of RHOB, but
as potential therapeutic targets.

The mechanisms of age-related changes in RHOB expression also bear further analysis, along
with exploring how age-related changes are connected to RHOB’s response to DNA damage. Mapping
out the nature of the reduction in RHOB expression and its functional implications in a normal aging
model will help understand how this powerful component of numerous intracellular pathways can be
harnessed to alter tumorigenesis and the age-related changes seen in both lung and muscle function.
Avenues for impacting RHOB expression include understanding previously developed therapies
such as gemcitabine, novel therapies that manipulate endogenous control mechanisms through small
molecules, and plant-derived compounds [83–85,111].
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