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Abstract

Motivation: Kalign is an efficient multiple sequence alignment (MSA) program capable of aligning thousands of pro-
tein or nucleotide sequences. However, current alignment problems involving large numbers of sequences are
exceeding Kalign’s original design specifications. Here we present a completely re-written and updated version to
meet current and future alignment challenges.

Results: Kalign now uses a SIMD (single instruction, multiple data) accelerated version of the bit-parallel Gene
Myers algorithm to estimate pairwise distances, adopts a sequence embedding strategy and the bi-secting K-means
algorithm to rapidly construct guide trees for thousands of sequences. The new version maintains high alignment
accuracy on both protein and nucleotide alignments and scales better than other MSA tools.
Availability and implementation: The source code of Kalign and code to reproduce the results are found here:
https://github.com/timolassmann/kalign.
Contact: timolassmann@icloud.com

1 Introduction

Multiple sequence alignment (MSA) remains an important task in bio-
logical sequence analysis. MSA programs can be divided into consist-
ency and progressive methods. The latter estimate pairwise sequence
distances, construct a guide tree and align sequences following the
order of the guide tree. Consistency-based methods tend to be more
accurate than compared with progressive methods but are orders of
magnitude slower and therefore not practical when aligning thou-
sands of sequences. Kalign (Lassmann et al., 2008) is a progressive
alignment method striking a good balance between accuracy and
speed compared with other alignment programs on a range of popular
benchmark datasets (see e.g. Sievers et al., 2011). Despite having aged
well Kalign was not designed to handle the tens of thousands of
sequences frequently encountered today. In particular, the original
Kalign program uses the unweighted pair group method with arith-
metic mean (UPGMA) algorithm to construct a guide tree resulting in
quadratic time complexity. More recent alignment programs have
overcome this hurdle by implementing heuristics to construct guide
trees (Blackshields et al., 2010; Katoh and Toh, 2006).

Here we present a new version of Kalign, introducing a SIMD
(single instruction, multiple data) accelerated version of Gene
Myers’ bit-parallel algorithm (Myers, 1999) to estimate pairwise se-
quence distances and adopting the sequence embedding strategy
introduced by Blackshields et al. (2010) to speed up the construction
of guide trees.

2 Materials and methods

We replaced the fast string matching algorithm used in Kalign2
(Muth and Manber, 1996) with a new implementation of Gene

Myers’ approximate string matching algorithm. The algorithm cal-
culates the exact edit distance between two strings using bit-parallel
instructions. In the standard implementation the maximum length
of a query is equivalent to the size of a computer word (64 charac-
ters on 64 bit architectures). However the algorithm lends itself to
further parallelization using SIMD instructions including the AVX
and AVX2 instructions available on all modern computers. Using
these instructions it becomes possible to compare sequences of
length 256. Although the implementation of the Gene Myers algo-
rithm is fairly straight forward using AVX instructions some opera-
tions are absent from the AVX instruction set and had to be
implemented separately. A stand-alone implementation of the algo-
rithm is distributed together with Kalign to facilitate downstream
adoption and development.

To estimate pairwise sequence distances Kalign scans the first 256
characters of the shorter sequence across the longer sequence. The dis-
tance is defined as the number of edits required to turn one sequence
into an exact match in the longer sequence. For distantly related pro-
tein sequences the sequence similarity is too low for the algorithm to
detect meaningful distances. Therefore, following the method by
Steinegger and Söding (2018), Kalign converts all protein sequences
into a reduced alphabet by merging (L, M), (I, V), (K, R), (E, Q), (A,
S, T), (N, D) and (F, Y) for the purpose of the distance calculation.

Kalign adopts the guide tree construction methods used in clustal
omega (Sievers et al., 2011). A number of seed sequences are
selected and all sequences are compared against those forming for
each sequence a vector of distances to all seeds. The bi-secting k-
means algorithm is used to cluster sequences based on the Euclidean
distance between these vectors until clusters containing fewer than
100 sequences are found. Here Kalign again uses AVX instructions
to accelerate the distance calculation. Finally, the UPGMA method
is used to cluster the remaining sequences.
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Since the bi-secting k-means algorithm is not guaranteed to dis-
cover the optimal split of sequences into two clusters Kalign runs the
algorithm 50 times using randomly selected sequences to seed the
calculation.

3 Results

We compared the performance of Kalign against two other popular
progressive alignment methods muscle (Edgar, 2004) and clustal
omega (Sievers et al., 2011). We used the Balibase (Thompson et al.,
1999), Quantest2 (Sievers and Higgins, 2019), Bralibase (Gardner
et al., 2005) and HomFam benchmark datasets (Fig. 1). Clustal
omega and Muscle were run with parameters recommended for
large alignments on the BaliFam dataset (Clustal:-threads ¼ 8
-MAC-RAM ¼ 48 000 -iterations ¼ 2; Muscle: -maxiters 2), but
otherwise default parameters were used.

Kalign’s performance on all six Balibase categories is statistically
indistinguishable from the other two programs (two sample t-test,
corrected P < 0.05). Likewise there is no statistical difference in
alignment accuracy on the Quantest2 benchmark dataset (results

not shown). Kalign’s mean performance is significantly better com-
pared with the other two programs in two out of the six Bralibase
alignment categories. However, we note that the performance of all
algorithms can vary dramatically depending on the specific align-
ment case (see Fig. 1, box plot error bars and outliers). Therefore,
we do not assume that good performance on an MSA benchmark
sets generalizes and recommend users to manually inspect their
alignments and compare the results of different alignment programs.

Kalign compares favorably to the other two programs in terms
of running times and scalability on the Balifam dataset (Fig. 1c). In
all alignment cases Kalign is one to two orders of magnitude quicker
and compared with clustal omega only uses a single CPU core.

4 Conclusion

We present a new version of Kalign that outperforms other pro-
grams in terms of running times while sacrificing little in terms of ac-
curacy. This combination makes Kalign especially attractive in large
alignment problems.
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Fig. 1. Benchmark results. (a) Sum of pairs scores (SP) of all tested alignment pro-

grams on Balibase protein alignment datasets. (b) SP scores of RNA bralibase align-

ments. (c) Computational performance assessed on the HomFam dataset
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