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Background:Utilizing the linear quadraticmodel and the radiosensitivity index (RSI), we have derived an expres-
sion for the genomically adjusted radiation dose (GARD) tomodel radiation dose effect.We hypothesize GARD is
associated with local recurrence and can be used to optimize individual triple negative breast cancer (TNBC)
radiation dose.
Methods: TN patients from two independent datasets were assessed. The first cohort consisted of 58 patients
treated at 5 European centers with breast conservation surgery followed by adjuvant radiotherapy (RT). The sec-
ond dataset consisted of 55 patients treated with adjuvant radiation therapy.
Findings: In cohort 1, multivariable analysis revealed that as a dichotomous variable (HR: 2.5 95% CI 1–7.1; p =
.05), GARD was associated with local control. This was confirmed in the second independent dataset where
GARDwas the only significant factor associatedwith local control (HR: 4.4 95% CI 1.1–29.5; p= .04).We utilized
GARD to calculate an individualized radiation dose for each TN patient in cohort 2 by determining the physical
dose required to achieve the GARD target value (GARD ≥ 21). While 7% of patients were optimized with a dose
of 30 Gy, 91% of patients would be optimized with 70 Gy.
Interpretation: GARD is associated with local control following whole breast or post-mastectomy radiotherapy
(RT) in TN patients. By modeling RT dose effect with GARD, we demonstrate that no single dose is optimal for
all patients and propose the first dose range to optimize RT at an individual patient level in TNBC.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Radiotherapy (RT) is a standard component of breast cancer (BC)
management. Although, there are current ongoing studies to determine
whether early stage women can safely exclude RT (Clinicaltrials.gov
identifier NCT02400190 and NCT01791829) according to low risk
biologic subtype, a genomic approach to individualize RT dose has
not been employed. Radiation dosing to the breast has been uniformly
standardized to 50 Gy with long-term data for bioeffective
hypofractionation doses of 40–42.56 Gy in select patients [1–3].
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We have previously developed and validated the radiation sensitiv-
ity index (RSI) as a genomic signature to predict the inherent radiosen-
sitivity of a given tumor [4–11]. These findings have also been
independently validated in patients undergoing breast conserving sur-
gery with or without RT by the group at Lund University [12]. The linear
quadratic model is a commonly used metric for radiation oncologists to
quantify the biologic effect of radiation dose on various tumor types as
well as normal tissue although the model is not patient specific
[13,14]. The linear quadratic model is an equation that considers the
total dose of radiation prescribed, the daily dose of radiation, as well
as the general sensitivity of the tissue that is being radiated. Since the
model is based on the cellular radiation survival curve, our group hy-
pothesized RSI could be integrated into the model using a patient spe-
cific α to quantify an individual tumor's unique response to RT. The
result was the genomically adjusted radiation dose or GARD, which
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

A critical question in radiation oncology is how to shift from the
current one-size-fits-all treatment paradigm to one that is
biology-based and personalized. To that end, we recently devel-
oped the genomic adjusted radiation dose (GARD), which allows
the customization of radiotherapy dose tomatch the individual ge-
nomic features of a given tumor.WehypothesizeGARDcan be uti-
lized to individualize radiotherapy dosing in breast cancer.

Added value of this study

We demonstrate GARD is associated with local recurrence risk in
two independent datasets of triple negative patients. We then uti-
lized GARD to calculate an individualized radiation dose by deter-
mining the physical dose required to achieve the GARD target
value.

Implications

We demonstrate the first personalized radiotherapy dose range for
triple negative breast cancer. We propose GARD as a potential
means to genomically tailor and personalize radiotherapy dose
for triple negative breast cancer.

Table 2
Univariable Analysis of Local Control Cohort 1.

Variable HR 95% CI P (log-rank)

T stage (ref: pT1) pT2-3 1.7 0.66–4.4 0.27
Margin status (ref: marg−) marg+ 1.3 0.07–6.3 0.81
Node status (ref: pN−) pN+ 1.7 0.68–4.2 0.25
Adjuvant chemotherapy (ref: no Cht) ChT 0.62 0.23–1.5 0.29
Grade (ref: I & II) III 1.4 0.29–25.4 0.72
DCIS (ref: No DCIS) DCIS 1.4 0.5–3.6 0.51
GARD 0.92 0.84–0.99 0.04
GARD (discrete) (ref: ≥23.2) b23.2 2.7 1.1–7.7 0.03
Age 0.97 0.91–1.0 0.44
Age (discrete) (ref: b42) ≥42 1 0.43–2.6 0.94
LVSI (ref: No) Yes 2.8 1.1–6.9 0.04

*ChT=Chemotherapy; ***GARD=Genomically adjusted radiation dose; ****RT=Radio-
therapy; *****LVSI = Lymphovascular space invasion.

Table 1
Patient and Tumor Characteristics Cohort 1.

Variable Triple Negative Not Triple Negative P

58 285
T stage pT1 31 (55) 185 (65) 0.18

pT2-3 25 (45) 100 (35)
Margin status marg− 53 (95) 241 (88) 0.13

marg+ 3 (5) 34 (12)
Node status pN− 36 (63) 179 (64) 0.91

pN+ 21 (37) 101 (36)
Adjuvant
chemotherapy

no ChT 26 (45) 183 (64) 0.005
ChT 32 (55) 101 (36)

Grade I & II 4 (7) 198 (70) b0.001
III 52 (93) 85 (30)

DCIS No DCIS 28 (52) 90 (33) 0.007
DCIS 26 (48) 185 (67)

GARD whole breast 23.2 (9.2–37.2) 17.2 (7.4–51.0) 0.01
Age 43 (23.00,

50.00)
44.00 (23.00,
50.00)

0.24

Radiation whole breast dose (Gy) 50 (45–54) 50 (45–55) 0.96
Boost dose (Gy) 15 (10–25) 16 (6–26) 0.36
Total radiation dose (Gy) 65 (50–75) 65 (50–77) 0.77
RT boost No

boost
15 (26) 80 (28) 0.73

Boost 43 (74) 205 (72)
LVSI No 41 (75) 213 (76) 0.78

Yes 14 (25) 66 (24)
RSI 0.4 (0.22–0.65) 0.51 (0.13–0.75) 0.02

*ChT=Chemotherapy; ***GARD=Genomically adjusted radiation dose; ****RT=Radio-
therapy; *****LVSI = Lymphovascular space invasion; ******RSI = Radiosensitivity index.
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has been published and validated in independent datasets of BC, glio-
blastoma, pancreatic cancer, and lung tumors [15].

GARD is a novel radiation dose prescription paradigm providing the
first opportunity to optimize and personalize radiation dose tomatch an
individual tumor's radiosensitivity. GARD has been proposed as the first
opportunity for a genomically driven personalized approach in radia-
tion oncology and a research priority for the field [16,17]. Previously,
we assessed GARD for 8271 primary tumor samples in our institution's
tissue biorepository and found GARD values were lowest for tumor
types traditionally thought to bemore radioresistant including glioblas-
toma and sarcomaand higher for tumor types thought to bemore radio-
sensitive including virally associated cervical cancer as well as
oropharyngeal cancer [18]. Importantly, we demonstrated large hetero-
geneity in GARD values achieved with uniform radiation dose, suggest-
ing the current “one-size-fits all” treatment approach is sub-optimal for
a significant proportion of patients.

The primary impact of RT in adjuvant BCmanagement iswell known
to be locoregional control leading in somepercentage of patients to a re-
duction in distant metastatic events, which over time improves BC spe-
cific survival [19]. Based on our previous analysis of GARD in BC, the
current analysis explores the effect of GARD on local control in adjuvant
RT management. Furthermore, we use GARD to calculate an individual-
ized dose for triple negative (TN) patients in two independent cohorts.

2. Materials and methods

2.1. Cohort 1 patients

The presented data includes 343 BC patients treated at four Dutch
centers (Netherlands Cancer Institute, RadboudUniversityMedical Cen-
ter, Erasmus Medical Center, and Ziekenyhuis Amstelland) and one
French center (Institut Curie, Paris, France) [20]. Data from these 343
patientswas originally compiled to develop amodel for local recurrence
following breast conservation surgery. In doing so, the dataset over-
represents the number of local failures that would be found in a random
population. The overall local recurrence rate in this cohort is 34.7%. Pa-
tients included premenopausal women with invasive primary breast
carcinoma diagnosed before age 50 years and without a prior history
of malignancy. Patients were treated from January 1984 to November
2002 with breast-conserving surgery. Either an axillary dissection or
sentinel node procedure and postoperative radiation to the breast
with or without regional lymphatic coverage was employed. Median
follow-up for all patients was 10 years. A total of 58 patients were iden-
tified as triple negative and used for the cohort 1 analysis.

Tissue processing, RNA isolation, and quality assurance details have
been previously published [20]. RNA was hybridized to Illumina
Human Whole Genome, version 3.0 arrays. Normalized data (variance
stabilization transformation and robust spline normalization in the
Lumi Bioconductor package as described by the authors of the data
set) was downloaded from Gene Expression Omnibus (GSE30682)
and used for the present study.

2.2. Cohort 2 patients

Patients were identified from the IRB-approved Total Cancer Care
(TCC) prospective observational protocol at Moffitt Cancer Center [18].
Data from a total of 643 primary breast tumors with available receptor
status and genomic profiling were retrospectively identified. Patients
were treated at Moffitt Cancer Center and two surrounding community
hospitals. Patients ranged in age from 24 to 95 and underwent primary

ncbi-geo:GSE30682


Fig. 1. Kaplan-Meier curve for local control in triple negative patients (cohort 1) according to GARD high (≥23.2) and GARD low (b23.2) categories.
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surgery either with TNBC negative tumors with available genomic pro-
filing were identified with a total of 55 receiving adjuvant RT and used
for the GARD analysis. Follow-up for the 55 TN patients was a median
of 8.4 (0.5–17.2 years).

RNA preparation and gene expression profiling methods have been
described previously [15]. Briefly, gene expression values for the sam-
ples in this study were extracted from the TCC database. These expres-
sion values were normalized against a median sample using the
previously reported iterative rank order normalization method [21].
An RNA-quality related batch-effect was identified in the resulting nor-
malized data, which was removed by training a partial least squares
(PLS) model [22] to the RNA integrity number (RIN), and then
subtracting the first partial least squares component.
2.3. Radiosensitivity signature

The previously tested 10 gene assay was run on tissue samples
ranked according to gene expression. RSI was calculated using the pre-
viously published ranked based algorithm [4,9].

Each of the 10 genes in the assay was ranked according to gene ex-
pression [from the highest [10] to the lowest expressed gene [1]]. RSI
was determined using the previously published ranked based linear
algorithm:

RSI = −0.0098009*AR + 0.0128283*cJun +
0.0254552*STAT1− 0.0017589*PKC −
0.0038171*RelA + 0.1070213*cABL −
0.0002509*SUMO1− 0.0092431*PAK2 −
0.0204469*HDAC1−0.0441683* IRF1
Table 3
Multivariable Analysis of Local Control Cohort 1.

Variable HR 95% CI P-value Varia

GARD 0.93 0.85–1 0.08 GARD
LVSI (ref: No) Yes 2.6 1–6.4 0.05 LVSI

*GARD = Genomically adjusted radiation dose; **LVSI = Lymphovascular space invasion.
2.4. Genomically adjusted radiation dose

Methods and formulation of GARD have been previously described
[15]. Briefly, GARD scores were derived using the linear quadratic
model, the individual gene-expression-based RSI, and the radiation
dose and fractionation schedule for each patient. The calculation
for GARD is similar to the biologically effective dose, except the
patient-specific α is derived by substituting the radiosensitivity index
for survival (S) in S = e–nd(α+βd), where dose (d) is 2 Gy, n = 1, and
β is a constant (0.05/Gy) [23]. The equation for the patient specific α
thus becomes α = (−0.5lnRSI) - 0.1. A higher GARD value predicts a
higher radiation therapeutic effect. We calculated GARD using a script
written into Excel. The final GARD formula is GARD = nd(α + βd).
GARD was modeled for the whole breast radiation dose or chest wall
dose, since this is known to have a larger impact on local control than
the lumpectomy cavity or chest wall scar boost [24,25] and not all pa-
tients received a boost in these cohorts.
2.5. Statistical analysis

Statistical analyses were carried out using JMP 13 (SAS Institute Inc.,
Cary, NC). To test differences between cohorts, the Kruskal–Wallis and
Pearsons tests were used when appropriate. The local control rate was
calculated using the Kaplan–Meier (KM) method, with the log-rank
test used to test differences. The Cox proportional hazard model analy-
seswere carried out using univariable analysis (UVA) andmultivariable
(MVA) analysis. Variables that showed significant effects on UVA (p b

.1) were included in the MVA.
ble HR 95% CI P-value

(discrete) (ref: ≥23.2) b23.2 2.5 1–7.1 0.05
(ref: No) Yes 2.7 1–6.6 0.04



Table 5
Univariable Analysis Local Control Cohort 2.

Variable HR 95% CI p-Value

T stage (ref pT1) pT2-T4 1.7 0.5–6.7 0.4
Margin status (ref: marg−) marg+ 8.7 0.5–46.6 0.12
Node status (ref: pN0) pN+ 0.44 0.07–1.76 0.26
Surgery type (ref: lumpectomy) Mastectomy 0.7 0.17–2.4 0.54
Adjuvant chemotherapy (ref: no ChT) ChT 1.2 0.22–21.9 0.87
GARD 0.92 0.82–1.01 0.09
GARD whole breast/CW (ref: ≥21) b21 4.4 1.1–29.5 0.04
Age (ref: b55) ≥55 1.1 0.29–4.4 0.9
RT boost (ref: boost) no boost 1.9 0.51–7.8 0.33
LVSI (ref: no) Yes 2.9 0.8–10.4 0.1

*ChT=Chemotherapy; ***GARD=Genomically adjusted radiation dose; ****RT=Radio-
therapy; *****LVSI = Lymphovascular space invasion.

Table 4
Patient and Tumor Characteristics Cohort 2.

Variable Triple
Negative

Not Triple
Negative

P

98 545
T stage pT1 48 (49%) 267 (50%) 0.08

pT2 47 (48%) 220 (41%)
pT3 1 (1%) 43 (8%)
pT4 1 (1%) 6 (1%)

Margin status marg− 95 (97%) 511 (94%) 0.36
marg+ 1 (1%) 21 (4%)
close b 2 mm 2 (2%) 10 (2%)

Node status pN0 62 (64%) 313 (59%) 0.46
pN1mi 3 (3%) 26 (5%)
pN1 23 (24%) 128 (24%)
pN2 8 (8%) 42 (8%)
pN3 1 (1%) 25 (5%)

Surgery type Mastectomy 53 (55%) 307 (57%) 0.62
Lumpectomy 44 (45%) 228 (43%)

Adjuvant
chemotherapy

no ChT 14 (14%) 266 (49%) b0.0001
ChT 84 (85%) 279 (52%)

Grade I 5 (5%) 91 (17%) b0.0001
II 14 (15%) 264 (50%)
III 77 (80%) 178 (33%)

RT Yes 55 (56%) 318 (58%) 0.68
No 43 (44%) 227 (42%)

GARD whole breast/CW 21 (12–58.6) 21.9 (4.5–66.6) 0.63
Age 55 (25–82) 61 (24–95) 0.0006
Radiation breast or chest wall dose
(Gy)

46.8 (34–59.7) 50 (9–64.8) 0.69

Boost dose (Gy) 14 (10−20) 14 (3.8–20) 0.35
Total radiation dose (Gy) 46.8

(34–59.74)
50 (9–64.8) 0.7

RT boost No boost 60 (64%) 359 (69%) 0.31
Boost 34 (36%) 160 (31%)

LVSI No 68 (76%) 358 (74%) 0.69
Yes 22 (24%) 129 (26%)

RSI 0.41
(0.08–0.61)

0.38
(0.05–0.68)

0.18

*ChT=Chemotherapy; ***GARD=Genomically adjusted radiation dose; ****RT=Radio-
therapy; *****LVSI = Lymphovascular space invasion; ******RSI = Radiosensitivity index.
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3. Results

3.1. Cohort 1

3.1.1. Patient characteristics
Patients were separated into TN and non-TN cohorts with details in-

cluded in Table 1. A total of 58 patients were identified as TN and were
used in the cohort 1 analysis. Median breast radiation dosewas 50 Gy in
both cohorts (p= .96). Therewere no differences in T stage,margin sta-
tus, the presence of pathologically involved nodes, age, or LVSI. Differ-
ences were noted in the number of patients receiving adjuvant
chemotherapy (p = .005), grade (p b .001), DCIS (p = .007), and the
median RSI (p = .02).

3.1.2. Local control analysis
The UVA for local control is detailed in Table 2. Factors associated

with local control on UVA in the TN cohort included the presence of
LVSI (p = .04) and GARD as both a continuous variable (HR: 0.92 95%
CI 0.84–0.99; p = .04) and a dichotomous variable at the median
b 23.2 vs. ≥23.2 (HR: 2.7 95% CI 1.1–7.7; p = .03). The 5-year local con-
trol rates for GARD ≥23.2 vs. GARD b 23.2 were 79% and 55%, p = .03
(Fig. 1). MVA demonstrated that as a dichotomous variable (HR: 2.5
95% CI 1–7.1; p = .05), GARD continued to be associated with local re-
currence (Table 3).

3.1.3. Cohort 2 analysis
Patient characteristics for TN and non-TNpatients in cohort 2 are de-

tailed in Table 4. A total of 98 patients were identified as TN. The 55 TN
patients that received radiation served as the basis of the cohort 2 anal-
ysis. The only factor found to be associated with local recurrence in this
cohort was GARD dichotomized at the median whole breast/chest wall
dose, GARD b 21 vs. ≥21 (HR: 4.4 95% CI 1.1–29.5; p= .04), Table 5. The
5-year KM local control rates for GARD ≥ 21 vs. GARD b 21were 96% and
71%, p = .04 (Fig. 2).

3.1.4. Utilizing GARD to tailor RT dose in TN patients
Since GARDwas significant for local control and is a clinically action-

able metric, we utilized GARD to calculate an individualized RT dose for
each TN patient in cohort 2. In this approach, we determined the mini-
mum radiation dose required for each patient to achieve a GARD high
≥ 21, using standard 2 Gy fractionation. In Fig. 3, we model the percent-
age of patients achieving the target GARD value in the dose range of
30 Gy – 70 Gy. Our model demonstrates that at uniform dosing of
30 Gy, the GARD of 7% of patients is optimized which increases to 40%
at 40 Gy. The number of patients optimized rises sharply to 78% at
60 Gy. In addition, our model estimates a uniform dose of 70 Gy
would optimize GARD for 91% of patients.

4. Discussion

In this manuscript, we detail outcomes using a previously developed
and validated personalized radiation metric, GARD, assessing its associ-
ationwith local control following adjuvant RT in BCmanagement for TN
patients. In addition, we demonstrate an approach to individualized
physical dose optimization for TN patients using GARD and local control
as a primary endpoint. The primary outcomes of our analysis reveal
GARD was a significant predictor of local control in TN patients in two
independent cohorts. In addition, we demonstrate GARD can be utilized
to personalize radiation dose based on individual patient tumor biology.
Prospective randomized trials have demonstrated no change in local re-
currence with uniform dose escalation beyond 66 Gy [24]. Our data is
consistent with these observations as cumulative optimized GARD in-
creases from 50% at 50Gy to 81% at 66Gy. This suggests further dose es-
calation above 66 Gy in unselected populations is unlikely to result in
improvement in local control, consistent with current BC management.
Efforts are currently underway to omit radiation treatment to the
breast in select women who are at sufficiently low risk of local recur-
rence, based on several large, prospective trials that have revealed the
feasibility of this approach in subsets of patients based on age [26,27].
Numerous institutions are currently assessing the feasibility of RT exclu-
sion in luminal A tumors. The University of Michigan has initiated the
IDEA trial (NCT02400190), a multi-institutional trial in which women
between 50 and 69 years with luminal A early stage tumors with an
Oncotype DX score ≤ 18 will receive hormonal therapy alone. Other tri-
als assessing omission of breast RT include the LUMINA study from the
Ontario Clinical Oncology Group (NCT01791829), a study of women
≥ 55 years with T1 luminal A tumors receiving endocrine therapy
alone. Finally, the Dana Farber Cancer Institute has initiated the
PRECISION trial for women between 50 and 75 years with tumors



Fig. 2. Kaplan-Meier curve for local control in triple negative patients (cohort 2) according to GARD high (≥21) and GARD low (b21) categories.
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measuring ≤2 cm with a low risk PAM-50 profile to receive hormonal
therapy alone. However, a true genomic approach to personalize RT
dose has not been undertaken in the prospective setting.

Several genomic signatures have shown promise in identifying pa-
tients most likely to benefit from adjuvant RT. This includes a seven-
gene signature from the Danish Group, which predicted the benefit of
Fig. 3.Model for the percentage of triple negative patients in coho
postmastectomy RT in patients with high-risk BC in the context of the
Danish 82b and 82c trials [28]. The signature was developed from data
in 191 patients and validated in 112 patients identifying women with
sufficiently low risk of locoregional recurrence in whom there was no
benefit of post-mastectomy RT [29,30]. The University of Michigan de-
veloped a radiation sensitivity signature (RSS) using clonogenic survival
rt 2 achieving GARD high with doses between 30 and 70 Gy.
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assays across BC cell lines. The RSSwas refined to51genes and validated
in two independent datasets outperforming all clinical and pathologic
features. The signature identified patients thatwould benefit from adju-
vant RT [31].

However, while these efforts are critically important to more effi-
ciently identify patients requiring RT, they assume radiation dose proto-
cols have already been optimized at the individual patient level. In
contrast, the GARD model provides a quantitative and clinically-
actionable approach to account for individual differences in the radio-
sensitivity of a tumor by adjusting the physical dose delivered. We
have previously developed RSI as a gene expression-based signature
to predict the radiosensitivity of tumors treated with RT. We have
shown RSI to be prognostic in several independent disease sets of pa-
tients treated with BC RT with clinical endpoints of recurrence free sur-
vival and distantmetastases free survival [5]. In addition, we previously
conducted an analysis with cohort 1 utilizing RSI [10]. Finally, RSI has
been validated in multiple independent datasets across nine different
disease sites in over 2000 patients [4–10].

The analysis identified cutpoints across the median GARD value to
be a significant predictor of local control in TN patients. In both datasets,
this was selected as the median GARD for the whole breast/chest wall
dose delivered. There was an expected difference in these cutpoints
for the two cohorts signifying the higher rate of local failures in cohort
1. We modeled the radiation dose necessary in order to achieve an op-
timized GARD in cohort 2. In this new paradigm, rather than prescribing
a uniform dose of RT,we propose using a biologically informed and clin-
ically validated prescription paradigm to adjust the dose for each pa-
tient until the GARD value is met. Interestingly, the shape of the curve
is sigmoidal, a relationship predicted by tumor control probability
models [32]. Our analyses provide the first proposed range for optimal
RT dose at an individual patient level in TNBC and proposes a significant
number of patients can be treated with lower doses of RT while still
maintaining high levels of local control.

We propose the current analysis in TN patients to be the first means
of delivering a personalized radiation dose based on inherent tumor ra-
diosensitivity. A proposed actionable clinical trial may be to escalate
dose in TN patients found to have an RSI that is radioresistant to a
dose of radiation found to optimize GARD within safe limits [33].
Using our calculations, this would mean patients with an RSI above
0.43 up to 0.49 in cohort 2 would benefit from dose escalation beyond
50 Gy to 60 Gy, comprising 29% of cohort 2. Further dose escalation
would be beneficial to 70Gy for patientswith anRSI up to 0.55 compris-
ing a smaller percentage of patients 13% in our cohort. As we can see,
thismodel shows that certain patientsmay benefit from dose escalation
placing them at an acceptable risk of increased toxicity as well as a
lengthened treatment course. However, this is not the majority of the
cohort. Thus, through the GARDmethod of dose optimization, we iden-
tify appropriate TN patients for dose escalation.

We have previously shown RSI to be strongly correlatedwith immu-
nogenicity of different tumor types by using the previously developed
12-chemokine (12-CK) signature for immune activation and inflamma-
tion, which has been shown to identify tertiary extra-nodal lymph node
like structures within tumors [34]. In an analysis of over 10,000 unique
solid tumor tissue samples, we demonstrated a significant correlation
between RSI and 12-CK signatures indicating radiation sensitivity to
be correlated to immunogenicity across tumor types including BC. Sev-
eral of the 10 hub genes in RSI have known functions in the immunemi-
croenvironment [4] including STAT1 and IRF1. Furthermore, TN tumors
are known to have the highest proportion of tumor-infiltrating lympho-
cytes (TILs) of the breast subtypes according to a systematic review [35].
A study from Ali et al. applying the gene expression-based CIBERSORT
deconvolution algorithm to 11,000 breast tumors indicated the relative
concentrations of immune cells impacted overall survival in ER- tumors;
however, in ER+ tumors survival time did not differ based on the
proportion of TILs [36]. In addition, it is well known TN tumors are
more aggressive and prone to recurrence with fewer targeted systemic
treatment options and thus the impact of radiationmay be larger in this
cohort of patients [37,38]. This is consistentwith a recent study from the
Danish Group assessing patients in the 82b and c studies revealing dif-
fering RT therapeutic impact between breast subtypes [39].

Although current efforts in the adjuvantmanagement of BC focus on
using biological subtype to exclude radiation delivery, the current anal-
ysis reveals a method by which radiation can be personalized based on
the genomic profile of a tumor. GARD proposes a significant number of
women can be treated with lower doses than currently utilized while
still maintaining the same local control. Similarly, GARD identifies pa-
tients that would benefit from dose escalation to improve local control.
As we move towards an era of oncologic personalization, radiation on-
cologists can consider models such as GARD to tailor RT dose.
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