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Abstract

Single spikes and their timing matter in changing synaptic efficacy, which is known as spike-timing-dependent plasticity
(STDP). Most previous studies treated spikes as all-or-none events, and considered their duration and magnitude as
negligible. Here we explore the effects of action potential (AP) duration on synaptic plasticity in a simplified model neuron
using computer simulations. We propose a novel STDP model that depresses synapses using an AP duration dependent LTD
window and induces potentiation of synaptic strength when presynaptic spikes arrive before and during a postsynaptic AP
(dSTDP). We demonstrate that AP duration is another key factor for insensitizing the postsynaptic neural firing and for
controlling the shape of synaptic weight distribution. Extended AP durations produce a wide unimodal weight distribution
that resembles the ones reported experimentally and make the postsynaptic neuron tranquil when disturbed by poisson
noise spike trains, while equivalently sensitive to the synchronized. Our results suggest that the impact of AP duration,
modeled here as an AP-dependent STDP window, on synaptic plasticity can be dramatic and should motivate future STDP
studies.
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Introduction

Synaptic plasticity is sensitive to the timing of pre- and

postsynaptic firings. Ever since the first experiments demonstrating

that Hebbian synapse exists [1] and first recordings revealing that

the coincidence of postsynaptic action potentials (APs) and

excitatory postsynaptic potentials (EPSPs) was sufficient to induce

long-term changes in synaptic efficacy [2], many experimentalists

and theoreticians believed that ‘‘timing is everything’’. These

findings led to a generally accepted phenomenon known as spike

timing-dependent plasticity (STDP) [3,4] even though its gener-

ality has been questioned because STDP-induced synaptic

modification is contingent upon many other factors [5,6]. Despite

ongoing debates over STDP as a general model for synaptic

plasticity, the key principle of STDP is still thought to be the

pairing causality [7].

APs, or the backpropagating signals triggered by APs, are

believed to play the most crucial role in STDP. However,

theoretical studies usually treated spikes as all-or-none events, with

the duration and magnitude of which not being taken into

consideration. Thus, it is no surprise that the functional role of AP

duration or magnitude on STDP has never been investigated,

neither experimentally nor theoretically. It is worth noting that AP

duration differs between cell types. GABAergic interneurons often

[8], but not always [9] or exclusively [10], have shorter AP

durations than pyramidal neurons. In addition, AP duration is

widely used to identify dopamine (DA) neurons and it was shown

that the projection targets of DA neurons correlate with their AP

durations, for instance, nucleus accumbens-projecting neurons

may have a duration of 5 ms, which is almost twice as long as for

amygdala-projecting ones [11]. Even within the same neuron type,

what’s more worth noting is that AP duration, which is generally

accepted as a stereotypic property, can be modulated via BK

channels [12]. All above evidences led us to the hypothesis that

such differences are not accidental but may play a role in

information processing, learning, memory and even in certain

disease models. Besides, since AP broadening may exert a

significant impact on various types of calcium channels that can

lead to an increase of calcium entry and thus favor a strengthening

of synaptic conductance [13], AP duration may have an impact on

synaptic plasticity that is not negligible. Elucidating this impact will

definitely shed light on the mechanisms underlying how synaptic

plasticity shapes cortical networks of excitatory and inhibitory

neurons, and how various projection pathways of DA and non-DA

neurons differ, e.g. given an identical plasticity protocol.

Our simulation study was set up to investigate the impact of AP

duration on synaptic plasticity, in which AP duration is

incorporated into a canonical pairwise STDP model. First, we

report that a recently proposed voltage-dependent STDP model

[14,15] depends on AP duration and magnitude. Motivated by

these findings we formulate in the spirit of simplicity a novel STDP

model that includes an AP duration- dependent window function.

The new model is operated then in both additive and mixed

modes, and its predictions are compared with previous canonical

models.
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Results

AP Dependence of a Voltage-dependent STDP Model
A recently proposed phenomenological model accounts for a

variety of experimental findings [14]. This model is voltage

dependent and does not treat spikes as all-or-none phenomena,

from which the predicted synaptic modifications depend not only

on the plasticity model but also on the neuron model. We first

replicated the simulation results from [14] and then varied AP

duration. Two typical STDP experimental protocols were

simulated, an interspike interval (ISI) protocol and an interspike

frequency (ISF) protocol, respectively with a set of AP durations.

Figure 1A shows the STDP curves obtained from the ISI

protocol with 20 pairs per second, and different interspike intervals

Dt. We observe that the longer the AP duration the more the

predicted STDP window is up stretched. In particular, a synapse is

potentiated for long APs even when presynaptic spikes arrive

within, which resembles the curves reported in [16]. The peak

potentiation is higher for long AP durations, because at pre-post

pairings they keep the membrane potential at higher voltage,

which in the model translates into more potentiation.

We find that AP duration affects as well the predicted synaptic

modifications under the ISF protocol. Potentiation is predicted to

increase with higher frequencies of pre-post pairs, Dt~10 ms, for

longer but not for short APs (Figure 1B & C). Altogether we

confirmed that AP duration of 2:0 ms produced the model

predictions, that are in agreement with previous experiments [17].

These results emphasize the importance of the duration of

postsynaptic AP in synaptic plasticity. Two predictions which we

include below into our new model are: i) presynaptic spikes

strengthen a synapse when they arrive before and during an AP,

but they weaken a synapse when arriving afterwards, and ii) the

magnitudes of these modifications depend on AP duration. In

support of these model predictions, one very original STDP paper

did show some data points, illustrating positive synaptic weight

changes given negative Dt [18].

Motivation and Formulation of dSTDP Model
When modeling synaptic plasticity one could focus on at least

two important aspects, namely the detailed biophysical/biochem-

ical dynamics and the emergent functional properties of learning

rules. We decided to focus on the latter and defined a simple

phenomenological model to study how AP duration affects the

learning in model neurons. In this model individual synapses do not

interact directly with each other. However, via the spiking of the

postsynaptic neuron the synaptic strengths of individual synapses

become dependent on each other. For example, an early modeling

study [19] demonstrated how competition could arise in this way.

Our approach is to first understand how AP duration may affect

the pattern of synaptic strengths before investigating the biophys-

ical/biochemical properties, because the modeling studies are

currently not conclusive. Experimentally characterized STDP

window exhibits a sharp transition at Dt~0 ms, where differences

of only a few milliseconds determine whether LTP or LTD is

induced. Previous models that could account for the sharp

transition at Dt~0, are not fully compatible with the available

data from STDP experiments. For example, an afterdepolariza-

tion (ADP) model [20], which suggested that STDP was strongly

dependent on the magnitude and duration of the ADP, could

explain the transition at Dt~0 ms. It predicts LTP for

{10msƒDt for an ADP of 12 mV (but not for no ADP), which

is not unlike our simulation with the model from [14]. However, it

predicted LTD for longer positive Dt, which to the best of our

knowledge has never been reported before. Another model that

considered the duration of backpropagating action potential [21],

predicted a scaling of STDP function similar to our simulations

(Figure 1A). This model also predicted LTD for longer positive Dt,

and in addition failed to reproduce plausible STDP curves when

pairing frequencies become larger. We conclude that at the

current stage of STDP modeling, an exploration on how AP

duration and magnitude affect the emergent properties of synaptic

plasticity may be best conducted with phenomenological models.

We study two key functional consequences of STDP, the shape

of synaptic weight distribution and the regulation of postsynaptic

spiking rate [3]. The model is based on three assumptions: first, a

synapse is potentiated when a presynaptic spike arrives before and

during a postsynaptic AP; second, a synapse with a presynaptic

spike arriving after the postsynaptic AP is depressed with a

magnitude depending on AP duration in order to control the

overall LTP/LTD ratio; third, the effect of AP duration is

Figure 1. Synaptic modification by a voltage-dependent STDP
model. A. STDP windows generated by stimulating the model with 75
pairs (20 pairs per second) of pre- and postsynaptic spikes with 5
different pairing intervals Dt (1:0 to 5:0 ms). (B,C) The relative peak
modification of synaptic weight simulated by different pairing
frequency r with positive pairing interval Dt~z10 ms (pre-post) and
Dt~{10 ms (post-pre).
doi:10.1371/journal.pone.0088592.g001
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uniformly distributed through the length, modeled via a plateau in

the STDP window. We construct the model in such a way that it

can be simulated in both additive [19] and mixed modes (additive

update for potentiation and multiplicative update for depression,

see details in [22]). For AP duration is explicitly included within

the model, we name it dSTDP. More specifically, given a

presynaptic spike at i-th excitatory synapse and a postsynaptic

spike elicited by an interval Dt, the corresponding change of the

synaptic weight wi
exc is illustrated in Figure 2 and defined as:

Dwi
exc ~

wmax
:Az

: exp {Dt=tzð Þ if Dtw0

wmax
:Az

DwLTD
:Az exp DtzdAPð Þ=t{ð Þ

if {dAPƒDtƒ0

if Dt v{dAP

8><
>:

ð1Þ

where DwLTD~{wmax
:b(a,dAP) is used in the additive mode and

DwLTD~{wi:b(eaa,dAP) in the mixed mode. The AP duration

dependent term b a,dð Þ~a:e
2d
tz is introduced to keep the ratio of

positive integral to negative integral equal to constant a (Figure

S1). This procedure is intended to eliminate significant changes in

the ratio of LTP/LTD areas induced by AP duration, which could

be a potential confounding factor [19]. All important parameters

are listed in Table 1. and an all-to-all pairing scheme is

implemented to update synaptic modifications throughout [23].

Comparison of Equilibrium Weight Distributions
The dSTDP model was simulated together with an integrate-

and-fire model neuron whose activity was driven by both

excitatory and inhibitory poisson spike trains (see Methods). We

first re-examined the equilibrium synaptic weight distribution for

short AP duration 0:1 ms (equivalent to the model with a

canonical STDP window, e.g. [19]) in both modes. With synaptic

weights tamed by an upper-bound, the additive mode produces a

U-shaped bimodal distribution (Figure 3A), well matching the

results reported in [19]. The weight-dependent mixed mode

generates a centered unimodal distribution (Figure 3B) in which

the synaptic weights are very narrowly distributed, consistent with

a previous simulation study [24].

As previously contemplated, when simulated without imposing

an upper-bound, the additive mode has an inherent instability in
that a few synapses get boundlessly stronger due to a destabilizing

force, while the others become weaker (Figure 3C). By contrast,

the mixed mode has an intrinsic stability and produces the very

same distribution, independent of the existence of an upper-bound

(Figure 3D), because the effect of the destabilizing force is

relatively small as the stabilizing force dominates, which then

constrains the weight growth [25].

For simulations of dSTDP models we chose an AP duration of

2:0 ms long. Interestingly, dSTDP in the additive mode predicts a

wide unimodal distribution (Figure 3E), which clearly differs from

the U-shaped produced by the canonical model (Figure 3A). This

difference can be understood as follows: the additional potentia-

tion force introduced by the AP duration counters the extra

depression induced by the b-term. As a consequence, independent

of the initial synaptic weights, most of the synapses tend to stay in

the middle range of the weight spectrum (Figure S2). Note that the

distribution remains stable without an upper-bound (Figure 3G),

indicating an intrinsic stability property possessed by the model.

The dSTDP model simulated in the mixed mode predicts a similar

narrow unimodal distribution, but slightly skewed(Figure 3F & H).Figure 2. dSTDP window function. The relative modification of
synaptic weight Dw varies as a function of interspike interval Dt
(dAP~2:0 ms).
doi:10.1371/journal.pone.0088592.g002

Table 1. Neuronal, synaptic and plasticity parameters.

Parameter Symbol
Default
value

Membrane capacity Cm 200 pF

Leak conductance GL 10 nS

Membrane time constant tm 20 ms

Spiking threshold Vth –54 mV

Resting membrane
potential

Vr –70 mV

Reset membrane
potential

Vreset –60 mV

Adaptive reversal
potential

Eadap –70 mV

Adaptation time
constant

tadap 100 ms

Action potential duration dAP 2.0 ms

Synaptic time constant tsyn 5 ms

Potentiation time
constant

tz 20 ms

Depression time
constant

t{ 20 ms

Inhibitory synaptic
strength

winh 500 pS

Number of excitatory
synapses

Nexc 1000

Number of inhibitory
synapses

Ninh 200

Excitatory input rate rexc 10 Hz

Inhibitory input rate rinh 10 Hz

Maximum potentiation
amplitude

Az 0.005

Learning ratio in additive
mode

a 1.05

Learning ratio in mixed
mode

eaa 2

doi:10.1371/journal.pone.0088592.t001
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AP Duration Determines the Shape of Equilibrium
Synaptic Weight Distribution

The results shown in Figure 3 suggested to us that equilibrium

synaptic weight distribution could be largely attributable to the

length of AP duration in dSTDP models. Therefore, we simulated

dSTDP model in the additive mode with an upper-bound wmax for

various AP durations, ranging from 0:1 to 5:0 ms, and observed

the resultant distributions illustrated in Figure 4E. The weight

distribution loses its bimodal shape as AP duration increases and

transitions to a complete unimodal for durations that are larger

than approximately 1:0 ms, and it becomes even narrower for

larger ones. Accompanied with the reshaping of the distribution,

the average and the standard deviation of synaptic weights

decrease for longer AP durations (Figure 4A & B), which were

computed from the histograms shown in Figure 4E. They illustrate

one experimental prediction of dSTDP model: the postsynaptic

AP duration is predicted to be inversely correlated with the

average synaptic strength as well as its variability, which could be

experimentally measured using, for example, ensemble statistics of

spontaneous miniature or evoked EPSPs.

Note that even though the distribution reaches an equilibrium

state, the individual weights keep fluctuating as the simulation goes

along. The fluctuation for short AP duration (Figure 4C, dAP~0:1
ms), is around one order of magnitude larger than for longer ones

(Figure 4D, dAP~2:0 ms). This reflects the difference between the

bimodal and unimodal weight distributions as for instance in the

former, strong synapses can become weak and vice versa, which

results in large temporal fluctuations. In comparison, the mixed

mode exhibits fairly small variations in both statistical properties

and hence doesn’t result in significant AP duration dependent

changes in equilibrium synaptic weight distribution (Figure S3).

Postsynaptic Response to Signal and Noise Inputs
In this modeling study, most of the presynaptic inputs were

modeled as poisson spike trains, similar as what was conducted

also in some previous works [19,26,27]. While it is still not clear if

in the real brain such poisson spikes carry relevant information or

should rather be considered as a source of background noise,

recent evidences suggested that correlated synchronous neural

activity is informative about the features of stimulus in the early

Figure 3. Equilibrium synaptic weight distributions for dSTDP models. (For A,B,C,D, dAP~0:1 ms.) A: A U-shaped bimodal distribution
generated by additive mode, with an upper-bound. B: A centered unimodal distribution generated by mixed mode, with an upper-bound. C: Similar
to A, without an upper-bound. In this scenario, the distribution didn’t equilibrate as in A, the data was taken at t~3000 sec. D: Similar to B, without
an upper-bound. (For E,F,G,H, dAP~2:0 ms.) E: A wide unimodal distribution generated by additive mode, with an upper-bound. F: The slightly
skewed centered unimodal distribution generated by mixed mode, with an upper-bound. G: Similar to E, without an upper-bound. H: Similar to F,
without an upper-bound.
doi:10.1371/journal.pone.0088592.g003
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sensory processing [28] as well as about behavioral states [29].

Therefore, we were interested in the role of AP duration in

dSTDP for processing inputs that are composed of both

synchronous spikes as the signal and poisson spikes as the noise.

As done above for investigating the synaptic weight distribu-

tions, we first explored the effect of AP duration on regulating the

postsynaptic response to the noise. The fluctuation analysis above

(Figure 4C & D) suggests that the dynamics of the postsynaptic

neuron must also undergo a big change. It has been discovered

that given poisson noise, STDP rules have remarkable effects on

regulating the long-term average spiking rate of the postsynaptic

neuron [19,30] as the synaptic weight distribution converges to an

equilibrated state. We find that dSTDP models also possess such a

regulation of the postsynaptic spiking: 1) the rate simulated with

the additive mode dSTDP decreases quickly as AP duration

extends (normalized ratio in Figure 5A, red); 2) such effect is as

prominent with the mixed mode, the rate drops almost by 60%

when varying AP duration from 0:1 ms to 2:0 ms (Figure 5A,

green), despite the fact that the weight distribution has only a small

shift to the left (Figure 4B & F). Analyzing a selected simulation run

shows that the absolute asymptotic postsynaptic spiking rate for a

long AP duration is much lower compared to a short one (0.1 vs

7.5 Hz, see representative traces in Figure S4). Systematic

simulations reveal that AP duration exerts a considerable effect

on the steady-state spiking rate, making the model neuron much

insensitive to the noise (Figure 5A & B). Such regulation is

expected as the weight distribution narrows (Figure 4E) and total

weight of synapses decreases when AP duration is elevated

(Figure 4A).

A recent model demonstrated an interesting regulation of the

steady-state postsynaptic spiking, namely that the rate has a non-

monotonic dependence on the level of excitatory noise [26]. It

exhibits by dSTDP models a distinct monotonic functional

dependence, affected by the length of AP duration. We find that

in the additive mode: 1) when AP duration is short, the

postsynaptic spiking rate rises from 7.5 Hz to about 13 Hz as

the excitatory input rate is elevated from 10 Hz to 50 Hz

(Figure 5B, green). The result is consistent with the previous

study, as each 5 Hz increase causes an elevation of the output rate

roughly by 1 Hz [19]; 2) when AP duration is long, however, an

exponential-decreasing dependence was observed (Figure 5B, red),

which can be understood intuitively as the postsynaptic neuron

Figure 4. AP duration determines the shape of equilibrium synaptic weight distribution (additive mode). A: The average of excitatory
synaptic weights given various AP durations. B: The standard deviation of excitatory synaptic weights given various AP durations. C: The standard
deviation of each individual synaptic weight for an 1000-sec post-equilibrium simulation run (dAP~0:1 ms). D: Same as in C, dAP~2:0 ms. E: The
horizontal axis is AP duration, the vertical axis is synaptic weight and color bar indicates the probability density.
doi:10.1371/journal.pone.0088592.g004
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shifts most of the synapses to weaker strengths for higher

presynaptic activities (Figure S5). Such ‘‘buffering’’ effect is much

weaker in the mixed mode (Figure 5C) and the rate undergoes a

more than 60-fold increase from 5 Hz to 300 Hz for just a 5-fold

increase of the input rate, but still, the increase is less pronounced

for longer AP durations (Figure 5C, red).

Then we simulated a scenario where the model neuron was first

driven by the noise alone. The weight distribution converges

towards an equilibrium before the signal was applied for 200
seconds. After removing the signal the weight distribution re-

equilibrated again (Figure S6). Interestingly, we observe that

postsynaptic spiking remains equally sensitive to the signal (plateau

phase), while the noise is much more effectively filtered (decay

phase) by a long AP duration than a short one (Figure 6).

Simulations of Unbounded dSTDP
We have shown that in the additive mode without an upper-

bound, short AP duration leads to a development in which a

number of very strong synapses continue to grow their strengths

way beyond wmax (Figure 4C). Taking a snapshot at time 1500 sec

in the simulations, we observe that on average only 72% of the

excitatory synapses have weights smaller than or equal to wmax.

We find that this below-bound ratio increases as AP duration is

extended (Figure 7A), for instance, all synaptic weights are

constrained below wmax once AP duration is larger than 2:0 ms.

Moreover, we also picked out the maximum synaptic weights for

various AP durations from simulations (each ran for 3000 sec). The

maximum decreases when AP duration is prolonged and no single

weight exceeds wmax when APs are longer than 2:0 ms (Figure 7B).

These results confirm from a distinct perspective that AP duration

has an inherently stabilizing effects which should motivate further

studies.

Discussion

The main contribution of this paper is to emphasize that AP

duration is an important and so far poorly investigated feature of

STDP. Here we refer to the emergent properties of AP duration in

a model neuron driven by a number of excitatory and inhibitory

poisson noisy spike trains as well as the synchronized on the

synapses, not its effects in microscopic models of synaptic plasticity

[20,21] or signal transduction pathway models of a postsynaptic

spine [31]. In our simulation study we used a recently proposed

unified model [14] as the basis for our novel simplified linear

dSTDP model, which includes AP duration directly into a STDP

window function.

This dSTDP model in the additive mode makes several unique

and testable predictions: i) the synaptic weight distribution

depends on AP duration with a bimodal shape for short ones

and a unimodal for the longer (Figure 4E); ii) the mean and

standard deviation of this distribution decrease for elevated APs

(Figure 4A & B). It is worth noting that this prediction is in good

consistency with the data shown in some previous experimental

works, for instance the duration of back-propagating action

potential typically increases on the dendrites with the distance

from soma [32] which may account for a decremental average

response observed in the distal compartments [33]. Besides, our

results are also in agreement with another simulation work that

modeled the effect of AP duration as axonal delay [34], this work

showed also a decrease in summed synaptic strengths after STDP

training; iii) the fluctuations of individual synaptic weights over

time depend on AP duration with stronger fluctuations for the

short (Figure 4C & D); iv) the model neuron with long APs is able

to filter out most of the poisson noise input while remains very

sensitive to the modeled signal (Figure 6).

Given that our starting point was a phenomenological model

itself [14], one could question the validity of our simulation study.

However, we used this model as our starting point, because it is a

model from which the plasticity outcome is directly determined by

the duration and magnitude of the postsynaptic AP, whereas the

prediction from more complex models may be indirect, for

instance, depending on the modeling of calcium concentration

[21] or kinetics of NMDA receptors [35]. Moreover, the dSTDP

window we postulate here is consistent with the published

experimental data, which is itself rather noisy and does not fully

constrain the window function at the transition between potenti-

ation and depression.

One could argue that neither a narrow unimodal [24] nor a

bimodal weight distribution are of functional interests [19], and a

stable Gaussian distribution should be the goal of modeling studies

[25–27]. This contradicts recent experimental observation that

reported a unimodal weight distribution with long tail (‘‘a few

strong connections immersed in a sea of weaker ones’’ [36]).

Interestingly, we did observe such a distribution in a version of

dSTDP model which does not have the control for the ratio of

integrated LTP/LTD windows (data not shown).

Studying how AP duration affects the emergent properties of

synaptic plasticity in a single neuron or neural networks, is

certainly a field of interest for both theoreticians and experimen-

talists. Sixty years after Hodgkin and Huxley’s original publication,

the action potential (its shape and duration) should get renewed

attention in particular from the field of synaptic plasticity and this

simulation work may qualify as yet another candidate model in the

spectrum of STDP modeling to be further explored, analytically

and experimentally.

Methods

Neuron Model
The model neuron receives Nexc excitatory and Ninh inhibitory

poisson spike trains [19,25–27,37,38]. A standard single-compart-

ment conductance-based leaky integrate-and-fire neuron with a

spike-triggered adaptation current [38] is used as to simulate the

Figure 5. Regulation of postsynaptic spiking rate by AP
duration (noise). A. The ratio of steady-state rates for various AP
durations, referenced to the maximum with dAP~0:1 ms. B. The ratio of
steady-state rates for various excitatory input rates, referenced to the
rate when both excitatory and inhibitory inputs are 10 Hz (additive
mode). C. Similar as B, the actual steady-state rates are plotted (mixed
mode).
doi:10.1371/journal.pone.0088592.g005
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dynamics of membrane potential Vm:

Cm
dVm

dt
~GL Vr{Vmð ÞzGexc(t) Eexc{Vmð Þz

Ginh(t) Einh{Vmð Þzgadpt(t) Eadpt{Vm

� � ð2Þ

where Cm is the membrane capacity and GL is the leak

conductance. When the membrane potential reaches the threshold

Vth, the model neuron spikes an AP. To cooperate with the

dSTDP model we introduce dAP as the new parameter, denoting

AP duration, such that when the membrane potential reaches the

threshold from below at time tspike, we assign Vm tð Þ~Vpeak for

tspikeƒtvtspikezdAP and then reset Vm tð Þ~Vreset at t~tzdAP.

This is certainly a gross simplification for modeling the effects of

AP duration, but we introduce this simplistic parameterization in

order to obtain a first qualitative characterization of its impact on

synaptic conductances via synaptic learning.

The adaptation conductance gadpt(t) increments by 1nS after

each postsynaptic spike, namely at the time of threshold crossing

tspike, and then decays with a time constant tadpt. It models spike-

frequency adaptation due to, for example, calcium-dependent

potassium currents. The total synaptic conductances Gexc(t) and

Ginh(t) represent summed contributions from all excitatory and

inhibitory synapses. Whenever a presynaptic spike arrives at the i-
th synapse, the corresponding total conductance is increased

instantaneously by wi and then decays with a time constant tsyn.

All inhibitory synapses have an unmodifiable strength winh,

whereas wi
exc is updated by STDP learning.

Construction of Synchronous Spikes
For the spike trains used in Figure 7 and Figure S6, synchronous

events are generated in a poisson manner. More specifically, we

define a rate r and a fraction f of the presynaptic spikes being

synchronized, then within each simulation time bin Dt, the

probability of a synchronous event to occur is rDt, and on every

occurrence of such synchrony, f :Nexc presynaptic excitatory spikes

are synchronized.

Supporting Information

Figure S1 The AP duration dependent term b. The peak

synaptic modification for depression is modeled as a function of

AP duration, b a,dð Þ~a:e
2d
tz .

(EPS)

Figure S2 Differential developments of synaptic
weights. By short AP duration, additive mode drives most of

Figure 6. Sensitivity of postsynaptic spiking rate to synchronized spikes. A. Driven by the presynaptic spike activity illustrated in B, the
rates are shown for two different AP durations. B. A raster plot of poisson spike trains (noise) and synchronized spikes (signal). The blue dots are the
excitatory inputs (10 Hz), the black ones the inhibitory (10 Hz). Synchronous spikes are represented by the red dots which occur on the excitatory
synapses only (r~10 Hz and f ~0:1).
doi:10.1371/journal.pone.0088592.g006

Figure 7. dSTDP models unbounded. A: The ratio of synaptic
weights below wmax. B: The maximum synaptic weight obtained
throughout each simulation run (3000 sec).
doi:10.1371/journal.pone.0088592.g007
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the synapses either to a potentiated state (green) or a depressed

state (blue), resulting in a bimodal distribution. However, by long

AP duration, the most stay in the middle (red).

(EPS)

Figure S3 AP duration has little effect on shaping
synaptic weight distribution in the mixed mode. Similar

as illustrated in Figure 4, but simulated with mixed mode.

(EPS)

Figure S4 Postsynaptic spiking rate traces. The rates are

calculated using a bin of one second for dAP~0:1 ms and

dAP~0:1 ms.

(EPS)

Figure S5 The effect of elevated excitatory noise input
on equilibrium synaptic weight distribution and post-
synaptic spiking rate (additive mode). A & B: The

distribution and rate taken from 1000 sec after equilibrium,

rexc~10 Hz. C & D: Similar as in A & B, rexc~50 Hz. (The

inhibitory noise input rate was kept unmodified).

(EPS)

Figure S6 The effect of synchronous signal input on
synaptic weight distribution (additive mode). A1: All the

excitatory synapses have an initial weight of 100 pS. A2: The

equilibrium synaptic weight distribution converges to a bimodal

shape after receiving noise only. A3: When afterwards receiving

both noise and signal, most of the synapses are strengthened

towards wmax. A4: The removal of the signal re-equilibrates the

distribution back to a bimodal shape. B: A raster plot represents

the presynaptic spike trains, aligned with the different stages that

cause the change of synaptic weight distribution. C: All panels are

similar to A, but simulated with AP duration 2:0 ms.

(EPS)
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