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Background: microRNAs (miRNAs) have regulatory roles in various cellular processes, including apoptosis. Recently, X-linked
inhibitor of apoptosis protein (XIAP) has been reported to be dysregulated in epithelial ovarian cancer (EOC). However, the
mechanism underlying this dysregulation is largely unknown.

Methods: Using bioinformatics and a literature analysis, a panel of miRNAs dysregulated in EOC was chosen for further
experimental confirmation from hundreds of miRNAs that were predicted to interact with the XIAP 30UTR. A dual-luciferase
reporter assay was employed to detect the interaction by cellular co-transfection of an miRNA expression vector and a reporter
vector with the XIAP 30UTR fused to a Renilla luciferase reporter. DAPI and TUNEL approaches were used to further determine the
effects of an miR-137 mimic and inhibitor on cisplatin-induced apoptosis in ovarian cancer cells.

Results: We identified eight miRNAs by screening a panel of dysregulated miRNAs that may target the XIAP 30UTR. The strongest
inhibitory miRNA, miR-137, suppressed the activity of a luciferase reporter gene fused with the XIAP 30UTR and decreased the
levels of XIAP protein in SKOV3 ovarian cancer cells. Furthermore, forced expression of miR-137 increased cisplatin-induced
apoptosis, and the depressed expression of miR-137 decreased cisplatin-induced apoptosis in SKOV3 and primary EOC cells.
Consistently, the disruption of miR-137 via CRISPR/Cas9 inhibited apoptosis and upregulated XIAP in A2780 cells. Furthermore,
the effect of miR-137 on apoptosis could be rescued by XIAP in SKOV3 cells. In addition, miR-137 expression is inversely correlated
with the level of XIAP protein in both ovarian cancer tissues and cell lines.

Conclusions: Our data suggest that multiple miRNAs can regulate XIAP via its 30UTR. miR-137 can sensitise ovarian cancer cells to
cisplatin-induced apoptosis, providing new insight into overcoming drug resistance in ovarian cancer.

Despite a variety of advances in surgical techniques and
chemotherapy approaches, ovarian cancer remains the most lethal
gynaecologic malignancy, mainly because of late diagnosis and the
development of resistance to standard chemotherapy such as
platinum-based drugs (Holcik et al, 2000; Chan et al, 2009; van
Jaarsveld et al, 2013; Borley and Brown, 2015). Apart from being
an efficient drug for treating ovarian cancer, cisplatin is also one of
the most commonly used ones; it causes cytotoxicity by interfering

with the apoptotic pathways (Kurzeder et al, 2006). In this context,
it is crucial to explore novel therapeutic approaches and targets to
prevent or reduce drug resistance, thus enhancing the therapeutic
efficiency of ovarian cancer.

miRNAs are a large class of tiny non-coding RNAs that are
endogenously encoded and negatively regulate gene expression via
binding to the 30UTR regions of target mRNAs, leading to mRNA
translational repression or degradation (Bartel, 2004; Lund et al, 2004).
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It is reported that more than 60% of human protein-coding genes
have been regulated by miRNAs (Friedman et al, 2009). These
miRNAs function extensively in many cellular processes such as
proliferation, metastasis and apoptosis (He and Hannon, 2004;
Miska, 2005; Cui et al, 2016). For example, miR-340 can inhibit
proliferation and induce apoptosis by targeting multiple negative
regulators of p27 in non-small cell lung cancer (Fernandez et al,
2015). Our previous studies showed that the miR-23a/24-2/27a
cluster promotes cell invasion and metastasis through targeting
Sprouty2 in breast cancer (Li et al, 2013), and miR-24, miR-27a
and miR-155 promote cell proliferation by regulating MXI1 in
glioma (Xu et al, 2013; Zhou et al, 2013a). Recently, several
miRNAs have been reported to be associated with drug resistance
(Zheng et al, 2010). Some miRNAs could alter the sensitivity of
cancer cells to anti-cancer drugs through targeting genes related to
apoptosis and drug resistance. Overexpressed miR-21 promotes
drug resistance due to its regulation of PDCD4, TPM1, and
MARCKS in prostate cancer cells (Li et al, 2009). The significantly
upregulated miR-214 targets the 30UTR of PTEN and activates the
Akt pathway, leading to enhanced cell survival following cisplatin
treatment in ovarian cancer (Yang et al, 2008). The impact on
apoptosis and the resistance of these deregulated miRNAs offer
new avenues for cancer treatment.

Inhibitors of apoptosis (IAPs) are a family of proteins that are
involved in various biological functions, including the regulation of
innate immunity and inflammation, cell proliferation, cell migra-
tion and cell apoptosis (Berthelet and Dubrez, 2013). X-linked
inhibitor of apoptosis protein (XIAP), identified by Liston, is
considered to be the most potent apoptotic regulator in
mammalian cells (Lencz et al, 2013). It can inhibit caspase activity
by directly binding to caspase-3, -7, and -9 in the apoptotic
signalling pathway (Eckelman et al, 2006). XIAP blocks a
considerable portion of the apoptosis pathway and is an attractive
therapeutic target of cancers. In epithelial ovarian cancer, XIAP is
reported to be upregulated, and the upregulation of XIAP may be
partially responsible for the generation and development of ovarian
cancer (Kleinberg et al, 2007; Wang et al, 2012). Therefore, it is
urgent to investigate the molecular mechanism of XIAP dysregula-
tion in ovarian cancer.

Clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated endonuclease 9 (Cas9), a novel
genome editing system derived from Streptococcus pyogenes, can
introduce double-strand breaks (DSBs) into cultured mammalian
cells (Cho et al, 2013; Cong et al, 2013; Mali et al, 2013). Non-
homologous end-joining (NHEJ) may participate in the repair of
DSBs with a high frequency of insertions and deletions, leading to
loss-of-function of the target gene. CRISPR/Cas9 has been applied
to diverse functional genomics research because it is scalable,
affordable, and easy to engineer (Deltcheva et al, 2011;
Sapranauskas et al, 2011; Koike-Yusa et al, 2014). A component
of the CRISPR/Cas9 system, single-guide RNA (sgRNA) with 20
nucleotides at the 50 end complementary to the targeted region, can
direct Cas9 endonucleases to produce DSBs. This new genome
engineering tool provides an efficient and specific way to create
new cell lines with loss-of-function of the gene that is essential for
drug resistance in ovarian cancer.

In this study, we hypothesise that the abnormal expression of
XIAP is caused, to some extent, by the deregulation of upstream
miRNAs. By computational prediction and experimental con-
firmation, we demonstrated that eight miRNAs may regulate XIAP
through screens of the interactions between the XIAP 30UTR and
22 down-regulated miRNAs. Next, we chose miR-137 that has a
strong effect in inhibiting XIAP for further confirmation. We
investigated the roles of miR-137 in promoting apoptosis in
ovarian cancer cells. We found that the overexpression of miR-137
can promote apoptosis induced by cisplatin, and the inhibition of
miR-137 has a reverse effect. Knockout of the miR-137 gene via

CRISPR/Cas9 genome editing can decrease apoptosis induced by
cisplatin in A2780 ovarian cancer cells. Furthermore, the increase
in XIAP expression using lentivirus could rescue the phenotype of
overexpression of miR-137. These results provide new insights into
the role of miR-137, which may increase the sensitivity of ovarian
cancer cells to cisplatin-induced apoptosis by regulating XIAP
expression.

MATERIALS AND METHODS

Vector construction. To construct the luciferase reporter to screen
the binding of miRNAs in the XIAP 30UTR, 6.8 kb in length, we
divided the whole XIAP 30UTR into four fragments UTR1, UTR2,
UTR3 and UTR4 (Figure 1). These four fragments, as well as the
fragment containing two predicted miR-137 binding sites, and the
predicted miR-137 binding site mutated fragments were fused to the
Renilla luciferase reporter gene at the 30UTR in the psiCHECK2
vector (Promega, Madison, WI, USA) with modified cloning sites.
These constructs were named UTR1, UTR2, UTR3, UTR4, WT, site
1-MUT, site 2-MUT, and site (1þ 2) MUT. All of the miRNA
expression vectors containing the miRNA precursors used in this
study were described previously (Zhou et al, 2013b). To overexpress
XIAP, human XIAP cDNA without its native 30UTR was cloned
downstream of the CMV promoter in the lentiviral expression
vector pCDH-CMV-MCS-EF1-copGFP (pCDH; System Biosciences,
Mountain View, CA, USA), and the construct was named LV-XIAP.
All of the primers employed above are listed in Supplementary
Table S1. DNA sequencing was performed to confirm all of the
constructs.

Analysis of the methylation of XIAP promoter. The methylation
data of the XIAP promoter were from NCBI Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE51688). The b value (b¼ signal B/(signal Aþ signal
Bþ 100)) was used to determine the methylation rate.

Cell lines, cell culture and patient samples. The HEK293T
(293T) cell line was purchased from the American Type Culture
Collection (ATCC, Manassas, VA, USA) and cultured with DMEM
(Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal
bovine serum (FBS) and penicillin/streptomycin (Invitrogen)
(100 U ml� 1) in an incubator at 37 1C with 5% CO2. Seven human
ovarian cancer cell lines, A2780 and SKOV3 from ATCC and
CAOV3, OVCAR3, ES-2, COC1 and COC1/DDP from the Cell
Center of Chinese Academy of Medical Sciences (Beijing, China),
were maintained in an incubator at 37 1C with 5% CO2 in
appropriate media supplemented with 10% FBS and antibiotics
following the manual instructions. Primary epithelial ovarian
cancer (EOC) cells were obtained from the malignant ascites of two
patients as previously described (Sapi et al, 2004). All primary
ovarian cancer tissues, which contained 470% cancer cells,
were collected from patients during primary cytoreductive
surgery. The pathological type of the patients’ cancers was
determined according to WHO criteria, and 35 ovarian cancer
tissues including 21 serous adenocystic carcinoma and 14
mucinous adenocystic carcinoma were used in this study.
Twenty-nine normal ovarian tissues were obtained from age-
matched patients who underwent removal of the ovary due to
cervical cancer or endometrial cancer. All patients signed a
consent form and the use of all specimens was approved by the
Ethics Committee of the Second Affiliated Hospital of Guangz-
hou Medical University (No. 2013034).

Transfection of siRNAs, miRNA mimics and inhibitors. All
of the RNA oligonucleotides used in this study, including the
miR-137 mimic and inhibitor, XIAP siRNAs (si-XIAP), and
their cognate control RNAs, were purchased from GenePharma
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(Shanghai, China). The RNA sequences mentioned above were as
follows: miR-137 mimic: sense 50-UUAUUGCUUAAGAAUACGC
GUAG-30 and antisense 50-ACGCGUAUUCUUAAGCAAUAATT-30;
mimic control: sense 50-UUGUCCGAACGUGUCACGUTT-30

and antisense 50-ACGUGACACGUUCGGAGAATT-30; miR-137
inhibitor: 50-CUACGCGUAUUCUUAAGCAAUAA-30; inhibitor
control: 50-CAGUACUUUUGUGUAGUACAA-30; si-XIAP-1: sense
50-CAUGCAGCUGUAGAUAGAUGGCAAU-30, antisense 50-AUU
GCCAUCUAUCUACAGCUGCAUG-30; si-XIAP-2: sense 50-GUGG
UAGUCCUGUUUCAGCTT-30, antisense 50-GCUGAAACAGG
ACUACCACTT-30; siRNA control: sense 50-UUCUCCGAACGU
GUCACGUTT-30, antisense 50-ACGUGACACGUUCGGAG
AATT-30. The control RNA contains random sequences and
predicted no interactions in cells. A total of 100 nmol l� 1 of small
RNAs, the miRNA mimic or inhibitor, was used to perform cell
transfection with the X-tremeGENE siRNA Transfection Reagent
(Roche, Basel, Swiss) according to the manufacturer’s instructions.
To estimate the transfection efficiency, Cy3 dye-labeled RNA
oligonucleotides (Ribobio, Guangzhou, China) were transfected

into both A2780 and SKOV3 cells. The transfection efficiency was
estimated to be approximately 90% in both cell lines.

Dual-luciferase reporter assay. The dual-luciferase reporter assay
was performed as previously described (Zhou et al, 2013b). Briefly,
50 ng of luciferase reporter vector and 150 ng of either pLL3.7-
miRNA or pLL3.7-miR-control vector were transfected into
1.5� 104 293T cells in 96-well plates using FuGENE HD (Roche)
according to the manufacturer’s instructions. Forty-eight hours
after transfection, the luciferase activity was measured using
the dual-luciferase reporter assay system (Promega) following the
manufacturer’s instructions. Renilla luciferase activities were
normalised to firefly luciferase activities.

Western blotting. The human ovarian cancer cells were lysed
with RIPA lysis buffer (BioTeke, Beijing, China) 48 h after
transfection. The protein concentration was determined using the
bicinchoninic acid protein assay kit (Beyotime, Shanghai, China).
Heat-denatured protein samples (20 mg per lane) were separated
and then were transferred to a PVDF membrane (Millipore,
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Figure 1. Screening for miRNAs targeting XIAP. (A) The Venn diagram shows the predicted XIAP 30UTR binding miRNAs that were reported to be
down-regulated in ovarian cancer. (B) Schematic diagram of the XIAP 30UTR and miRNAs binding to the cognate fragments of XIAP 30UTR. (C)
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luciferase reporter assay. The luciferase activity of the transfected cells was measured 48 h post transfection. The results were presented as the
relative luciferase activity and were normalised to the control, which was assigned a value of 1. The values represent the mean±s.d. from three
independent transfection experiments. Significant differences from the control value are indicated by *Po0.05 and **Po0.01.

BRITISH JOURNAL OF CANCER microRNA-137 promotes apoptosis via XIAP

68 www.bjcancer.com | DOI:10.1038/bjc.2016.379

http://www.bjcancer.com


Bedford, MD, USA) by10% SDS-polyacrylamide gel electrophor-
esis. The membrane was incubated for 2 h at room temperature or
incubated overnight at 41C with a primary mouse polyclonal
antibody against human XIAP (1 : 10 000; Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA) or mouse monoclonal antibody against
human b-actin (1 : 3000; Abcam, Cambridge, MA, USA) and then
was incubated for 1 h at room temperature with a goat anti-mouse
secondary antibody (1 : 5000; Abcam, Cambridge, MA, USA). The
bound antibody was assessed using enhanced chemiluminescence
detection reagents (Pierce, Rockford, IL, USA), and the band
intensities were quantified using Kodak Image Station 4000MM
Pro (Kodak, Tokyo, Japan) according to the manufacturer’s
instructions.

RNA extraction and quantitative reverse transcription-PCR.
Total RNA of the cell lines was extracted using Trizol (Invitrogen)
and was reverse transcribed with ReverTra-Ace-a-Transcriptase
(TOYOBO, Osaka, Japan). The expression of miR-137 and XIAP
mRNA in the cell lines was quantified using the SYBR Premix Ex
Taq II (Tli RNase H Plus) kit (Takara, Tokyo, Japan), and U6
snRNA and GAPDH were used as internal references, respectively.
Quantitative PCR was performed using the LightCycler 480 Real-
Time PCR system (Roche). The data were analysed using
LightCycler 480 Software Version 1.5.

MTT assay. SKOV3 cells (1� 104) were seeded in a 96-well plate
and were transfected with miR-137 mimic or mimic control after
24 h. A series of concentration of cisplatin were added into culture
medium for 48 h, and then 10ml of 5 mg ml� 1 of MTT reagent
(Sigma, St Louis, MO, USA) per well was added to the medium,
and the plate was incubated for 4 h in an incubator at 37 1C with

5% CO2. One-hundred microliters of DMSO per well were added,
and then, the plate was thoroughly mixed for approximately
10 min. The spectrometric absorbance of the samples at 490 nm
was measured on a microplate reader (BioTek, Winooski, VT,
USA). The IC50 value was calculated graphically as a comparison to
the growth of the control group.

40,6-Diamidino-2-phenylindole staining of cells. SKOV3 cells or
primary EOC cells were seeded (1.5� 104 cells per well for each) in
a 48-well plate and were transfected with the miR-137 mimic or
mimic control. Sixteen to twenty-four hours after transfection,
cisplatin (10 mM) was added to the medium. Twenty-four or forty-
eight hours after the addition of cisplatin, SKOV3 or primary EOC
cells were stained with 1 mg ml� 1 40,6-diamidino-2-phenylindole
(DAPI, Sigma). Apoptotic cells were observed under a fluorescence
microscope, and the apoptotic ratio was calculated.

Terminal-deoxynucleotidyl transferase-mediated nick end label-
ling (TUNEL) assay. SKOV3 (1� 104) cells were seeded in a 96-
well plate, and transfection and cisplatin treatment was performed
as described above. Forty-eight hours after cisplatin treatment, the
cells were fixed with 4% methanol-free paraformaldehyde at 4 1C
overnight, were exposed to 0.1% Triton X-100 (in 0.1% sodium
citrate) for 2 min at 4 1C to permeabilize the cell membrane and
then were rinsed twice with PBS. The terminal-deoxynucleotidyl
transferase-mediated nick end labeling (TUNEL) reaction was
performed according to the manufacturer’s instructions (Roche).
The apoptotic ratio was calculated as the ratio of the number of
TUNEL-positive cells to the total number of DAPI-positive cells.

Virus generation and infection. Overall, 293T (8� 105) cells
were seeded in a 6-cm dish and then were co-transfected with
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1.8mg of packaging plasmid pPAX2, 0.6 mg of envelope plasmid
pMD2.G and 2.5 mg of the XIAP expression vector LV-XIAP or
empty vector pCDH with the transfection reagent Lipofectamine
2000 (Invitrogen) according to the manufacturer’s instructions one
day later. Viral supernatants were harvested and stored in a
� 80 1C refrigerator 48 h after transfection. To improve the
infection efficiency, 10mg ml� 1 polybrane was added before
infection.

miR-137 genome editing via the CRISPR/Cas9 system. The
sgRNAs targeting miR-137 were designed using CRISPRDESIGN
(http://crispr.mit.edu/), and their corresponding DNAs were
cloned into lentiCRISPR (pXPR_001) that contains the human
codon-optimized SpCas9 coding sequence. The lentiCRISPR
delivering Cas9 nuclease and miR-137-specific sgRNA were packed
into lentivirus, and the A2780 ovarian cancer cells were infected
with this lentivirus. Next, the tranduced cells were selected and
enriched by applying 400 ng ml� 1 puromycin to the medium.
Single cells were sorted from the puromycin-selected population
into 96-well plates and, after expansion, formed single-cell-derived
cultures. PCR covering the sgRNA targeting region and Sanger
sequencing were performed to examine miR-137 genome editing.

Statistical analysis. The data are presented as the mean±
standard deviation (±s.d.) of at least three separate experiments
and were analysed using Student’s t-test. P values o0.05, 0.01, or
0.001 are indicated by *, **, or ***, respectively. Prism software
(version 5.0; GraphPad Software, La Jolla, CA, USA) was used to
analyse the data.

RESULTS

XIAP is targeted by multiple miRNAs. Several studies demon-
strated that XIAP is highly expressed in ovarian cancer (Li et al,
2000; Wang et al, 2012). It is reported that the frequencies of SNPs
in the XIAP promoter are not associated with cancer presentation
(Kang et al, 2008; Ulybina et al, 2011; Xie et al, 2013). To explore
the mechanism of the aberration expression of XIAP in ovarian
cancer, both epigenetic modification, such as methylation, and
posttranscriptional regulation were examined. We first checked
whether the methylation frequency in the XIAP promoter is
correlated with XIAP expression in ovarian cancer. As shown in
Supplementary Figure S1, there is no significant difference in
promoter methylation between ovarian cancer cell lines and
normal ovarian cell lines using the database from NCBI Gene
Expression Omnibus. Next, we hypothesised that some miRNAs,
especially down-regulated miRNAs, might be responsible for the
high expression of XIAP in ovarian cancer. To investigate which
miRNAs might target XIAP, we predicted potential XIAP-binding
miRNAs using TargetScan 5.1, DIANA LAB, microRNA and
miRDB algorithms (Lewis et al, 2003; John et al, 2004) and found
that 344 miRNAs were predicted to target the XIAP 30UTR
(Figure 1A). To identify the miRNAs that may down-regulate
XIAP under pathogenic conditions, we searched for miRNAs that
are down-expressed in ovarian cancer according to recent
publications (Iorio et al, 2007; Dahiya et al, 2008; Yang et al,
2008; Li et al, 2010; Nagaraja et al, 2010; Guo et al, 2013), and 132
miRNAs were reported to be down-regulated in ovarian cancer.
Among the 132 miRNAs, 22 were both predicted to target XIAP
and were down-regulated in ovarian cancer (Figure 1A). We next
tested all of these 22 miRNAs using a dual-luciferase assay through
co-transfection into 293T cells of an miRNA expression vector
containing miRNA precursor (pre-miRNA) available in our
miRNA expression library (Zhou et al, 2013b) and a psiCHECK2
vector containing a Renilla luciferase reporter gene fused with their
cognate fragment of the XIAP 30UTR (UTR1-4). Eight miRNAs
were determined to repress the activity of luciferase (Student’s t-

test, Po0.05) (Figure 1B and C), and the inhibiting effects of miR-
137 (combination of two experiments with UTR2 and UTR3),
miR-155, miR-142 and miR-146a are obvious. Because miR-137
has the most potent activity and is reported to be down-regulated
in several cancers, including ovarian cancer (Bier et al, 2013; Chen
et al, 2013; Guo et al, 2013; Takwi et al, 2014), we chose miR-137
for further experiments.

XIAP is a direct downstream target of miR-137. To determine
whether miR-137 recognises the two predicted sites (2889–2911,
3705–3727), we constructed the XIAP 30UTR reporter with the two
sites in one fragment. Next, the wild-type fragment, the seed
region-mutated fragments for site 1, site 2, and double-mutated
fragment for both sites, were cloned downstream of the Renilla
luciferase reporter gene in the psiCHECK2 vector, respectively
(Figure 2A and B). Each of the constructs was co-transfected into
293T cells with the miR-137 expression vector pLL3.7-miR-137,
and the empty vector (pLL3.7-miR control) was used as a control.
By testing the luciferase activity, we found that the ability of miR-
137 to inhibit XIAP was attenuated through a mutation of either of
the two sites or was abrogated through mutations of both sites.
The inhibiting effect of site 2 was stronger than that of site 1
(Figure 2B). Subsequently, we employed the miRNA mimic and
inhibitor to further determine the regulation of miR-137 in the
inhibition of XIAP. The luciferase activity of 293T cells co-
transfected with the luciferase reporter construct fused with the
wild-type fragment and miR-137 mimic decreased significantly
compared with that co-transfected with the mimic control.
Consistently, the luciferase activity of the 293T cells co-transfected
with the miR-137 inhibitor and reporter construct was increased
compared with that co-transfected with the inhibitor control in a
dose-dependent manner (Figure 2C).
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inhibitor control or miR-137 inhibitor, and the apoptotic rate was
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plotted, and significant differences from the control value are indicated
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To determine whether miR-137 can regulate endogenous XIAP
expression, A2780 ovarian cancer cells were transfected with the miR-
137 mimics and control, respectively. Quantitative reverse transcrip-
tion-PCR (qRT-PCR) confirmed that miR-137 was overexpressed.
Western blot analysis showed that miR-137 down-regulated the
protein level of endogenous XIAP; however, the level of XIAP mRNA
was not changed (Figure 2D). Altogether, these data suggest that miR-
137 directly targets XIAP via the predicted cognate sites at the 30UTR
in 293T and SKOV3 ovarian cancer cells.

miR-137 increases the sensitivity of ovarian cancer cells to
cisplatin-induced apoptosis. To investigate the apoptotic effects
of miR-137 in ovarian cancer, SKOV3 cells were transfected with
a mimic control and mimic of miR-137, respectively, and then
were treated with 10mM cisplatin 24 h later. We observed apoptotic
nuclei of the cells with DAPI staining using fluorescence micro-
scopy 48 h after the addition of cisplatin. Compared with the mock
and mimic control, the apoptotic rates were significantly higher in
the cells transfected with the miR-137 mimic (Figure 3A and B).
Consistently, when the miR-137 inhibitor was transfected into
SKOV3 cells, the apoptotic ratio was lower than that of the mock
or control group (Figure 3C).

Furthermore, the effect of miR-137 in promoting cell apoptosis
was confirmed in SKOV3 cells by the TUNEL assay. Compared

with the mimic control, the apoptotic rates were higher in the cells
transfected with the miR-137 mimic (Figure 4A). The effect of
miR-137 in promoting cell apoptosis was also supported by the
IC50 values of cisplatin in SKOV3 cells transfected with the
miR-137 mimic. As shown in Supplementary Figure S2, the MTT
cell viability assay indicated that the IC50 values of cisplatin
decreased significantly due to transfection with the miR-137
mimic, suggesting that miR-137 is effective in increasing the
sensitivity of SKOV3 ovarian cancer cells to cisplatin-induced
apoptosis.

In addition, DAPI staining experiments were performed with
A2780 ovarian cancer cells and primary cultured epithelial ovarian
cancer (primary EOC) cells isolated from patient ascites. Apoptosis
was observed in A2780 and primary EOC cells treated with 10mM

cisplatin at 24 and 48 h (Figure 4B and C). The apoptotic ratio was
notably higher in the cells transfected with the miR-137 mimic at
24 and 48 h. Altogether, these data suggest that miR-137 can
increase the sensitivity of ovarian cancer cells to cisplatin-induced
apoptosis.

Disruption of miR-137 via CRISPR/Cas9 up-regulates XIAP and
decreases apoptosis in A2780 cells. To further confirm the effect
of miR-137 in ovarian cancer cells, the CRISPR/Cas9 system was
used to perform miR-137 genome editing. We design three small
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guide RNAs (sgRNAs) that target different locations of the miR-
137 genome, including the upstream, downstream and exact region
of mature miR-137 (Figure 5A). To obtain the strongest effect with
the disruption of the miR-137 genomic sequence, we measured
the expression level of miR-137 in seven ovarian cell lines using
qRT-PCR and chose A2780, with the highest level of miR-137
expression, to perform miR-137 genome editing (Figure 5B).
Following the schedule (Figure 5C), A2780 cells were infected with
the lentiviral particle of CRISPR/Cas9 (lentiCRISPR) that over-
expresses, respectively, sgRNA and Cas9 endonuclease, and then
were selected with puromycin. The clones of single cells with miR-
137 disruption were identified through PCR and sequencing of the
miR-137 genomic fragment. The sequences of the three clones with

both miR-137 alleles disrupted, #1, #2 and #3, are shown in
Figure 5D, and the Sanger sequencing results for #1 is shown in
Supplementary Figure S3. These clones cannot express miR-137 as
determined by qRT-PCR. These above findings indicated that we
could successfully disrupt miR-137 genomic DNA in A2780
ovarian cancer cells. Next, we used these clones to test whether
miR-137 regulated XIAP and the effects of miR-137 on apoptosis.
The results of western blot assay showed that the protein levels of
XIAP were down-regulated in all three clones (Figure 5E). To
investigate the effects of miR-137 on apoptosis, two clones, #1 and
#2, were treated with 10 mM cisplatin for 48 h. We observed that,
compared with the wild-type A2780 control cells, the apoptotic
rates were significantly lower in the cells of both #1 and #2
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(Figure 5F), indicating that the clones with miR-137 disrupted
seem less sensitive than A2780 cells to the same concentration of
cisplatin. These data revealed that the disruption of the miR-137
genomic sequence affected the expression of miR-137 and
increased the protein level of XIAP, leading to the decrease in
the sensitivity to cisplatin-induced apoptosis in A2780 cells.

XIAP attenuates the effect of miR-137 on apoptosis. To test
whether XIAP can protect ovarian cancer cells from cisplatin-
induced apoptosis, we forced XIAP expression in SKOV3 cells
through lentiviral infection and decreased XIAP expression in
SKOV3 and primary EOC cells through siRNA transfection,
The results of DAPI staining suggest that XIAP can protect
SKOV3 and primary EOC cells from cisplatin-induced apoptosis
(Supplementary Figure S4). To further validate the hypothesis that
the effect ofmiR-137 in sensitising ovarian cancer cells to cisplatin-
induced apoptosis is mediated by XIAP, rescue experiments were
carried out for miR-137. SKOV3 cells were first infected with
different amounts of lentivirus expressing XIAP (multiplicities of
infection (MOI): 1 or 2), and then the cells were transfected with
100 nM of the miR-137 mimic 24 h later. The DAPI staining data
indicated that no difference between the MOI 1 experimental and

control groups (Figure 6A and B), implying that XIAP inhibited
the effect of miR-137 in enhancing apoptosis in SKOV3 cells. With
a MOI of 2, the enhancing effect of miR-137 was strongly
inhibited. Consistently, the SKOV3 cells co-transfected with 50 nM

of the miR-137 inhibitor and 50 nM of XIAP siRNA (si-XIAP-2)
showed no difference between the experimental and control groups
(Figure 6C). Furthermore, when the amount of co-transfected
XIAP siRNA was decreased, the inhibiting effect of the miR-137
inhibitor was only partially rescued. Altogether, these results
further suggest that XIAP is one of the functional downstream
targets of miR-137 in promoting ovarian cancer cell apoptosis.

miR-137 is inversely correlated with the level of XIAP protein in
ovarian cancer. Given that miR-137 functionally regulates XIAP
expression at the protein level but not at the mRNA level in
ovarian cancer cells, we further determined whether the expression
level of miR-137 is correlated with the protein level of XIAP in
both ovarian cancer tissues and cell lines. Thirty-five EOC tissues
of grade I-III, as well as 29 age-matched normal ovarian tissues
were used for the analysis. The expression levels of miR-137 and
XIAP proteins were determined by qRT-PCR and western blot,
respectively. Compared with normal ovarian tissues, the expression
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of XIAP is upregulated, whereas miR-137 is down-regulated, in
ovarian cancer tissues (Figure 7A and B). Using Pearson’s
correlation analysis, we obtained a statistically inverse correlation
between the levels of miR-137 and XIAP proteins (R¼ � 0.51,
P¼ 0.01) in all 35 cancer tissues (Figure 7C). In addition, the levels
of miR-137 and XIAP proteins in the seven ovarian cancer cell
lines (CAOV3, OVCAR3, SKOV3, A2780, ES-2, COC1, and
COC1/DDP) were measured and a similar inverse correlation was
obtained by Pearson’s correlation analysis (Figure 7D). Altogether,
these results suggest that miR-137 expression is inversely
correlated with the level of XIAP protein in both ovarian cancer
tissues and cell lines.

DISCUSSION

Deregulation of XIAP often occurs in cancers (Li et al, 2000; Sasaki
et al, 2000; Tamm et al, 2000). In pancreatic cancer, XIAP is
overexpressed and correlates to resistance to cancer drugs, and the
down-regulation of XIAP by siRNA interference confirmed that
XIAP affects the response to the anti-cancer drugs (Lopes et al,
2007). It was reported that the level of XIAP expression was
increased in ovarian cancer (Potkin et al, 2009; McGrath et al,
2013; Shibata et al, 2013). The reduction of XIAP expression
through RNAi sensitises cancer cells to several diverse chemother-
apeutics (McManus et al, 2004), providing a new insight into the
effect of XIAP on drug resistance and the significance to uncover
the mechanism of the dysregulation of XIAP in ovarian cancer.

Very few gene point mutations of XIAP have been reported in
cancers. Although there are some variations, most of them do not
account for the distinct expression of XIAP in tumours and cancer
cells (Kang et al, 2008; Ulybina et al, 2011; Xie et al, 2013). In
addition, certain reports have suggested that XIAP is regulated by
miRNA at the posttranscriptional level via binding to the 30UTR of
XIAP mRNA in some cancers (Zhu et al, 2012; Xie et al, 2013). To
investigate the mechanism of XIAP dysregulation in ovarian
cancer, we focused on abnormal miRNAs especially those down-
regulated in ovarian cancer. We select 22 miRNAs that were
reported to be down-regulated in ovarian cancer in the literature
and that were predicted to target the 30UTR of XIAP mRNA
through several algorithms. Among the eight miRNAs with
inhibiting effects found in luciferase reporter screens, we selected
miR-137, which significantly regulates the 30UTR of XIAP mRNA,
for further experiments. For the first time, we report that miR-137
can regulate XIAP in 293T and ovarian cancer cells. Several lines of
evidence support a direct interaction between miR-137 and the
XIAP 30UTR. First, the human XIAP 30UTR contains two putative
miR-137 binding sites with prominent seed matches (Figures 1B
and 2A). Second, miR-137 can suppress the activity of the
luciferase reporter gene fused to the 30UTR of XIAP mRNA. While
the target sites were mutated, no significant changes have been
shown in luciferase activities. Third, synthetic miR-137 mimic
could repress the endogenous expression of XIAP at the protein
level in SKOV3 ovarian cancer cells. Fourth, the expression of
XIAP cDNA without its native 30UTR can rescue the apoptosis-
promoting effect of miR-137, and the decrease in XIAP with
siRNA can also rescue the inhibiting effect of miR-137. Fifth, miR-
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137 expression is inversely correlated with the level of XIAP
protein in both ovarian cancer tissues and cell lines. In addition,
cloning cells with miR-137 disruption via CRISPR/Cas9 genome
editing show that the level of XIAP protein is increased, suggesting
XIAP is regulated by miR-137 in ovarian cancer.

miRNAs are important and ubiquitous in eukaryotes, and
combinatorial regulation by miRNAs makes it possible that a given
mRNA is regulated by multiple miRNAs and a given miRNA could
target multiple mRNAs (Krek et al, 2005; Rajewsky, 2006).
p21Cip1/Waf1, a member of the Cip/Kip family of cyclin kinase
inhibitors, is inhibited by 28 miRNAs at the translational level
(Wu et al, 2010). Both miR-137 and miR-2008 promote ROS
production and the clearance of pathogenic microorganisms by
regulating the common target AjBHMT (Zhang et al, 2015). Our
previous study showed that miR-24-3p and miR-27a-3p can
enhance cell proliferation in glioma cells via cooperative regulation
of MXI1 (Xu et al, 2013). Our current study provides the first
identification and demonstration that multiple miRNAs through
their down-regulation function can regulate XIAP, thus enhancing
our understanding of the function and regulation of XIAP in
ovarian cancer cells. Such combinational regulation of miRNAs
facilitates the maintenance of the stable expression of the target
gene under physiological conditions. However, under pathological
conditions, multiple miRNAs might be dysregulated such as several
of the miRNAs in our study, and their down-regulation might be
one of the reasons for diseases such as cancers.

In summary, we found that several miRNAs, including miR-
137, can target the XIAP gene through a systematic screen, and
miR-137 decreased XIAP expression through special sites in the
XIAP 30UTR. Our results that miR-137 promoted epithelial
ovarian cancer cells to undergo cisplatin-induced apoptosis suggest
that miR-137 is involved in the regulation of apoptosis in ovarian
cancer cells and that miR-137 is a promising potential therapeutic
target. Therefore, exploiting therapy based on miR-137 may be
beneficial for the clinical treatment of ovarian cancer and
overcoming drug resistance.
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