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Abstract

Coronary bifurcations are prone to atherosclerotic plaque growth, experiencing regions of

reduced wall shear stress (WSS) and increased platelet adhesion. This study compares

effects across different rheological approaches on hemodynamics, combined with a shear

stress exposure history model of platelets within a stenosed porcine bifurcation. Simulations

used both single/multiphase blood models to determine which approach best predicts phe-

nomena associated with atherosclerosis and atherothrombosis. A novel Lagrangian platelet

tracking model was used to evaluate residence time and shear history of platelets indicating

likely regions of thrombus formation. Results show a decrease in area of regions with patho-

logically low time-averaged WSS with the use of multiphase models, particularly in a ste-

notic bifurcation. Significant non-Newtonian effects were observed due to low-shear and

varying hematocrit levels found on the outer walls of the bifurcation and distal to the steno-

sis. Platelet residence time increased 11% in the stenosed artery, with exposure times to

low-shear sufficient for red blood cell aggregation (>1.5 s). increasing the risk of thrombosis.

This shows stenotic artery hemodynamics are inherently non-Newtonian and multiphase,

with variations in hematocrit (0.163–0.617) and elevated vorticity distal to stenosis (+15%)

impairing the function of the endothelium via reduced time-averaged WSS regions, rheologi-

cal properties and platelet activation/adhesion.

Introduction

Cardiovascular diseases were responsible for an estimated 18.8 million deaths in 2017 [1], with

heart disease being the leading cause of death in the USA in the same year [2]. Of particular

relevance to cardiovascular health are the coronary arteries, two major blood vessels which

bifurcate into multiple smaller branches. The coronary arteries have been associated with sev-

eral clinical pathologies, including atherosclerotic plaques/lesions [3, 4], arterial stiffening [5]

and increased thrombosis [6] (clot formation). Atherosclerosis is the development of fatty pla-

ques within the artery wall, with their onset and progression associated with regions of low
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time-averaged wall shear stress [7] (TAWSS) occurring around the branching of the artery [8]

or distal to regions of stenosis [9]. In addition to plaque rupture causing myocardial infarction

or sudden death [2], the altered hemodynamics arising from inflammatory plaque growth also

impacts the behaviour and activation of platelets; catalysing plaque/fibrin growth through

increased platelet adhesion and increased risk of thrombus formation [10] (atherothrombosis),

with a detailed review of these phenomena provided by Davi and Patrono [11].

Computational fluid dynamics (CFD) is a useful tool to study vascular pathologies and is

capable of predicting the location and progression of coronary atherosclerotic plaques [12],

growth/rupture of aneurysms [13] and microscopic thrombus growth [14]. The branching of

the coronary arteries results in low-shear and stagnant/recirculation environments occurring

on the outer walls [15], being common sites for plaque growth and hence stenosis to occur.

The realistic simulation of blood flow in these regions is crucial for accurate hemodynamic

predictions and hence the understanding of disease mechanisms. There are multiple funda-

mentally different approaches to blood rheology [16], all based on fitting constituent equations

to differing sets of experimental viscometer data [17]. Blood is a multiphase fluid, comprised

predominantly of a dilute suspension of red blood cells (RBC) within a plasma continuum

[18]. Rheological properties depend on fluid shear rates, the concentration of RBC [19]

(hematocrit) and crucially the aggregation of individual RBC into a rouleaux, which is a key

factor in non-Newtonian behaviour. Rouleaux formation requires prolonged exposure to low-

shear rates [20] (<50 s-1), and as is inherently a microscopic phenomenon [21]. As there are

approximately 5×106 RBC per mm3 of blood [22], it is impossible to simulate this phenome-

non for large arteries with current computational power. Shear-rates in larger arteries are con-

ventionally considered to be sufficiently high for rouleaux formation to be negligible, in which

case a more simplistic approach is to assume blood to be a homogeneous single-phase fluid,

with constant density and either a constant [23] (Newtonian) or a shear-thinning (non-Newto-

nian) viscosity [24]. However, as a low-shear environment is commonly associated with dis-

ease, the extent to which this assumption oversimplifies crucial behaviour is contended [25].

As macroscale multiphase models do not simulate individual RBC, representing the rheologi-

cal effects of aggregation and rouleaux formation is an ongoing challenge. However, the recent

5-parameter Modified Krieger Model (MKM5), is based upon the Krieger model for suspen-

sions and attempts to incorporate the effect of aggregation on the viscosity of blood [26].

Many of the studies that focus on the impact of different types of rheology in coronary

artery hemodynamics employ healthy geometries, and assume blood as a single-phase fluid

[27–29], with fewer studies assessing the effects of multiphase models in coronary hemody-

namics [30, 31]. Despite significant evidence on the non-Newtonian effects occurring around

the coronary bifurcation, and the importance of hematocrit on the properties of blood, to date

there is no conclusive study comparing these effects on parameters associated with the pro-

gression of atherosclerosis, and the subsequent impact on atherothrombosis/platelet

activation.

The present study aims to compare the impact of different rheological assumptions on a

diseased left coronary bifurcation (at the level of the left anterior descending artery, LAD, and

the left circumflex artery, LCx). In particular, the prediction of blood flow in the low-shear

environment distal to the bifurcation/stenotic regions, including the aggregatory potential of

RBC via low-shear residence time and variations in hematocrit. Furthermore, the effect of ste-

nosis on the transport/activation of platelets will be considered for a multiphase model, using a

novel Lagrangian platelet simulation to evaluate trajectories, residence times and level of acti-

vation. A total of four rheological models were considered: single-phase Newtonian (SN); sin-

gle-phase Carreau (SC) multiphase Newtonian (MN); and multiphase MKM5.
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Methods

Geometry

Coronary bifurcation. The vessel geometry was constructed using a centreline profile

from an ex vivo sample of healthy porcine left main coronary artery bifurcation (LAD-LCx)

from Fresh Tissue Supplies, Horsham, UK. This was scaled to match human physiological

dimensions [32] using SolidWorks (SolidWorks, Dassault Systèmes, Vèlizy-Villacublay,

France), and is shown in Fig 1. The total length of the artery is 70 mm, with a branch angle of

approximately 72˚, an inlet diameter of 4.5 mm, and outlet diameters of the LAD and LCx

branch being 3 mm and 2 mm, respectively. The reduction in circular lumen diameter was

achieved via linear-interpolation between the inlet-outlet resulting in a gradual tapering. To

avoid any unwanted entrance/exit effects on the hemodynamics of the bifurcation, the inlets

and outlets have been extended 15 mm using a constant diameter.

Diseased coronary bifurcation. A common coronary artery disease is the growth of ath-

erosclerotic plaques within the lumen surface resulting in stenosis and a reduction in lumen

diameter. Based upon an in vivo study of 140 patients, the most common occurring stenosis in

coronary artery bifurcations is a continuous and diffuse plaque in both the LAD and LCx

branches [33]. Stenosis can be defined as the reduction in lumen diameter due to plaque

Fig 1. (A)—Porcine ex vivo heart segment, with coronary geometry marked in red. (B) Coronary artery bifurcation geometry including domain extensions shown in

blue (LAD, left anterior descending artery; LCx, left circumflex artery; LM, left main coronary artery).

https://doi.org/10.1371/journal.pone.0259196.g001
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formation (Eq 1), with this study using a 50% stenosis.

Sp ¼
Dhealthy � Dmin

Dhealthy
ð1Þ

where Sp is the percentage stenosis, Dhealthy is the diameter before the plaque and Dmin is the

minimum arterial dimeter at the point of maximum stenosis. A comparison between the

healthy/diseased arterial geometry is shown in Fig 2.

Rheological models

Whole blood exhibits significant non-Newtonian properties [34], with a viscosity that depends

on shear rate (Eq 2) and hematocrit (red blood cell concentration) as well as a variety of other

mechanical/biological factors [16].

_g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dij � Dij

q
ð2Þ

where _g is the shear rate of the fluid, D is the strain rate tensor with i,j = 1,2,3 as the inner prod-

ucts. This study examines four different rheological models, consisting of two single-phase

models (which consider blood a single homogenous fluid), and two multiphase models (which

consider blood as a dilute suspension of RBC within a plasma continuum). Of the two single-

phase models, one assumes blood to be Newtonian [35] with constant viscosity (Single Newto-

nian, SN), and the other uses a shear dependant Carreau [36] viscosity definition (Single Car-

reau, SC). Similarly for the two multiphase models, one uses a Newtonian approach, where the

viscosity of each phase is constant (Multi Newtonian, MN) and the other uses a modified

Fig 2. Comparison between (A) healthy and (B) diseased arterial bifurcation with stenosis.

https://doi.org/10.1371/journal.pone.0259196.g002
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Krieger model with 5 parameters [26] (MKM5) which allows RBC viscosity to vary with both

shear forces and hematocrit. The viscosity of whole blood at varying physiological shear rates

for each of the four models is given in Fig 3. The accompanying mathematical definitions and

coefficients for each model are provided in Table 1.

In Table 1, μrbc is the viscosity of the RBC, μp is the viscosity of plasma, ;rbc is the hematocrit

and ;rbc,crit is the critical hematocrit where the RBC no longer behave as a fluid. As the defini-

tions in Table 1 are for the viscosities of whole blood, the viscous definitions required for the

RBC in the MKM5 model can be inferred from a weighted average shown in Eq 3.

mrbc ¼
mblood � ð1 � ;rbcÞmp

;rbc
ð3Þ

where μblood is the definition of MKM5 viscosity provided in Table 1. This equation was also

used to calculate the Newtonian viscosity of the RBC based upon a hematocrit of 0.45 and a

whole blood mixture viscosity of 3.45 mPa.s.

Numerical methods

Governing equations

The governing equations for the continuity of mass and momentum for the single and multi-

phase models are given in Table 2, including additional multiphase relationships. These equa-

tions were solved numerically using the commercial finite-volume solver Fluent (Ansys v20.1,

Fig 3. Apparent blood viscosity versus shear rate for the four rheological models (Multiphase models use a Hematocrit of 0.45).

https://doi.org/10.1371/journal.pone.0259196.g003
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Ansys Inc., Canonsburg, PA, USA). The single-phase models assumed blood to be incompress-

ible with a density [37] of ρ = 1060 kg/m3. The transport and phase interactions of the multi-

phase models were implemented using an Eulerian-Eulerian mixture model similar to other

cardiovascular models [38], which considers RBC as a dilute suspension within a Newtonian

plasma continuum, with a comprehensive overview of this technique available elsewhere [30].

The momentum exchange coefficient between phases is derived from the RBC interfacial-

area [39], and the viscous drag they experience, which is given by the Shiller-Naumann [40]

model for spheres. The only external force considered was the virtual mass force, arising from

the changing inertia of the plasma phase due to relative RBC acceleration. The lift due to shear

is also not included due to limitations of numerical models at wide ranging Reynolds num-

bers/shear rates near the boundary [41] as well as only being recommended for sub-micron

particles [42]. In both multiphase models, the density of plasma [17] and RBC [43] were set as

ρa = 1003 kg/m3 and ρb = 1096 kg/m3, respectively. The hematocrit distribution of the domain

and inlet was set at a uniform 45% based upon physiological ranges [44], however, the exact in
vivo distribution is unknown.

Platelet modelling

To further evaluate the hemodynamics of the coronary bifurcation, platelets were released into

the domain and tracked over multiple cardiac cycles to evaluate their path lines and physical

properties. The platelets were considered as 2 μm diameter rigid spheres [45] with density ρp =

1040 kg/m3, and were assumed not to impact the blood transport (one way interaction with

fluid phases). The platelets path line is calculated by equating particle inertia to the sum of

forces upon the particle from Eq 4.

dup
!

dt
¼ FD ~u � up

!
� �

þ~F ð4Þ

where~u and up
! are the fluid and platelet velocity, respectively, FD is the drag force (Eq 5) and

~F is the contribution of external forces.

FD ¼
18m

rpdp
2

CDRe
24

ð5Þ

Table 1. Definitions for the rheological models.

Model Viscosity definition (Pa.s) Parameters

Single-phase Newtonian [35] (SN) μ = 0.00345 -

Single-phase Carreau [36] (SC) m ¼ m1 þ m0 � m1ð Þ½1þ ðl _gÞ
2
�
n� 1

2 μ1 = 0.00345, n = 0.25

μ0 = 0.25, λ = 25

Multiphase Newtonian (MN) μ = μrbc;rbc + μp(1 − ;rbc) μrbc = 0.006163

μp = 0.00123

Multiphase Modified Krieger Model 5 Parameters [30] (MKM5) m ¼ mp 1 �
;rbc
;rbc;crit

h i� n μp = 0.00123

;rbc,crit = 0.95

n ¼
n1 if ;rbc < 0:2

n1 þ nst if ;rbc > 0:2

(
b = 8.78084

c = 2.82354

n1 ¼ be� c;rbc ; nst ¼ bg0
� n β = 16.27775

g0 ¼ 1þ ðl _gÞ
ng ν = 0.14275

λ = 1252.64407

νg = 2

https://doi.org/10.1371/journal.pone.0259196.t001
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where dp is platelet diameter, Re is the relative Reynolds number and CD is the drag coefficient

of the platelet defined in Eq 6, using coefficients over a range of Reynolds numbers determined

by Morsi and Alexander [46].

CD ¼ a1 þ
a2

Re
þ
a3

Re2
ð6Þ

Whilst the most significant force upon the platelets is viscous drag, other important forces

when particle/fluid densities are similar are the pressure gradient and virtual mass forces (Eqs

7 and 8) acting upon the platelet and are given, respectively, by:

Fp
!
¼
r

rp
up
!r~u ð7Þ

Fvmp
��!
¼

r

2rp
up
!r~u �

d up
!

dt

 !

ð8Þ

Additional forces such as those due to buoyancy, Magnus force, and Brownian motion are

not included as they were assumed negligible [47]. The time dependant shear history of the

platelets was evaluated using the approach first presented by Bluestein et al. [48], which deter-

mines the ‘level of activation’ (LOA) via the cumulative sum of a platelets exposure time (Δt)
to shear stresses within the blood (Eq 9).

L:O:A ¼
X
½ðm � _gÞ � Dt� ð9Þ

This relativistic measure can identify potential regions for the activation/aggregation of

platelets, with an elevated LOA being defined as values>66th percentile from the total range.

Platelets were released in 8 separate groups from the physiological inlet at 0.1 s intervals (Fig

4), with each mesh element seeding one platelet, for a total of 13439 per release which approxi-

mates the normal human concentration [49]. The platelets were realised after 3 cardiac cycles

(2.4 s) had been completed and were tracked through the flow field for a total period of 4 s (up

to 6.4 s).

Table 2. Conservation of mass and momentum for the single and multiphase models, with the volume fraction

and external force (virtual mass) definitions for the multiphase models.

Single-phase equations

@ui
@xi
¼ 0 where u is the velocity, x is the spatial

coordinate, t is time, μ is fluid viscosity, ρ
is fluid density and p is pressure.

@ui
@t þ uj

@ui
@xj
¼ @

@xj
m
@ui
@xj

� �
� 1

r

@p
@xi

Multiphase equations
P2

n¼1
;n ¼ 1 where ; is the volume fraction of each

phase, a, b are the primary/secondary

phases (plasma/RBC) respectively, ρb is

the density of phase b,~vb is the velocity of

phase b, p is pressure (shared by all

phases), ��tb is the stress-strain tensor of

phase b, Kab is the interphase momentum

exchange coefficient and~Fext are the

external forces.

@

@t ;brbð Þ þ r � ;brb~vbð Þ ¼ 0

@

@t ;brb~vbð Þ þ r � ;brb~vb~vbð Þ ¼ � ;brpþr � ��tb þ
X2

a;b¼1

Kabð~va� ~vbÞ þ~Fext

~Fvm ¼ 0:5;bra
da~va
dt �

db~vb
dt

� �

https://doi.org/10.1371/journal.pone.0259196.t002
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Boundary conditions

Inlet and outlet. A typical physiological left main coronary velocity waveform [50] (Fig 4)

was fitted to a Fourier series and scaled to match the model size, with a Reynolds number

range from 277–691.

A parabolic velocity profile describing developed laminar flow [51] was implemented to the

waveform in Fig 4 using Eq 10.

u r; tð Þ ¼ 2V tð Þ 1 �
r2

R2

� �� �

ð10Þ

where V(t) is the inlet velocity waveform, r is the radial position at the inlet and R is the maxi-

mum radius of the inlet (4.5 mm). A constant pressure of 120 mmHg (16 kPa) which approxi-

mates with mean systolic blood pressure [52] was applied at the outlets.

Hemodynamic parameters

To compare the differences in the hemodynamics arising from the different geometries and

rheology models, parameters commonly associated with the assessment of atherosclerosis are

defined in Eqs 11–17.

Wall shear stress (WSS) is the force exerted by the flow of blood over the artery surface, and

is a function of the viscosity and velocity gradient of the fluid, defined in Eq 11.

tw ¼ m
@ut
@n
jwall ð11Þ

where τw is wall shear stress, ut is tangential wall velocity and n is unit vector perpendicular to

the wall. The WSS fluctuates throughout the cardiac cycle, and so averaging WSS over the

Fig 4. Variation of inlet velocity against time applied to the coronary artery, red dots indicate the 0.1 s intervals during which platelets were released into flow.

https://doi.org/10.1371/journal.pone.0259196.g004
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cycle can better represent the flow conditions. Time-averaged wall shear stress (TAWSS) (Eq

12) has been extensively correlated to the onset and progression of CVD such as atherosclero-

sis, with a magnitude <1 Pa considered atherodegenerative based upon multiple in vivo and in
vitro studies [7, 53, 54].

�tw ¼
1

T

Z T

0

jtwj dt ð12Þ

where �tw is the TAWSS and T is the length of one cardiac cycle. The oscillatory shear index

(OSI) is a dimensionless parameter introduced by He & Ku (Eq 13), with values near 0 indicat-

ing unidirectional flow, and values near 0.5 indicating highly oscillatory flow [55]. An in vitro
study correlated increased particulate adhesion with elevated OSI [56].

yi ¼
1

2
1 �
j
R T

0
tw dtj

R T
0
jtwj dt

 !

ð13Þ

where θi is the OSI. Another WSS based parameter commonly used to assess atherodegenera-

tive conditions is the relative residence time (RRT), which provides a relative measure of the

time blood spends in an arbitrary near-wall region [57], and is defined in Eq 14.

tr ¼
k

ð1 � 2yiÞ�tw
ð14Þ

where tr is the RRT, and k is a proportionality constant arising from the near-wall assumption

set as k = 1. Instead of simply reporting magnitudes of OSI and RRT, the percentage area of

artery wall with values greater than the 66th percentile is instead quantified (OSI66 and RRT66

respectively) to allow for more meaningful comparisons of the disturbed hemodynamics

between geometries, as described by De Nisco et al. [58].

In addition to these WSS based parameters, the time-averaged non-Newtonian importance

factor (TANNIF) introduced by Ballyk et al. [59] is used to quantify the extent of non-Newto-

nian flow in the artery, with values outside of unity indicating highly non-Newtonian flow (Eq

15).

�IL ¼
1

T

Z T

0

m

mN
dt ð15Þ

where �IL is the TANNIF and μN is the Newtonian viscosity listed in Table 1 (3.45 mPas). The

final two parameters evaluated are based upon recent developments in correlating the vorticity

induced flow disturbance to patient-specific artery models [60], comparing the increase in vor-

ticity in healthy/diseased geometries to the type of plaques/lesions which develop. The time-

average of the vorticity is taken over a cardiac cycle, and then averaged over the blood volume

in the bifurcation (�ω), with the diseased vorticity index (DVI) being the difference in �ω
between the healthy/diseased cases (Eqs 16 and 17 respectively).

�o ¼
1

V

Z V

0

1

T

Z T

0

jojdt dV ð16Þ

VD ¼ �oD � �oH ð17Þ

where �o is the volume average of the time-averaged vorticity and VD is the DVI.
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Solver settings

The solution to the above equations was obtained numerically via the discrete form of the SIM-

PLE algorithm for the pressure-velocity coupling, using a first order time discretisation

scheme. All models were solved in parallel, utilising 120 cores on high performance computing

nodes. To generate the hemodynamic parameters, each model was solved for a total of 3 car-

diac cycles (2.4 s), with a time step of 1 ms, and all hemodynamic results being evaluated over

the final cardiac cycle. The platelet model was then solved for an additional 4 s of flow time.

Convergence criteria per iteration was set at a mass continuity residual <10−4, and velocity

residuals <10−6 with the single and multiphase models taking an average wall clock time of 7

and 24 hours, respectively.

Mesh convergence

To ensure a mesh independent solution is obtained, simulations of the diseased bifurcation

were performed at 7 incrementally increasing mesh refinements. These were performed as a

steady-state simulation, using the maximum inlet velocity of 0.5 m/s. A final meshing criterion

was selected once the percentage difference of peak blood velocity and average WSS on the

bifurcation flow divider were both below 0.4% for each mesh refinement. The results of the

convergence study are shown in Fig 5, with the final mesh consisting of 5.4 million mostly tet-

rahedral elements, with a 0.25 mm thick prismatic layer of 10 elements around the lumen

walls for an accurate boundary layer formulation (Fig 6). The mesh has minimum, average

and maximum edge length of 0.001, 0.1 and 0.175 mm respectively, with an average element

skewness and orthogonal quality of 0.20 and 0.80, respectively [61].

Fig 5. Percentage difference in peak velocity and bifurcation average wall shear stress for 7 mesh refinements.

https://doi.org/10.1371/journal.pone.0259196.g005

PLOS ONE Blood rheology and platelet activation in a coronary bifurcation

PLOS ONE | https://doi.org/10.1371/journal.pone.0259196 November 3, 2021 10 / 26

https://doi.org/10.1371/journal.pone.0259196.g005
https://doi.org/10.1371/journal.pone.0259196


Results

The hemodynamics parameters defined previously were evaluated over the 3rd cardiac cycle

for the healthy and diseased arteries and are reported in Table 3.

Fig 6. Mesh on surface of diseased coronary artery bifurcation and a cross section at inlet showing inflation layers near boundary.

https://doi.org/10.1371/journal.pone.0259196.g006
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Shear stress parameters

All models show a consistent distribution of TAWSS around the bifurcation, with regions of

low TAWSS localised on the outer walls, proximal to the bifurcation and distal to the stenosis

(Fig 7). In the healthy artery, all models except the MKM5 show regions with pathologically

low TAWSS <1 Pa. Single-phase models show consistently greater TAWSS, OSI66 and RRT66

values compared to the multiphase models, in particular the MKM5 model. Maximum values

of TAWSS occur at the throat of the stenosis, with greatest values occurring in the LCx branch

in all models. Despite allowing for RBC transport and phase interactions, the MN model per-

forms most similarly to both single-phase approaches for TAWSS results.

The introduction of stenosis results in a moderate increase in areas with a pathologically

low TAWSS for all models (+5.5% average), again with the MKM5’s TAWSS results being

smaller and localised closer to the stenosis (Fig 7). The SN model has the greatest results of all

stress-based parameters throughout. Additionally, the TANNIF more than doubles for the SC

and MKM5 models, indicating the presence of highly non-Newtonian flow in the diseased

artery. Despite both the SC and MKM5 models both demonstrating non-Newtonian flow, the

magnitude and distribution of TAWSS is still different, showing the importance of hematocrit

on rheology and near-wall hemodynamics.

Vorticity

Results in terms of vorticity were consistent across all rheological models, with the largest dif-

ference from the Newtonian model being 2.2% (MN) and 5.2% (MKM5) in healthy and dis-

eased arteries, respectively. The regions of disturbed flow result in a wide range of vorticity

values, and hence the large standard deviation in values across the cycle. The disruption to the

flow caused by the stenosis increased the vorticial nature of the flow for all models, with an

average increase of 15%. The reduction in lumen diameter and increased shear at the throat of

the stenosis is shown to increase the vorticity of the flow distal to the throat of the stenosis, sep-

arating from the wall and spreading across the artery (Fig 8). Multiphase models predict a

more localised disruption to the vorticity, closer to the throat of the stenosis, with the flow nor-

malising much sooner than in the two single-phase approaches. Multiphase models yielded a

smaller DVI than the single-phase, with the MN and MKM5 having a difference of 22.4% and

37.8% from the single-phase Newtonian, respectively.

Hematocrit

To further analyse the differences between the two multiphase models, the distribution of

hematocrit around the bifurcation in both the healthy and diseased cases is shown in Fig 9.

Table 3. Parameters averaged over the final cardiac cycle for the healthy and stenosed geometries (TA = time averaged).

Parameter Healthy Diseased

SN SC MN MKM5 SN SC MN MKM5

�ω (1/s) 234 ± 173 232 ± 173 227 ± 196 230 ± 179 275 ± 249 271 ± 248 259 ± 256 256 ± 227

DVI (mm3/s) - 4.15 x105 3.90 x105 3.22 x105 2.58 x105

TAWSS area < 1 Pa 9.48% 5.89% 5.56% 0.05% 15.09% 13.34% 10.54% 3.79%

OSI66 0.92% 0.87% 0.78% 0.61% 3.81% 3.62% 3.20% 2.09%

RRT66 5.14% 3.47% 3.31% 0.01% 11.32% 10.11% 8.23% 5.55%

Max TANNIF 1.00 3.96 1.08 2.68 1.00 13.10 1.09 6.27

Max TA Hematocrit - 0.508 0.595 - 0.515 0.613

Min TA Hematocrit 0.321 0.204 0.282 0.167

https://doi.org/10.1371/journal.pone.0259196.t003
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Despite a uniform hematocrit inlet condition of 0.45 for both models, there is a significant dif-

ference in RBC concentration and hence phase transport between the two models. The MN

model shows minimal deviation from the uniform distribution, even in the significantly dis-

turbed flow occurring at the flow divider and the outer walls of the stenosis. The increased

RBC transport arising in the MKM5 model predicts large regions of the artery with both

Fig 7. TAWSS contours of regions<1 Pa, for the left coronary bifurcation for the single Newtonian healthy (A) and diseased (B) cases, single Carreau healthy (C) and

diseased (D) cases, multi Newtonian healthy (E) and diseased (F) cases, and the multi MKM5 healthy (G) and diseased (H) cases, with the reverse angle inlaid.

https://doi.org/10.1371/journal.pone.0259196.g007
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Fig 8. Mid-plane cross section of time averaged blood vorticity for the diseased artery: (A) Single-Newtonian, (B) Single-Carreau, (C) Multi-Newtonian and (D)

Multi-MKM5 models.

Results for the healthy artery are inlaid as reference.

https://doi.org/10.1371/journal.pone.0259196.g008
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Fig 9. Red and blue iso-contours indicating regions of high (>0.5) and low (<0.4) TA hematocrit, respectively, for the healthy Multi-

Newtonian (A) and Multi-MKM5 (B) models, and for the diseased Multi-Newtonian (C) and Multi-MKM5 (D) models, with reverse views

inlaid.

https://doi.org/10.1371/journal.pone.0259196.g009
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increased and decreased hematocrit. As increased hematocrit will result in increased blood vis-

cosity, these regions will experience elevated WSS and vice versa.

Platelet tracking

The platelet tracking model was implemented for the multiphase MKM5 model in the healthy

and stenosed arteries, with results summarised in Table 4. The Lagrangian platelet residence

time data has been used to extract regions in which the RBC shear rate is sufficiently low for

aggregation (<50 s-1) and calculate the exposure time of platelets which are continuously

exposed to this low-shear environment. This exposure time was reset to 0, if a platelet experi-

enced a shear rate>50 s-1 for longer than 0.1 s to account for the effects of disaggregation. Vid-

eos of platelet flow, residence time, LOA and aggregatory exposure time are available in the

(S1–S3 Figs).

The diseased artery has consistently greater levels of activation (~7%) than the healthy

artery, with a large increase in the residence time of platelets which experience an elevated

LOA in both the healthy (+36%) and diseased (+28%) arteries. The distribution of LOA and

residence time across all platelets released can be seen in Fig 10.

In both arteries approximately 55% of platelets have residence times below 1 cardiac cycle,

with platelets seeded in closest to the wall experiencing both the greatest residence times and

LOA. Whilst platelets in the near-wall region have long RT in both arteries, the greater shear

stress in the diseased artery results in consistently high LOA as seen in Fig 10a.

To evaluate the aggregatory potential of the low-shear environment around the bifurcation,

the distributions of exposure time to sufficiently low RBC shear rates is shown in Fig 11. There

is a distinct difference between the two arteries, with no platelets in the healthy artery exposed

to aggregatory shear rates for greater than 0.7 s, compared to the maximum exposure of 2.9 s

in the diseased artery occurring distal to the stenosis (Videos in S1–S3 Figs). The stenosis

greatly increases the area of low-shear regions in the bifurcation which in turn increase the res-

idence time of platelets and potentially RBC. The increased aggregatory potential in the dis-

eased artery is highlighted in Fig 12B, showing localised recirculation of platelets in an ultra-

low shear, high viscosity, high hematocrit, high residence time environment distal to the throat

of the stenosis.

Discussion

This study presents for the first time, a Lagrangian platelet tracking model to assess the likely

regions of platelet activation and hence indicate potential regions with an increased risk of

clotting/thrombus formation alongside a comprehensive examination of the relation between

blood rheology RBC aggregation/concentration and hemodynamics. Simulations of a porcine

LAD/LCx stenotic bifurcation have shown the importance of non-Newtonian and multiphase

Table 4. Data from platelet tracking from the MKM5 model in the healthy/diseased artery.

Parameter Healthy Diseased

Platelets released across 1 cardiac cycle 106690 107512

Mean LOA (Pa.s) 2.91 3.13

Median LOA (Pa.s) 1.67 1.75

Mean residence time of all platelets (s) 1.08 1.20

Mean residence time for platelets with an elevated LOA (s) 1.47 1.53

Mean exposure time of platelets to low-shear (<50 s-1) aggregatory flow (s) 0.19 0.37

https://doi.org/10.1371/journal.pone.0259196.t004
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Fig 10. Bar charts showing distributions of LOA (A) and residence time (B) in both arteries.

https://doi.org/10.1371/journal.pone.0259196.g010
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rheological properties on accurate predictions of parameters associated with atherosclerosis,

with initial insights into how shear stress activation of platelets catalyses atherothrombosis.

Rheology and WSS

The links between WSS and atherosclerosis in coronary arteries have been well documented

both in vivo and in silico, with regions of low TAWSS being associated with: plaque growth

[62], reduced lumen diameter [53] and increased thrombus formation [63]. An in vitro study

of coronary artery bifurcations of comparable branch angles also showed significant areas of

low-shear and stagnation on the outer walls of the bifurcation [64] as seen in Fig 7. Addition-

ally, an in vivo study of 506 patients with acute coronary syndrome confirmed the TAWSS pat-

terns in Fig 7, with peak stresses occurring at the throat of stenosis, and increased regions of

low TAWSS occurring 3–6 mm distal of the stenosis [53]. The increased RBC transport to

these regions of stagnation distal to expansion [65] (Fig 9) is also associated with increased res-

idence time of platelets (Fig 11) and atherogenic proteins which may further impair healthy

endothelial function [66].

Of the four rheological approaches used in this study, three are based upon the viscometer

data from Chien et al. [67], with the MKM5 model being fitted to the Brooks et al. [17] dataset.

Discrepancies in the range of shear rates evaluated, hematocrit concentrations and tempera-

ture of blood combined with inherent limitations in measuring viscosity at the lowest shear

rates [17] results in significant differences in predictions of blood viscosity across each model

(Table 3). This significantly lower viscosity results in greater regions predicted to have a patho-

logically low TAWSS, with even the healthy bifurcation exhibiting large regions <1 Pa.

Fig 11. Bar chart showing the distribution of exposure time for the platelets which experienced a RBC shear rate<50 s-1.

https://doi.org/10.1371/journal.pone.0259196.g011
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Furthermore, single-phase models will never be able to predict the non-Newtonian effects aris-

ing from RBC aggregation which is a key factor in non-Newtonian descriptors. Additionally in

the diseased case, whilst distributions of TAWSS are similar across all models, the atherode-

generative regions are localised much closer to the stenosis (<6 mm) as demonstrated in Stone

et al.’s in vivo study [53].

Vorticity

The vorticial nature of blood flow has been shown to impact cardiac function through multiple

in vivo studies, with increased arterial vorticity arising in patients with right ventricular dys-

function [68]. Despite this link, coronary vorticity is thoroughly unexplored despite its poten-

tial as a non-invasive biomarker for assessing hemodynamic function [69]. The present study

has demonstrated that the introduction of stenosis significantly increases the vorticity of coro-

nary blood flow by 11–18% (across all models), with regions of high vorticity extending

directly from the throat of the stenosis into the low-shear environments associated with ath-

erosclerosis [70]. With DVI being correlated to the formation and geometry of atherosclerotic

legions [60], the 38% lower value predicted by the MKM5 model compared to the SN model

clearly shows the significance that RBC/plasma interactions have on flow disturbance. Based

on Chu et al.’s patient-specific CFD study of coronary arteries [60], a lower DVI value may

imply the growth of a more focal and severe lesion which correlates to the more localised

TAWSS distribution of the MKM5 model immediately distal to the stenosis compared to the

elongated SN distribution (Fig 7). Given these results and the variability in DVI with different

rheology and phase models, it is therefore important to choose a sufficiently complex rheol-

ogy/phase model which allows for a more accurate study of the severity of stenosis in coronary

arteries.

Fig 12. Platelet path lines for the healthy (A) and diseased (B) arteries, red indicates a low enough RBC shear rate for aggregation (<50 s-1).

https://doi.org/10.1371/journal.pone.0259196.g012
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Hematocrit and platelets

Despite both multiphase models utilising the same velocity and hematocrit boundary condi-

tions, predictions in RBC transport and hematocrit vary extensively in both the healthy and

stenosed arteries (Fig 9). The non-Newtonian behaviour of RBC in the MKM5 model is most

significant in the near-wall region due to the wide range of shear rates and hematocrit occur-

ring near the surface [30]. These fluctuations in hematocrit close to the surface will not only

impact WSS magnitudes due to increased viscosity, but also affect platelet transport [71] which

is strongly linked to interaction/collisions with RBC [72], hence the limited RBC transport of

the multiphase Newtonian model is a significant limitation in accurately modelling blood

rheology.

Evaluating the behaviour of platelets and their association with thrombus/clot formation is

relevant for vascular pathologies [14, 73] (e.g. stenosis/aneurysms) but also the function of

medical devices [36, 74] (e.g. catheters/stents). Platelet transport/activation is a complex pro-

cess influenced by both mechanical factors such as shear stress [75], but also through biochem-

ical reactions with proteins/agonists within the blood itself [76], with reviews of computational

approaches by Anand & Rajagopal [77] and Yesudasan et al. [78]. The majority of platelet

models focus on predicting thrombus formation and platelet behaviour through these bio-

chemical interactions. However, the majority of these models focus on micro-scale flow [79,

80] which are poorly suited for the larger scale hemodynamics of this coronary bifurcation.

Whilst the platelet model presented in this study lacks the biochemical activation potential of

other models, its key benefit is linking the level of activation to prolonged residence times in

specific ‘at-risk’ areas, to indicate likely regions for aggregation, sedimentation and clot forma-

tion in diseased arteries.

The seeding of platelets in the near-wall region shows platelets lingering around the bifurca-

tion for multiple cardiac cycles in both arteries (S1–S3 Figs). Importantly the elevated blood

shear stress at the throat of the stenosis and subsequent distal low-shear stagnation increases

the LOA and creates the ideal environment for adhesion and clot growth. Platelets have long

been associated with atherosclerosis [81], with in vivo studies showing their role in both the

onset [10] and progression [6] of plaque growth. Additionally, the non-Newtonian effects of

RBC aggregation are shown to be relevant in the diseased artery, with exposure time to suffi-

ciently low-shear rates exceeding the approximate time (>1.5 s) for rouleuax formation to

occur [21]. The resulting increase in the viscosity of blood will lead to further aggregation and

sedimentation of erythrocytes distal to the stenosis, and is both symptomatic [82] and catalytic

to the deterioration of the endothelium [83] and the development of atherothrombosis [84].

Limitations

The presented study was designed for the assessment of disease and rheology, however, there

are several limitations/assumptions which impact the physiological accuracy. The principal

limitations are from the geometry as it lacks some of the additional complexity and individual-

ity arising from patient-specific scans [28, 85], including the vessel torsion which is one factor

in the development of atheroprotective helical flow [86]. As applying boundary conditions of

helical flow is not well documented, and whilst torsion is not directly associated with low WSS

[58], the lack of helical flow development may impact hemodynamic predictions. Further-

more, only the main bifurcation branch was considered (LAD-LCx) as it is one of the most

common locations for plaque growth [33], however, neglecting the additional downstream

branches may alter pressure gradients and hence result in overestimation of WSS [87]. Despite

this, the comparisons between rheological models are unbiased and unaffected.

PLOS ONE Blood rheology and platelet activation in a coronary bifurcation

PLOS ONE | https://doi.org/10.1371/journal.pone.0259196 November 3, 2021 20 / 26

https://doi.org/10.1371/journal.pone.0259196


Additional differences in flow boundary conditions arising from the implantation of steno-

sis could not be implemented in the model as adjusting the inlet condition without a suitable

patient-specific profile would only further introduce errors/randomness and hence may limit

differences between the two models.

The Lagrangian method of platelet simulation which determined activation only due to

time-averaged shear stresses neglects the contribution of biochemical interactions in platelet

activation. This discrete approach was chosen due to the macro-scale focus of this geometry

and the inability of micro-scale (including majority of biochemical approaches) models to

assess the trajectory, residence time and shear history of individual platelets.

Due to the sheer number of RBC in full sized arteries [22], individual RBC are not simu-

lated in a Eulerian-Eulerian model, and so the effects of RBC deformation on their rheology/

sedimentation cannot fully be included. Despite this, the momentum exchange coefficient

(Kab) between RBC/plasma is a function of Reynold’s number/drag coefficient which will par-

tially account for changes in shape due to flow conditions. With this study indicating aggrega-

tory potential even in large arteries, we hope to expand current multiphase, macroscale

rheology models to incorporate these aggregatory behaviours by linking factors such as: resi-

dence time, low-shear exposure and hematocrit to experimental rheometer measurements of

RBC aggregates.

Conclusion

In this study, the choice of rheological model has been shown to strongly influence the assess-

ment of coronary hemodynamic parameters. Single-phase models oversimplify crucial low-

shear blood characteristics compared to the non-Newtonian multiphase model (MKM5)

which provides a better representation of in vivomeasurements. Whilst single-phase or New-

tonian models may be acceptable for representing physiological undisturbed flow, the

increased exposure time (>1.5 s) to aggregatory levels of low-shear in diseased arteries will

impact crucial near-wall hemodynamics. Moreover, the wide ranges of hematocrit (0.163–

0.617) and elevated vorticity (+15%) occurring distal to stenosis could impair the healthy func-

tion of the endothelium via pathological regions of TAWSS and the disruption of advection/

diffusion of proteins/nutrients due to altered rheological properties. Additionally, the throm-

bogenic potential of stenotic arteries has been further classified, with platelets located in the

near-wall region experiencing the highest LOA, and subsequently experiencing lengthier resi-

dence times (+32% increase) in the low-shear, stagnant region distal to the stenosis.

Supporting information

S1 Fig. Animation of platelet flow showing exposure to sufficiently low aggregatory shear

levels (<50 s-1) in the diseased MKM5 coronary artery bifurcation.

(MP4)

S2 Fig. Animation of platelet flow showing the residence time of platelets in the diseased

MKM5 coronary artery bifurcation.

(MP4)

S3 Fig. Animation of platelet flow showing level of shear stress in the diseased MKM5 cor-

onary artery bifurcation.

(MP4)
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