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Abstract

Background: Vancomycin-resistant enterococci (VRE) are a serious antimicrobial resistant threat in the healthcare
setting. We assessed the cost-effectiveness of VRE screening and isolation for patients at high-risk for colonisation
on a general medicine ward compared to no VRE screening and isolation from the healthcare payer perspective.

Methods: We developed a microsimulation model using local data and VRE literature, to simulate a 20-bed general
medicine ward at a tertiary-care hospital with up to 1000 admissions, approximating 1 year. Primary outcomes were
accrued over the patient’s lifetime, discounted at 1.5%, and included expected health outcomes (VRE colonisations,
VRE infections, VRE-related bacteremia, and deaths subsequent to VRE infection), quality-adjusted life years (QALYs),
healthcare costs, and incremental cost-effectiveness ratio (ICER). Probabilistic sensitivity analysis (PSA) and scenario
analyses were conducted to assess parameter uncertainty.

Results: In our base-case analysis, VRE screening and isolation prevented six healthcare-associated VRE colonisations
per 1000 admissions (6/1000), 0.6/1000 VRE-related infections, 0.2/1000 VRE-related bacteremia, and 0.1/1000 deaths
subsequent to VRE infection. VRE screening and isolation accrued 0.0142 incremental QALYs at an incremental cost
of $112, affording an ICER of $7850 per QALY. VRE screening and isolation practice was more likely to be cost-
effective (> 50%) at a cost-effectiveness threshold of $50,000/QALY. Stochasticity (randomness) had a significant
impact on the cost-effectiveness.

Conclusion: VRE screening and isolation can be cost-effective in majority of model simulations at commonly used
cost-effectiveness thresholds, and is likely economically attractive in general medicine settings. Our findings
strengthen the understanding of VRE prevention strategies and are of importance to hospital program planners and
infection prevention and control.

Keywords: Infection control, Vancomycin-resistant enterococci, VRE, Hospital-acquired infection, Antimicrobial
resistance, Health economics, Cost-effectiveness analysis

Introduction
Vancomycin-resistant enterococci (VRE) are a class of
antimicrobial resistant (AMR) bacteria most commonly
transmitted within healthcare settings [1]. While im-
munocompetent patients have a low risk of acquiring
VRE infections post-colonisation, other patient groups

(e.g. immunocompromised, oncology, transplant) are at
a higher risk of developing VRE-related bacteremia and
other infections [2]. Consequently, patients who develop
VRE-related infections require longer hospital stays,
have a higher risk of mortality, and substantially higher
medical costs. A study from Canada estimated the mean
attributable cost and length of stay for patients with
VRE colonisation/infection to be $17,949 and 13.8 days,
respectively, when compared to patients without VRE [3].
Guidelines for control of VRE from health agencies

(e.g. Centers of Disease Control and Prevention) in the
United States and the United Kingdom recommend
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control of VRE spread through vancomycin usage,
screening and isolation of patients with VRE in hospital
settings, education, cleaning and contact precautions
(e.g. gloves) [4, 5]. Similarly in Canada, provincial com-
mittees recommend the implementation of active VRE
screening programs for patients at high-risk of VRE col-
onisation [6]. Risk factors for VRE colonisation include:
previous admission to healthcare facilities (e.g. hospital);
dialysis recipient; transfer from long-term care facilities;
and previous receipt of certain classes of antibiotics (e.g.
cephalosporin) [6].
In 2014, the Canadian Agency for Drugs and Technol-

ogy for Health (CADTH) conducted a rapid response re-
view on the cost-effectiveness of patient screening and
isolation for VRE and identified one economic evaluation
from France, where the direct cost of an outbreak trig-
gered by a failure in systematic VRE screening had a direct
cost of €60,524 [7]. Two economic evaluations from hos-
pital settings reported a net benefit of using a VRE control
strategy [8, 9].
Based on the current literature, there are no cost-

effectiveness analyses for VRE screening and isolation
practices that included health outcomes in evaluating
the value of this control strategy. The objective of our
study was to conduct a cost-effectiveness analysis of ac-
tive VRE screening and isolation compared to no VRE
screening and isolation in the general medicine ward of
a tertiary care hospital. Due to conflicting evidence on
the value of prevention programs for VRE, we decided
to model a general medicine ward instead of an intensive
care unit (ICU) because of its heterogeneous nature
(i.e. varying patient risk for VRE colonisation and in-
fections). Evidence from this model can inform decision-
makers, program planners and clinicians contemplating
control strategies for healthcare-associated VRE-related
infections.

Methods
A cost-effectiveness analysis (CEA) was conducted from
the Ontario healthcare payer perspective (Ministry of
Health and Long-Term Care). Health outcomes were
accrued over a patients’ lifetime and included:
healthcare-associated VRE colonisations, VRE-related
infections (e.g. bacteremia and other infections), deaths
subsequent to VRE infection, and quality-adjusted life
years (QALY). All publicly-funded healthcare costs
(2017 Canadian dollars) were included. The primary
outcomes were total healthcare costs, QALYs, and the
incremental cost-effectiveness ratio (ICER) expressed in
$ per QALY gained. Cost-effectiveness of VRE screen-
ing and isolation was assessed against the commonly
used cost-effectiveness threshold (CET) of $50,000 per
QALY gained [10]. We followed CADTH guidelines
and reported outcomes discounted at 1.5% [11].

Model structure and patient population
A microsimulation model was developed to capture the
natural history of VRE health burden starting at hospital
admission. Schematics of the model are presented in
Figs. 1, 2 and 3. The model simulated a dynamic popula-
tion of 20 patients in the general medicine ward, i.e., pa-
tient flow was simulated by admitting a new patient to
the ward once an existing patient was discharged back
into the community, or died during their hospital stay.
Admitted patients were considered to be from the commu-
nity; we did not take into account entry from long-term
care facilities, readmissions, or ICU step-downs. For base-
case analysis, we evaluated the cost-effectiveness of VRE
screening and isolation through 1000 admissions, approxi-
mating 1 year. After 1000 admissions, hospital admissions
stopped, and patients were followed over their lifetime. All
modelling and analyses were conducted using TreeAge Pro
2018 (TreeAge Software, Inc., Williamstown, MA).

VRE transmission
A two-state dynamic transmission component simulated
VRE transmission. The probability of acquiring VRE re-
sponds to changes to the number of VRE-colonised pa-
tients in the ward who are not isolated and was modeled
using the following equation [12]:

Ctþ1=St ¼ 1‐e‐βCt=N

Where t represents the specific cycle or time period,
Ct + 1 is the number of patients who are VRE colonised
(but not isolated) in the current cycle, N is total number
of patients, St represents the total number of patients
susceptible to VRE colonisation in the previous cycle,
and β is the basic reproductive number of VRE. The
basic reproductive number was defined as the number of
new infections generated per infected (non-isolated) in-
dividual per unit of time. For our model, we assumed a
constant basic reproductive number of 1.32.

Key assumptions
Several key assumptions were made on VRE transmis-
sion and isolation parameters. These included: 1) VRE
rectal swab screen are completed concurrently with
Methicillin-resistant Staphylococcus aureus (MRSA) rec-
tal swab screening (i.e., only additional cost is processing
the swab), and results are delivered within 24 h, a period
in which colonized patients can contribute to transmis-
sion; 2) transmission is based solely on mass-action mix-
ing; 3) optimal adherence to isolation (i.e. isolation is
100% effective in reducing transmission); 4) cost of pri-
vate (single-bed) room, which is typically considered
hospital revenue, is captured in the healthcare payer per-
spective; 5) the general medicine ward has 20 single-bed
rooms, always at maximum capacity; and 6) colonization
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Fig. 1 Schematic illustrating the possible trajectory of an admitted inpatient (screened or not, depending on the strategy)

Fig. 2 Schematic illustrating the trajectory of vancomycin-resistant enterococcus (VRE)-colonised patient
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status of the prior patient in the room was not factored
into transmission.

Data sources
A targeted literature search was conducted to extract
outcome probabilities, costs and quality-of-life parame-
ters related to VRE health states (Table 1). When pos-
sible, Canadian-specific parameters were used. Where
“assumption” is indicated in Table 1, we were guided by
expert opinion.

Probabilities
The basic reproductive rate for VRE was uncertain and
can vary depending on the environment. We used results
from a meta-analysis of 10 studies that reported a repro-
ductive rate of 1.32 (95% CI, 1.03–1.46) [13]. Length of stay
(LOS) estimates used for patients with VRE infections was
39 days (IQR, 22–81 days) and without VRE infections was
3 days (IQR, 1–6 days), extracted from a case-control study
in Canada [2]. We used a screening rectal swab sensitivity
of 0.99 (95% CI, 0.952–1.00) and specificity of 0.948 (95%
CI, 0.922–0.968) from an United States study evaluating
the swab detection of E. faecium and E. faecalis [16]. Preva-
lence of VRE for low-risk patients was 0.023, which was
extracted from a Canadian study in 2012 [14]. The prob-
ability that a patient was at “high-risk” of colonisation was
guided by the average age (61 years) of the cohort of pa-
tients who acquired VRE-bacteremia in Canada [2]. All-
cause mortality from all-causes were derived from life ta-
bles from Statistics Canada [29].

Utilities
To properly value health outcomes for CEAs, we used
health state utility values (utilities), which is a preference-
based value expressing the quality-of-life associated with
health states [30]. Utilities for this study could have ranged
between 0 (health state equivalent to death) to one (per-
fect health). The utility of a VRE-colonised patient was
considered to be the same as that of a general inpatient
(0.642), which was obtained from a mixed population of
inpatients using the EuroQol rating scale [25]. The utility
for the well outpatient state was derived from a study of
community-dwelling adults using the Health Utilities
Index to be 0.93 (0.86 for patients who recovered from a

VRE-related infection) [28]. Due to data limitations,
bacteremia utility (0.56) was extracted from a MRSA-
related bacteremia study [23]. Since urinary tract infec-
tions (UTI) represented the greatest percentage of VRE-
related infections [3, 31], we used the UTI utility of 0.60
for all other infections [24]. We assumed a disutility with
being isolated (i.e. being isolated leads to less visits from
healthcare workers, reduced socialization, and space con-
finement), which was equivalent to mild depression (un-
treated), and applied a multiplicative 0.895 reduction
factor [27].

Costs
All direct costs were extracted from the literature (Table
1). We counted the cost of the screening as a one-time up-
front cost at ward admission between $12 and $24,
depending on the culture result (positive results being
more expensive due to additional microbiologist time re-
quired) [9]. All costs were converted and standardized to
2017 Canadian dollars. For private room costs, we used the
median from estimates across Ontario ($290 per night)
[21].

Analysis
The base-case analysis was defined as follows: screening
with 95% specificity and 99% sensitivity, VRE basic re-
productive number of 1.32 [13], and mean age of high-
risk patients at 61 years [2]. The baseline prevalence of
VRE was 0.023 and we assumed patients at higher risk
for VRE colonisation were four times more likely to be
colonised (0.092). The base-case analysis was conducted
from a Canadian perspective.
We conducted multiple scenario analysis including: uni-

versal screening and isolation for all patients, increased
duration of the program (5000 admissions), number of
beds, and a lower effectiveness (compliance) of the isola-
tion program.
We conducted a probabilistic sensitivity analysis (PSA)

using gamma distributions for costs, beta distributions
for utilities and transitional probabilities, and normal
distributions for other patient or VRE-related parame-
ters (see Table 1). From the PSA, we generated a cost-
effectiveness acceptability curve (CEAC) to determine
the probability of VRE screening and isolation being

Fig. 3 Schematic illustrating the possible trajectory of patient not VRE-colonised
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Table 1 Input parameter base-case values, plausible ranges and distributions

Variable Base-case value Range Range Type Standard Error Distribution Source

VRE-Related Parameters

Beta, basic reproductive number 1.32 1.03–1.46 Full 0.12 Gamma Satilmis 2016 [13]

VRE prevalence, general 0.023 0–0.18 Full 0.001 Beta Williams 2015 [14]

VRE prevalence, high-risk patients 0.092 0–0.36 Plausible 0.002 Beta Conly 2001 [15]

LOS | without VRE infection, days 3 1.0–6.0 Full (IQR) 0.38 Gamma Johnstone 2018 [2]

LOS | other VRE infection, days 6 1.0–6.0 Full (IQR) 0.77 Gamma Assumption;
Johnstone 2018 [2]

LOS | VRE-bacteremia, days 39 22.0–81.0 Full (IQR) 4.97 Gamma Johnstone 2018 [2]

Screening Parameters

Sensitivity, rectal swab 0.991 0.95–1.00 Full 0.02 Beta Stamper 2010 [16]

Specificity, rectal swab 0.949 0.92–0.97 Full 0.01 Beta Stamper 2010 [16]

Effectiveness of isolation 1.00 0.75–1.00 Plausible – Assumption

Discount rate, annual 0.015 0–0.03 Full – – CADTH 2017 [11]

Patient Parameters and Transition Probabilities

Average age high-risk, years 61 – – 1.15 Normal Johnstone 2018 [2]

Probability infected | colonised 0.025 0.018–0.031 Plausible 0.003 Beta Williams 2015 [14]

Probability bacteremia | infected 0.155 0.12–0.19 Plausible 0.02 Beta Saunders 2004 [17]

Odds ratio bacteremia | infected, high-risk 1.55 0.56–4.29 Full 1.68 Lognormal Johnstone 2018 [2]

Average days of treatment for BSI 14 11–18 Plausible 1.79 Gamma Daneman 2016 [18]

Average days of treatment for other infections 7 5–9 Plausible 0.89 Gamma Daneman 2016 [18]

Probability of death from VRE bacteremia,
average, 14 days

0.37 0.27–0.46 Plausible 0.05 Beta Billington 2014 [19]

Probability of death from VRE bacteremia,
high-risk, 14 days

0.46 0.35–0.58 Plausible 0.06 Beta Linden 1996 [20]

Number of room visits by all HCW, per day 24 18–30 Plausible 3.06 Normal Assumption

Costs

Rectal swab screen 3.13 2.35–3.91 Plausible 0.40 Gamma Muto 2002 [9]

Culture, positive test 21.36 16.02–26.7 Plausible 2.72 Gamma Muto 2002 [9]

Culture, negative test 8.97 6.73–11.21 Plausible 1.14 Gamma Muto 2002 [9]

PPE, per room visit 2.10 1.58–2.63 Plausible 0.27 Gamma Muto 2002 [9]

Nurse time, per test 7.12 5.34–8.9 Plausible 0.91 Gamma Muto 2002 [9]

Private room, daily 290 245–410 Full – – St. Joseph’s
Hospital 2017 [21]

Antibiotics, bacteremia, daily 524.22 393.17–655.28 Plausible 66.87 Gamma Nasr 2011 [22]

Antibiotics, other infections, daily 35.8 26.85–44.75 Plausible 4.57 Gamma Nasr 2011 [22]

Utilities

VRE bacteremia 0.56 0.51–0.61 Full 0.023 Beta Lee 2010 [23]

Other local infections (UTI) 0.60 0.58–0.62 Full 0.01 Beta Haran 2005 [24]

Inpatient 0.642 0.54–0.74 Full 0.05 Beta Tengs, 2000 [25];
Selai 1995 [26]

Mild depression, no treatment 0.88 0.84–0.92 Full 0.02 Beta Revicki 1997 [27]

Well, chronic conditions, recovered from
previous VRE-related infection

0.86 0.34–0.89 Full 0.15 Beta Mittmann 1999 [28]

Well, chronic conditions, no previous
VRE-related infection

0.93 0.88–0.94 Full 0.083 Beta Mittmann 1999 [28]

BSI bloodstream infection, CADTH Canadian Agency for Drugs and Technology in Health, HCW healthcare workers, IQR interquartile range, LOS length of stay, PPE
personal protective equipment, UTI urinary tract infection, VRE vancomycin-resistant enterococcus
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cost-effective at CET of $0 to $100,000 per QALY. We
also assessed expected value of perfect information at
several CETs to assess the value of information; i.e.,
whether or not to invest more resources to reduce par-
ameter uncertainty. As recommended by CADTH, we
did not conduct deterministic sensitivity analysis because
of model stochasticity and the non-linear relationship of
VRE prevalence and transmission parameters. We re-
ported results following the Consolidated Health Eco-
nomic Evaluation Reporting Standards (CHEERS)
Guidelines (Additional file 1) [32].

Results
Base-case analysis
In Table 2, we summarized the estimated health out-
comes, costs and ICER for the VRE screening and isola-
tion strategy compared to no VRE screening and
isolation over 1000 admissions for our base-case ana-
lysis. We calculated the difference in the health out-
comes and the relative change using the “no VRE
screening and isolation” strategy as the baseline. VRE
screening and isolation reduced healthcare-associated
VRE colonisations by six per 1000 patients (2/1000 with
screening and isolation vs. 8/1000 without, 73% reduc-
tion), VRE-related infections by 0.6 per 1000 patients
(5.7/1000 with screening and isolation vs. 6.3/1000 with-
out, 10%), VRE-related bacteremia by 0.2 per 1000 pa-
tients (2.5/1000 with screening and isolation vs. 2.7/1000
without, 7%) and deaths subsequent to VRE infection by
0.1 per 1000 (0.5/1000 with screening and isolation vs.
0.6/1000 without, 8%).
The incremental cost and effect for VRE screening and

isolation was $110 ($118.37 with screening and isolation
vs. $6.72 without), and 0.0142 QALY gained (20.5607
QALY with screening and isolation vs. 20.5465 QALY
without), respectively. The ICER for VRE screening and
isolation was $7850 per QALY gained.

Uncertainty: probabilistic sensitivity analysis
Figure 4 illustrates a CEAC where at low CETs below
$7500/QALY, it was unlikely that VRE screening and
isolation was a cost-effective strategy. At a CET of ap-
proximately $7500/QALY, VRE screening and isolation
became more likely to be cost-effective (over 50% of the
iterations). As the CET increased to $50,000 per QALY,
the probability of this program being cost-effective as-
ymptotes at approximately 51.4%.
Since VRE screening and isolation reached a plateau of

51% likelihood of being cost-effective, an expected value
of perfect information (EVPI) analysis was conducted to
determine the value of reducing further uncertainty at
three points. At a CET of $7500, and $50,000 per QALY,
the EVPI (assuming 1000 patients) was $1065, and $7093,
respectively.

Scenario analysis
In the scenario where the prevalence is lower (i.e. reduced
by half; 0.0115), VRE screening and isolation becomes a
dominated strategy: the program cost an additional $123
but resulted in fewer QALYs. On the other hand, we mod-
eled a scenario similar to outbreaks in the literature where
the VRE prevalence was about 10-fold higher (0.23), and
estimated that VRE screening and isolation cost $122.79
for an incremental increase of 0.0525 QALY. Under this
increased prevalence scenario over 1000 hospital admis-
sions, the ICER was $2340/QALY. All scenarios are sum-
marized in Table 3.
Scenario analysis was conducted where the private room

costs were excluded due to conflicting views on whether
these costs are considered from the Ontario healthcare
payer perspective. In this scenario, VRE screening and iso-
lation program cost an additional $20.58 for 0.0077
QALYs, resulting in an ICER of $2682/QALY. The num-
ber of beds in the simulated general medicine ward was
increased to 30. The cost-effectiveness of VRE screening
and isolation over 5000 admissions was also estimated.

Table 2 Base-case results (health and economic outcomes)

Outcomes VRE screening and isolation No VRE screening and isolation Differencea (%)

Non-isolated cases 11/1000 60/1000 −49/1000 (82%)

Healthcare-associated VRE-colonisation 2/1000 8/1000 −6/1000 (73%)

Infected cases 5.7/1000 6.3/1000 −0.6/1000 (10%)

VRE-related bacteremia 2.6/1000 2.8/1000 −0.2/1000 (7%)

Other VRE infections (e.g. UTI) 3.2/1000 3.6/1000 −0.4/1000 (12%)

Deaths subsequent to VRE infection 0.5/1000 0.6/1000 −0.1/1000 (8%)

ICER ($/QALY) 7850

Total costs ($) 118.37 6.72 112

Total QALY gained 20.5607 20.5465 0.0142
aDifference for health outcomes were calculated by subtracting “no VRE screening and isolation strategy” outcomes from “VRE screening and isolation strategy”
outcomes. Percentage change was calculated relative to “no VRE screening and isolation strategy” outcomes
ICER incremental cost-effectiveness ration, QALY quality-adjusted life years, UTI urinary tract infection, VRE vancomycin-resistant enterococci
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The estimated ICERs for these scenarios were $11,812/
QALY and $50,094/QALY, respectively.
Universal VRE screening and isolation for all patients,

regardless of whether they identified as high-risk for col-
onisation, was a dominated strategy (i.e. resulted in in-
cremental cost of $151.44 and QALYs lost). We also
estimated the cost-effectiveness of this program if the
isolation effectiveness was reduced to 75%. In this sce-
nario, VRE screening and isolation cost an additional
$99.52 for 0.0002 QALYs, resulting in an ICER of $510,
676/QALY.

Discussion
Based on our base-case analysis, VRE screening and isola-
tion for patients at high-risk for VRE colonisation pre-
vented healthcare-associated colonisations, and ultimately
VRE-related infections and deaths subsequent to infec-
tions. The program was considered cost-effective with an

ICER of $7850 per QALY when compared to commonly
used cost-effectiveness thresholds of $50,000/QALY [10].
Overall, our model’s results were consistent with the

findings of several other published studies [34–37]. A
study by Shadel et al. found that active VRE screening
and isolation resulted in 91% of VRE colonisations being
identified on an ICU; our model suggested 82% of VRE
positive patients were isolated under an active, targeted
screening strategy in a general medicine ward [34]. A
mathematical model of a 10-bed ICU active screening
program for VRE predicted 9.9 cases of VRE colonisa-
tion/infection prevented over 1000 model simulations in
the ICU with a prevalence rate of 5% [35]. Similarly, our
model predicts a reduction of 6 cases of VRE colonisa-
tions over 1000 admissions. Our model underestimated
the effect of the VRE screening and isolation compared to
both studies, likely because it was modeled after a general
medicine ward which has a lower proportion of high-risk
patients (for VRE colonisation and infection) than the

Fig. 4 Cost-effectiveness acceptability curve (CEAC) for cost-effectiveness thresholds from $0 to $50,000/QALY

Table 3 Incremental cost-effectiveness ratios for VRE screening and isolation program in various scenarios

Scenario Incremental Cost Incremental QALYs ICER ($/QALY) Probability of CE
(at $7500/QALY)

Probability of CE
(at $50,000/QALY)

VRE Prevalence in-hospital, 10x (outbreak) 122.79 0.0525 2340 0.545 0.556a

Room costs excluded ($0) 20.58 0.0077 2682 0.506 0.508a

Number of beds in ward [33] 109.78 0.0093 11,812 0.505 0.518a

Program length (5000 admissions) 113.05 0.0023 50,094 0.457 0.499a

Isolation, decreased effectiveness (0.75) 99.52 0.0002 510,676 0.458 0.476a

Time horizon, 1 year 109.61 0.0001 856,297 0 0.259

Universal screening VRE screening
and isolation

151.44 −0.0039 Dominated 0.484 0.500a

VRE Prevalence in-hospital, 0.5x 108.41 −0.0112 Dominated 0.479 0.501a

aSignifies asymptote at that probability at $50,000/QALY
CE cost-effectiveness, ICER incremental cost-effectiveness ratio, QALY quality-adjusted life year, VRE vancomycin-resistant enterococci
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ICU. However, similar to other studies, our model esti-
mated that active VRE screening and isolation strategy
was cost-effective by reducing the number of VRE-related
bacteremia events by 2/10,000 patients [36, 37].
Our study has several limitations. Health state utilities

were not specific to VRE infections and preference elicit-
ation was heterogeneous. To address this and other param-
eter uncertainty (e.g. costs and transition probabilities), we
conducted a PSA with the appropriate underlying distribu-
tion for all parameters to generate a CEAC for cost-
effectiveness thresholds of $0 to $50,000/QALY. VRE
screening and isolation was more likely to be cost-effective
than no VRE screening and isolation at a CET of $7500/
QALY or greater. However, as the CET increased to $50,
000/QALY, the likelihood of the program being cost-
effective in extended simulations remained steady at 51%,
suggesting that stochasticity (randomness) is a significant
factor in determining the value of this control program.
This was expected for this type of intervention since indi-
vidual level uncertainty with patients entering a general
medicine ward and the baseline VRE prevalence can influ-
ence VRE transmission.
Our study assumed a general medicine ward that was

set up with 20 single bed rooms, which may not be the
configuration of all general medicine wards. In a sce-
nario where 30-beds were used, the ICER increased to
$11,812/QALY. These results suggest that an increase in
the number of beds would still yield cost-effective VRE
screening and isolation practices due to the homoge-
neous mixing assumption. This assumption was made
despite knowing that VRE transmission can be highly
complex and depend on colonization pressure and dens-
ity of bacteria [33]. Incorporating such detail of VRE
colonization levels within the transmission modeling of
this CEA would require much more sophisticated VRE
surveillance data that was not available. We did not ex-
plore the value of this program in which patients shared
rooms. However, based on Hamel et al., the hazard ratio
for VRE colonisation was 1.11 (95% CI, 1.02–1.21) for
the number of roommate exposures per day [38]. Our
estimates using a single-bed room assumption was a
conservative approach, and therefore likely underesti-
mated the cost-effectiveness of a VRE screening and iso-
lation control program. Our model likely provided a
conservative estimate of the cost-effectiveness (i.e. un-
derestimates the value) of VRE screening and isolation
due to key assumptions required for our analysis (e.g.
did not incorporate time dependency within the ward,
or re-admissions).
Isolation was assumed to be completely effective in

our base-case analysis, which can be considered optimis-
tic in current healthcare settings given the potential for
human errors, and overall burden on healthcare workers
[39, 40]. We performed a scenario analysis based on a

study by Huskins and colleagues suggesting prevention
effectiveness of 75% (range 62–82%) [40], and the ICER
increased to $510,676/QALY. In this scenario, VRE
screening and isolation would unlikely be cost-effective
at commonly used thresholds. Due to stochasticity (ran-
domness), it is likely that the cost-effectiveness and iso-
lation effectiveness have a nonlinear relationship. This
may be of note to decision-makers and infection preven-
tion and control practitioners, to ensure implementation
of this program is as seamless as possible.
Cost-effectiveness analyses for screening programs of

other AMR bacteria such as carbapenemase-producing
Enterobacteriaceae and MRSA have been published in
the literature [41, 42]. Similar to these other economic
evaluations on AMR bacteria screening and isolation,
our results indicated that VRE screening and isolation
was likely to be cost-effective. To our knowledge, this is
the first cost-effectiveness analysis for VRE screening
and isolation in any hospital setting that incorporated
costs, health outcomes, and QALYs, accrued over a pa-
tient’s lifetime. We reported health outcomes per 1000
patients to allow for transferability of our results to gen-
eral medicine wards in different jurisdictions. Moreover,
the results of this cost-effectiveness analysis can be
generalizable to other jurisdictions (countries) with simi-
lar healthcare system financing to Canada such as
Australia, the United Kingdom, and parts of Europe. We
also estimated the cost-effectiveness of this program in
varying scenarios (e.g. varying VRE prevalence, number
of beds) to provide decision-makers with economic evi-
dence to support local health policy given the import-
ance of local context.
Given the limited body of evidence in this area, we were

unable to find a suitable source of data against which to
validate our results. As more local research on AMR bac-
teria continues, it will allow for future models to be cross-
validated to health outcomes using health administrative
data, ward caseload (e.g. bed capacity), admission data
(e.g. population characteristics), and number of VRE-
related bacteremia cases.

Conclusion
VRE screening and isolation for patients at risk for col-
onisation in the general medicine ward can be consid-
ered a cost-effective infection prevention and control
intervention in this simulation study. The intervention’s
cost-effectiveness varied depending on VRE prevalence
and isolation effectiveness. This model would need to be
adapted to more accurately estimate the impact in spe-
cific local contexts but can provide broad economic evi-
dence to inform infection prevention and control
practitioners, program planners and health policy
decision-makers.
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