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Abstract: Considering the urgent need for novel therapeu-
tics in ongoing COVID-19 pandemic, drug repurposing
approach might offer rapid solutions comparing to de novo
drug design. In this study, we designed an integrative in
silico drug repurposing approach for rapid selection of
potential candidates against SARS-CoV-2 Main Protease
(Mpro). To screen FDA-approved drugs, we implemented
structure-based molecular modelling techniques, physiolog-
ically-based pharmacokinetic (PBPK) modelling of drugs
disposition and data mining analysis of drug-gene-COVID-

19 association. Through presented approach, we selected
the most promising FDA approved drugs for further COVID-
19 drug development campaigns and analysed them in
context of available experimental data. To the best of our
knowledge, this is unique in silico study which integrates
structure-based molecular modeling of Mpro inhibitors with
predictions of their tissue disposition, drug-gene-COVID-19
associations and prediction of pleiotropic effects of selected
candidates.
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1 Introduction

Acute respiratory disease with rapidly progressive lung
injury was detected in Wuhan, China and reported to the
World Health Organization (WHO) in December 2019. In
January 2020 a novel β-coronavirus SARS-CoV-2 had been
identified. In February 2020, WHO announced a name for
the new coronavirus disease – COVID-19. As of January 15th

2021 there is almost 94 million confirmed cases, more than
2.0 milion confirmed deaths in 196 countries, areas or
territories, and this number is rapidly growing.[1] Recent
research indicated that COVID-19 disease affects not only
lung tissues, but also other organs such as brain, heart and
kidneys,[2–4] implying that an efficient anti-COVID-19 agent
should possess a tendency toward these target organs.
Several months after the genetic sequence of the novel
coronavirus was published, the global race for development
of novel vaccine has started. By the end of 2020, two
vaccines become available for the prevention of coronavirus
disease 2019 (COVID-19).[5,6]

Since there is an urgent need for novel anti-COVID-19
therapy, useful and quick approach would be to identify
compounds, which show antiviral activity against SARS-
CoV-2, by repurposing the existing drugs. Drug repurposing
approach implies identification of novel use for approved
drugs which are different from their original medical
indication.[7,8] Many features of drug repurposing approach
(reduced failure rates in early preclinical studies, demon-
strated safety profiles of the rediscovered drugs and

reduced costs) could accelerate drug development projects
during pandemics. Findings observed from drug repurpos-
ing studies could also lead to developing innovative
hypotheses for de novo design of SARS-CoV-2 antiviral
drugs.[7,8] Although SARS-CoV-2 vaccines have been brought
to the market, chemotherapeutic approaches still represent
attractive strategy to combat SARS-CoV-2.[8] Numerous small
molecule drug discovery projects and clinical trials are in
progress.[9,10] Clinical studies investigating efficacy and
safety of the initially repurposed drugs (remdesivir, hydrox-
ychloroquine, and lopinavir) reported conflicting results
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which justify further efforts in the field of drug
repurposing.[11–14]

One of the most attractive protein targets in COVID-19
repurposing is SARS-CoV-2’s main protease (Mpro). Mpro is the
key enzyme in viral life cycle involved in the most of the
cleavage events on precursor polyproteins (pp1a and
pp1ab). This three-domain (domains I to III) cysteine
protease releases functional non-structural proteins with
pivotal role in viral replication and transcription. The
substrate binding site of Mpro is located in cleft between
domains I and II and consists of four subsites (S1’, S1, S2,
and S4).[15] Although Mpro was identified as attractive target
for antiviral drug design, recent analyses revealed binding
site plasticity and potential of mutations to directly affect
plasticity, as major bottlenecks in rational design of Mpro

inhibitors. Therefore, structure-based drug design cam-
paigns aimed to identify novel Mpro inhibitors could greatly
benefit from introducing information on binding site
plasticity.[16–18]

Considering the emergency of the situation, many drug
repurposing studies on Mpro have been reported so far,
including the high throughput screening (HTS) campaign
from The National Center for Advancing Translational
Sciences (NCATS).[19–21] Interestingly, some authors reported
structure-based in silico screening protocols with in vitro
profiling of Mpro inhibitors resulting in discovery of addi-
tional inhibitors previously unseen by HTS campaign.[22–25]

This adds up to the value of additional in silico evaluation in
order to facilitate discovery of potential candidates.

Despite the direct effects on viral proteins, another
important aspect of possible repurposable candidates
represents evaluation of the effects drug might have on
disease mechanism. Regarding the COVID-19 disease partic-
ular emphasis should be paid on amplified immune
response and cytokine storm which could lead to severe
complications.[26] In this manner, examination of drug-gene-
disease associations could provide insights into the addi-
tional/pleiotropic effects of the candidate drugs and further
aid selection of candidates for clinical trials.[27,28] Addition-
ally, when considering potential anti-COVID-19 drug candi-
dates, drug affinity to distribute within certain organs/
tissues should be considered as well. Namely, COVID-19
treatment would benefit from favorable drug distribution
within target tissues such as the lungs, brain, heart and
kidneys to enrich local drug concentration and combat the
infection. However, data of drug distribution in various
organs/tissues are rarely accessible, and they mostly
originate from animal studies. In this context, physiologi-
cally-based pharmacokinetic (PBPK) modeling, coupled with
quantitative structure–property relationship (QSPR) predic-
tions, can provide useful information on the expected drug
absorption and disposition in humans.[29,30]

The most of the in silico Mpro repurposing studies
reported so far, rely solely on structure-based predictions of
drugs binding to the viral protein[20], neglecting evaluation
of additional effects drug could have on mechanism of

disease. Herein we present general integrative protocol of
drug repurposing of Mpro inhibitors which integrates in silico
screening of the FDA-approved drugs library encompassing
structure-based drug discovery techniques, data mining of
drug-gene-COVID-19 associations and QSPR-PBPK model-
ing. For the initial screening of the database, we used
different structure-based virtual screening approaches. This
was followed by ensemble docking where structural
plasticity of studied SARS-CoV-2 Mpro was taken into
account. Candidates selected as potential SARS-CoV-2 Mpro

inhibitors were subjected to in silico data mining analysis in
order to find drug-gene-COVID-19 associations, construct
gene interaction network, single out the most important
molecular pathways affected by the investigated drugs and
analyze it in the context of potential pleiotropic effects. In
order to assess the affinity of each drug to reach the target
organs, selected drugs were modeled in terms of their
absorption and disposition in humans using PBPK modeling
based on QSPR estimated drugs biopharmaceutical proper-
ties. Obtained results were used to identify drug candidates
with the likelihood of successful COVID-19 treatment.

2 Materials and Methods

2.1 Database Preparation

The library of 2747 FDA-approved drugs was downloaded
from SelleckChem.[31] The database was pre-processed by
removing duplicates, stripping solvents and salts and
selecting the most abundant tautomer species (presented
at more than 40%) at physiological pH=7.4. The molecular
mechanics geometry optimization of ligands was performed
using Merck molecular force field (MMFF94).[32] All pre-
processing steps were performed using ChemAxon (https://
chemaxon.com/) software tools in batch mode. Due to the
predefined cutoff value for tautomer selection (40%) some
of the compounds were saved with both of the tautomeric
structures. Final number of the compounds used for
modeling was 3094.

2.2 Protein Preparation

Several crystal structures of Mpro with co-crystalized ligands
available at the time of accession were obtained from
Protein Data Bank (https://www.rcsb.org/). Accession codes
of used structures were 5R7Y, 5RYZ, 5R80, 5R81, 5R82, 5R83,
and 6LU7. Crystal structures were processed using Play-
Molecule’s protein prepare wizard.[33] After addition of
missing side chains, removal of alternative positions and
solvent molecules, and after protonation of residues in
respect to pH=7.4, proteins were saved as pdb files for the
following virtual screening campaigns.
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2.3 Structure-based Virtual Screening (SBVS)

In order to screen FDA-approved database, different
structure-based virtual screening approaches were used.
Namely, three approaches were applied in initial SBVS: GRID
molecular interaction fields (MIFs) fingerprint approach
implemented in FLAP v.2.2 software;[34,35] Genetic algorithm
based molecular docking in GOLD v.5.8.1;[36] Glide’s (Schrö-
dinger Release, 2020–2, limited liability company (LLC)[37–9])
hierarchical docking strategy.

For SBVS in FLAP, 25 conformers were generated for
each entry in FDA-approved database, using RMSD thresh-
old equal to 0.3. MIFs were calculated for each conformer
with spatial resolution of 0.75 Å, using 4 GRID MIF probes: H
(shape mapping), DRY (evaluating hydrophobic affinities), O
and N1 (H-bond donor and acceptor regions mapping,
respectively). For the definition of the Mpro inhibitors bind-
ing site, PDB:6LU7 (Mpro in complex with inhibitor N3) was
used. The binding pocket was defined from the associated
ligand, with pocket point radius of 2 Å around the ligand,
and GRID-MIFs with spatial resolution of 0.75 Å. GRID MIFs
of the binding site were calculated using four aforemen-
tioned GRID MIF. Obtained maps of GRID MIFs for both,
ligands and receptor were converted in quadruplets of
pharmacophoric points and a quadruplet matching was
used to overlay ligands onto the receptor. Global Sum
Score, which represents sums of individual probe scores
representing degree of overlap between MIFs, was used as
quantitative measure of matching.

For the SBVS in GOLD, the binding pocket was defined
within 10.0 Å of the ligand’s position in PDB:6LU7. All
torsion angles in data set molecules were allowed to rotate
freely. The number of genetic algorithm runs was set to 10,
and the efficacy was set to 10%. ChemPLP (Piecewise Linear
Potential) scoring function[40] employed in Gold Software
was used for ranking of examined compounds.

The third SBVS was performed using Glide from
Schrödinger suite. The coordinates of associated ligand
from crystal structure (PDB: 6LU7) were taken as a center of
the binding pocket. The outer grid box was set to be 20 Å,
and inner grid box was set to be 10 Å in all directions.
Docking was performed with “Ligand Docking” protocol
with following parameters: standard precision (SP), Ligand
vdW scale factor: 0.80, cutoff for a good RMSD 2.0 Å.
Afterwards, docked compounds were ranked, based on SP
scoring function.

2.4 QSPR-PBPK Modeling

Simulations of drugs absorption and disposition were
conducted using GastroPlusTM software (v. 9.7.0009, Simu-
lations Plus Inc., USA). The software operates on the basis of
the Advanced Compartment Absorption and Transit (ACAT)
model of the human GI tract, coupled with the whole body
PBPK model.[41,42] The ACAT model comprises nine consec-

utive gastrointestinal (GI) compartments i. e., stomach,
duodenum, two segments of jejunum, three segments of
ileum, caecum and ascending colon, whereat drug transit,
dissolution, and absorption are simulated by a series of
differential equations. The whole body PBPK model include
additional organs/tissues i. e., lung, spleen, liver, adipose,
muscle, heart, brain, kidney, skin, reproductive organs, red
bone marrow, yellow bone marrow, and rest-of-body, and
the necessary individual tissue properties (e.g., mass,
perfusion rate, fraction unbound in tissue (Fut), drug-
specific tissue-to-plasma partition coefficients (Kp)) for the
selected human representative are generated by the
software. Once dissolved and absorbed, the drug reaches
the portal vein and the liver (where it may undergo first
pass and/or systemic extraction), and eventually enters into
systemic circulation and distributes throughout the body,
followed by potential metabolism in individual tissues and
concomitant elimination. Each of these processes is de-
scribed by adequate differential equation, and numerical
integration of all the equations enables simulation of the
complex interactions among the various processes a drug
undergoes in the body.

The selected drug candidates, based on SBVS and
ensemble docking results, were used for PBPK modeling,
and each model was drug-specific (based on drug-specific
input data). The preferable administration route (peroral or
intravenous) and drug dose were determined based on
literature data and used in the simulations (Supp. Table S1).
Depending on the administration route, PBPK models
considered that the drug was either absorbed from the GI
tract and distributed throughout the body, or directly
injected into the systemic circulation, followed by tissue
distribution and elimination. All drug-related input model
parameters were in silico predicted, based on molecular
structure, using the ADMET PredictorTM software (v. 8.5.0,
Simulations Plus Inc., USA; https://www.simulations-plus.-
com/)[43] (Supp. Table S2). In addition, default software
values for particle radius (25 μm), particle density (1.2 g/ml),
mean precipitation time (900 s), and volume of liquid taken
with orally administered drug (240 ml) were used as inputs.
The simulations were performed for single drug dose
administered to 70 kg human adult representative in the
fasted state. For orally taken drugs, solubility and diffusion
coefficient were adjusted to bile salt effect using the
software estimate for theoretical solubilization ratio,[44] drug
dissolution was modeled using the default Johnson
dissolution equation, and software default Opt logD Model
SA/V 6.1 was used to scale the differences in drug
absorption along the gut. Human intrinsic clearance values
were calculated from in silico estimates for the overall
intrinsic drug clearance in human liver microsomes (HLM)
(Supp. Table S2), and they referred to the liver tissue. In
addition, a fraction of drug distributed into kidneys was
assumed to undergo passive renal filtration expressed as
the product of fraction unbound in plasma (fup) and
glomerular filtration rate (GFR). The drugs were assumed to
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passively perfuse through body tissues, and Kp values were
calculated using Lukacova method for perfusion-limited
tissues[45] in conjunction with “S+ v9.5” default software
method to calculate Fut values. The simulations were
performed for 24 h, and the generated data were used to
estimate drug exposure in plasma and target organs.

2.5 In Silico Analysis of Drug-gene-disease Associations
and Formation of Gene Interaction Network

The Comparative Toxicogenomics Database[46] (CTD; http://
CTD.mdibl.org) and Cytoscape[47] software package version
3.8.0 (https://cytoscape.org) were used as the main tools for
data mining analysis of drug-gene-COVID-19 association in
our research. Genes connected with COVID-19 disease and
associated with the candidate drugs were obtained from
the CTD, while the key hub genes were singled out by
cytoHubba Cytoscape plug-in[48] (http://apps.cytoscape.org/
apps/cytohubba). Maximal Cilque Centrality (MCC) method,
found to be the most accurate of all the methods available
in the cytoHubba, was used considering its ability to
generate precise predictions of essential proteins.[46] Gene-
MANIA Cytoscape plug-in[49] (http://genemania.org/plug-in/)
was used to construct a tight network of genes associated
with the drugs selected in this study and to obtain the lists
of related genes. ClueGO Cytoscape plug-in[50] (version
2.5.6), together with CluePedia[51] (version 1.5.6) were used
to visualize the molecular pathways associated with the
candidate drugs and genes they interact with. For this
analysis, two-sided hypergeometric test+Bonferroni step
down correction were used. The list of pathways was
extracted from the KEGG,[52] Reactome,[53] and
WikiPathways[54] databases in the ClueGO app. The results
obtained from the ClueGO were further confirmed by the
CTD SetAnalyzer tool (http://ctdbase.org/tools/analyzer.go),
which was also used to rank molecular pathways connected
with the investigated gene set by the statistical significance
(p<0.01).

2.6 Identification of the Most Promising Candidates as
Mpro Inhibitors

In order to implement data on different conformational
states of Mpro, top scored 10% in each of SBVS runs was
further analyzed using ensemble docking strategy. Among
top scored compounds there were 692 unique compounds,
while 26 compounds were identified simultaneously using
GOLD and Glide SBVS, 17 compounds using Glide and FLAP
SBVS, and 7 compounds using FLAP and GOLD SBVS. Only
three compounds were identified using all three SBVS
approaches in high-throughput mode. Total number of
unique compounds was 692 Ensemble docking was
performed using GOLD software v.5.8.1. All Mpro crystal
structures were aligned, using PDB:6LU7 as reference

structure. The binding pocket was defined within 10 Å of
the inhibitor from 6LU7 crystal structure – N3. The number
of genetic algorithm runs was set to 30, and the search
efficacy was set to 200%. ChemPLP scoring function was
used, for ranking and pose prediction of examined com-
pounds. The final selection of candidates was performed
considering obtained score and pose consistency. Addition-
ally, obtained poses with primary interactions outside well
established Mpro subsites (S1, S1’, S2 and S4) were discarded.
Total of 43 drugs (list of SMILES available in Supporting
Information) were selected for further evaluation using
pharmacokinetic modelling and network-based drug-gene-
disease associations analysis. Additionally, selected candi-
dates were analyzed using Maximum Common Substructure
(MCS). MCS clustering was performed usind ChemAxon’s
heuristic algorithm, implemented in JChem suite.[55]

3 Results

3.1 Integrative Protocol Overview

In order to select potential Mpro inhibitors from FDA-
approved database, integrated in silico screening protocol
encompassing combination of several techniques was
designed. Schematic representation of the protocol is
presented on the Figure 1. Firstly, structure-based molecular

modeling techniques were used to select candidates with
potential affinity towards Mpro binding site. After ligands’
database preparation, structure-based virtual screening
(SBVS) included screening of FDA-approved drugs using
combination of FLAP’s (Fingerprints for Ligands and
Proteins) SBVS approach and molecular docking approaches
(implemented in Glide and GOLD programs) independently
(see Materials and Methods). After selection of top 10% of
ranked compounds in each approach, virtual hits were

Figure 1. Schematic representation of applied repurposing proto-
col.
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analyzed using ensemble docking protocol, and final
selection of 43 repurposable drugs was made (list of SMILES
available in Supporting Information). Network-based drug-
gene-disease associations were used to investigate poten-
tial for modulating expression of genes associated with
COVID-19 and to gain insight into potential pleiotropic
effects of selected candidates. Additionally, selected candi-
dates were further analyzed using in silico QSPR-PBPK
modeling to investigate potential for target organs disposi-
tion.

3.2 Structure-based Screening of FDA-approved Drugs
Against SARS-CoV-2 Mpro

According to benchmarking studies, performance of SBVS
protocols is highly affected by many factors, including
chosen protein conformations, scoring functions and
applied SBVS tools. Since there is no universal SBVS tool,
general recommendation is to always use several programs
and combine their results.[56–58] Considering aforementioned,
we designed our SBVS protocol using combination of SBVS
approach from FLAP and two molecular docking tools –
GOLD and Glide (see Materials and Methods).

Proteins are dynamical entities and incorporation of
proteins’ structural plasticity into SBVS protocols was
proven to greatly improve the virtual screening results in
the most cases.[59–61] Structural plasticity of Mpro substrate
binding site was recently reported owing to the efforts in
the field of structural biology[15,18,62–64] and it was imple-
mented in the last step of our screening protocol by
introducing ensemble-docking for analysis of top 10% of
ligands selected by each of used SBVS tools.

Substrate binding site of SARS-CoV-2 Mpro is located in
cleft between domains I (residues 8–101) and II (residues
102–184) and consists of four subsites: S1’, S1, S2 and S4
(Figure 2A).[15] Our analysis performed on aligned ensemble

of available X-ray structures used in this study (PDB IDs:
5R7Y, 5RYZ, 5R80, 5R81, 5R82, 5R83 and 6LU7) revealed that
shape and surface area of the binding site are mainly
influenced by following residues: HIS-41, SER-46, MET-49,
ASN-142, MET-165 and GLN-189 (Figure 2B). The most of
these residues directly shape structure of subsites S2 and
S4, which make these subsites largely affected across used
ensemble of structures. While the shape of subsite S1 is not
affected with prominent changes in structure of surface
area, different orientations of sidechain of ASN-142 bear
potential for affecting positioning of hydrogen bond donors
or acceptors in putative ligands. Subsite S1’ is the least
affected subsite.

Final selection of the 43 ligands through ensemble
docking was based on the consensus between ChemPLP[40]

score and predicted pose consistency. Conformations of the
studied ligands that established interactions with Mpro

primarily outside of subsites S1, S1’, S2 and S4 were
discarded from discussion. All of the selected candidates for
repurposing are presented in the Table 2 and Supp. Fig-
ure S1. Accounting for the plasticity of substrate binding
site in the virtual screening protocol, we were able to
recover several ligands with potential SARS-CoV-2 antiviral
activity identified previously through cell-based screening
(dipyridamole, lopinavir, velpatasvir, daclatasvir, lapatinib,
bazedoxifene, atazanavir) (Table 2).[21,24,65–69] For some of the
selected drugs clinical data for COVID-19 supports antiviral
activity (salvianolic acid B, thymopentin, atorvastatin, mon-
telukast, dipyridamole, lopinavir, ritonavir, telmisartan,
daclatasavir, atazanavir, nintedanib, darunavir and
ramipril).[10,70–72] Few identified ligands were already con-
firmed through bioassays on inhibition of Mpro activity
(venetoclax, montelukast, dipyridamole, lopinavir, lomita-
pide, lapatinib, telaprevir, atazanavir, pimozide, darunavir,
eltrombopag) (Table 2).[21,23–25,73] Under assumption that all
of abovementioned drugs achieve their antiviral activity
through inhibition of Mpro, our SBVS protocol successfully
recovered many of promising repurposable drugs with
theoretical hit-rate of 21/43=48.8%. This finding validates
our SBVS protocol and justifies further experimental
validation of selected candidates.

Analysis of predicted binding modes of selected
candidates (Figure 3) revealed three the most common
interactions: 1) Van der Waals interaction with MET-49 in S2
subsite; 2) Van der Waals interaction with MET-165 at the
linkage between S4 and S2 subsites; 3) Hydrogen bonding
with GLU-166 at the linkage between S1 and S4 subsites.
According to our results, these three interactions in subsites
S1, S2 and S4 were predicted to be of great importance for
Mpro inhibitory activity.

In order to further validate our results and provide
guidance on rational design of novel candidates, final list of
selected candidates was analyzed using maximum common
substructure (MCS) hierarchical clustering where fragments
shared by the most of the selected hits were identified.
Interestingly, the largest clusters – ID1 (counting 12

Figure 2. (A) Surface representation (gray) of the substrate binding
site of aligned Mpro used in ensemble docking, with designated
subsites S1, S1’, S2 and S4. Ligand (gray sticks) and surface are
obtained from PDB:6LU7. (B) Aligned Mpro structures used in
ensemble docking. The residues involved in detected binding site
flexibility are depicted in black lines and labeled with red letters.
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candidates) and cluster ID2 (counting 3 candidates), which
share similar common substructure described the most of
candidates with experimental proof of antiviral activity
against SARS-CoV-2 (Tables 1 and 2). We have further
analyzed occurrence of interactions of selected substruc-
tures and identified that fragment representatives of
clusters ID1 and ID2 interacts mostly with subsites S1 and
S4 (Table 1). This finding is in agreement with the latest
results from ongoing public fragment-based drug design
(FBDD) campaign at XChem facility of UK’s Diamond Light
Source.[63,74] Namely, low micromolar ligands (X2646 and
X2581) identified through FBDD campaign share similar
substructure (arylmethyl carbonylamino group) to represen-

tative drugs from ID1 and ID2 cluster. Chemical probes
from FBDD campaign as well as virtually clustered com-
pounds interact with Mpro in similar manner (Figure 4A and
4B), primarily affecting S1 and S4 subsites. Additionally,
some of the drugs grouped in different clusters, also share
abovementioned structural features (e.g. repaglinide from
cluster ID4; pimozide from ID3; all representatives of cluster
ID5 share similar substructure locked inside flavan moiety).
According to our results, moieties capable of interacting
through van der Waals interactions with MET-49 in S2
subsite (S2-interacting fragment) should have central role in
rational drug design. Innovative drug design on COVID-19
Mpro inhibitors should be guided by introducing diverse

Figure 3. Presentation of predicted intermolecular interactions between SARS-CoV-2 main protease (Mpro) and the promising candidates. (A)
salvianolic acid (depicted in blue), (B) thymopentin (depicted in magenta), (C) atorvastatin (depicted in light green), (D) naringin (depicted in
light blue), (E) montelukast (depicted in dark violet), (F) dipyridamole (depicted in spring green), (G) lopinavir (depicted in bronze), (H)
ritonavir (depicted in purple) and (I) telmisartan (depicted in dark brown). Subsites are oriented in the same order as shown in Figure 2 –
Residues MET165 and ASN142 border S1 subsite, MET165 and GLN189 border S4 subsite, S2 subsite is located in close proximity of MET49,
while S1’ subsite in this representation encompass resides right from ASN142.
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arylalkyl moieties onto the S2-interacting fragment that
extend into S1 and S4 subsites (Figure 4C).

Taken together, molecular modelling approach pre-
sented here could be used not only as a tool for efficient in
silico screening of large databases in search for novel Mpro

inhibitors, but also as a platform for de novo drug design of
COVID-19 protease inhibitors.

Table 1. Result of Maximum Common Substructure Clustering of 43 virtual hits selected after ensemble docking. Virtual hits, which were
not grouped in any of clusters (15 compounds), are omitted from the representation.

Substructure Number of com-
pounds

Cluster
IDs

Drugs

1 Lopinavir, Atazanavir, Ramipril, Montelukast, Lifitegrast, Salvianolic acid B, Pralmorelin,
Thymopentin, Naringin, Carfilzomib, Bimatoprost, Penfluridol

2 Ritonavir, Darunavir, Vilanterol

3 Dabigatran, Azilsartan, Telmisartan, Pimozide

4 Repaglinide, Nintendanib, Eltrombopag

5 Astilbin, Neohesperidin

6 Atorvastatin, Bazedoxifene

7 Telaprevir, Bortezomib

Figure 4. (A) Presentation of low micromolar ligand X2646 (labeled in red) and ritonavir (labeled in yellow, representative of cluster ID2), (B)
Presentation of low micromolar ligand X2581 (labeled in yellow) and naringin (labeled in green, representative of cluster ID1), (C)
Presentation of S2-interacting fragment (labeled in magenta) interacting with Met49 from S2 subsite; phenyl group of presented fragment
(derived from montelukast) should be substituted with diverse arylalkyl moieties that extend into S1 and S4 subsites.
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3.3 PBPK Prediction Results

Based on the results of SBVS and ensemble docking, 43
drugs that showed Mpro inhibition potential, were selected
for QSPR-PBPK modeling in order to assess their affinity to
distribute within target organs, predominantly lungs, but
also brain, heart and the kidneys. The predicted results
referring to the ratio of drug exposure in plasma and target

organs (expressed as AUC ratio) are presented in Table 2
and Supp. Figure S1, whereas AUC ratio smaller than 1
indicates predominant drug distribution in target organ,
AUC close to 1 indicates similar drug distribution in plasma
and target organ, and AUC much higher than 1 negligible
drug distribution in the organ of interest.

According to the simulation results, pralmorelin, revefe-
nacin, mitoxantrone, vilanterol, nintedanib, are expected to

Table 2. Selected candidates with potential activity on SARS-CoV-2 Main Protease, their docking scores, and PBPK predicted disposition
data. The most promising candidates for further experimental evaluation are marked in bold letters.

Drug ChemPLP
score

AUC0!24 h ratio
plasma/lungs

AUC0!24 h ratio
plasma/brain

AUC0!24 h ratio
plasma/heart

AUC0!24 h ratio
plasma/kidneys

Reference
(Clinical trial,
experimental data)

Salvianolic acid B† 121.04 4.46 16.45 5.83 7.05 [83]
Pralmorelin 109.38 0.19 1.34 0.32 0.15 /
Venetoclax§ 105.24 1.08 0.09 0.21 0.24 [21]
Thymopentin† 104.28 0.91 0.83 0.95 1.05 [70]
Ombitasvir 103.24 1.06 0.09 0.21 0.24 /
Atorvastatin† 99.00 4.23 5.09 4.39 5.17 [10]
Naringin 98.68 3.20 5.83 3.74 4.35 /
Astilbin 97.36 3.43 2.24 2.83 3.25 /
Montelukast§† 96.67 1.13 0.10 0.23 0.26 [10,25]
Dipyridamole§*† 95.85 1.84 0.24 0.53 0.59 [10,25,84]
Lopinavir§*† 95.68 1.63 0.17 0.39 0.44 [10,21,23, 85]
Fulvestrant 95.30 1.05 0.09 0.21 0.24 /
Revefenacin 95.11 0.35 0.24 0.32 0.22 /
Carfilzomib 93.55 1.71 0.19 0.43 0.49 /
Elbasvir 93.40 1.05 0.09 0.21 0.24 /
Ritonavir† 92.30 1.26 0.12 0.27 0.30 [10,85]
Dabigatran 92.00 1.06 0.09 0.22 0.24 /
Bimatoprost 89.74 2.47 0.35 0.75 0.85 /
Sulfinpyrazone 89.58 4.25 6.42 4.72 5.56 /
Ticagrelor 89.41 1.65 0.18 0.40 0.45 /
Mitoxantrone 89.14 0.10 0.54 0.16 0.08 /
Cilnidipine 88.95 1.06 0.09 0.22 0.24 /
Vilanterol 87.81 0.36 0.43 0.42 0.25 /
Selexipag 87.68 3.21 0.74 1.42 1.62 /
Azilsartan 87.46 3.66 1.28 2.15 2.46 /
Telmisartan† 87.08 2.65 0.42 0.89 1.00 [71]
Lifitegrast 86.09 4.44 15.36 5.81 6.94 /
Lomitapide§ 85.58 1.09 0.09 0.21 0.24 [21]
Neohesperidin 85.23 2.52 3.52 2.79 3.19 /
Velpatasvir* 85.03 1.06 0.09 0.22 0.24 [66]
Daclatasvir*† 84.72 1.26 0.12 0.27 0.30 [10,67]
Lapatinib§* 83.89 1.10 0.10 0.22 0.25 [24]
Bazedoxifene* 83.55 0.84 0.09 0.21 0.22 [68]
Telaprevir§ 81.93 2.41 0.42 0.88 1.00 [73]
Penfluridol 81.87 0.90 0.09 0.21 0.23 /
Bortezomib 81.47 3.72 7.22 4.39 5.16 /
Repaglinid 81.40 2.38 0.36 0.77 0.85 /
Atazanavir§*† 79.43 1.58 0.17 0.38 0.43 [10,25,69]
Nintedanib† 78.54 0.44 0.21 0.33 0.25 [10]
Pimozide§ 77.33 1.00 0.09 0.22 0.24 [23]
Darunavir§† 76.71 3.31 1.57 2.32 2.66 [10,21]
Eltrombopag§ 75.04 4.39 8.62 5.19 6.17 [21]
Ramipril† 72.04 3.38 10.22 4.46 4.25 [72]
§ Reported inhibitory activity in Mpro enzymatic assays; * Reported inhibitory activity in cell-based assays; † Antiviral activity supported by
clinical studies; / There is no experimental or clinical data.
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distribute widely into human lungs, with mitoxantrone
having the highest potential to reach high drug concen-
trations in lung tissues. More than a half of selected
compounds (60%) show a tendency to distribute and/or
accumulate more widely into other organs/tissues. How-
ever, a dozen of selected candidates (e.g. Salvianolic acid
B), remain primarily distributed in the circulatory system
available to interact with the infected immune cells.[75]

Some of the studied drugs show limited oral
absorption[76–81] due to poor biopharmaceutical or pharma-
cokinetic properties. This means that alternative dosing
routes or higher doses may be considered for future
studies, in order to provide appropriate drug concentrations
in target tissues. Predicted data regarding the distribution
of selected drugs within certain organs/tissues are in
agreement with available literature data e.g., published
results indicate that dipyridamole is widely distributed into
kidneys, heart and lungs[82], while telmisartan and ritonavir
show high partitioning into kidneys and lungs.[78,80] These
data support the value of in silico simulation results, and
indicate that the predicted data may be useful in decision-
making for suitable candidate compounds.

3.4 Data Mining Analysis of Drug-gene-COVID-19
Association

In order to examine drug-gene-COVID-19 associations of 43
drugs selected after SBVS and ensemble docking, data
mining of CTD database was performed. Genes connected
with the candidate drugs were extracted from the CTD
database. Drugs that contained an insufficient number of
gene-chemical annotations were discarded from the analy-
sis, along with the drugs that were not listed in the CTD. As
a result, our data mining analysis has shown that 13 drugs
interact with the genes involved in COVID-19 disease
(Table 3).

In total, there were 15 genes affected by the drugs
selected in this study: ACE2 (encodes the angiotensin-
converting enzyme-2), AGT (encodes the angiotensinogen),
CCL2 (encodes the C� C Motif Chemokine Ligand 2), CCL3
(encodes the C� C Motif Chemokine Ligand 3), CRP (encodes
C-Reactive Protein), CSF3 (encodes Colony Stimulating
Factor 3), CXCL10 (encodes the C� X� C Motif Chemokine
Ligand 10), IL10 (encodes Interleukin 10), IL1B (encodes
Interleukin 1 Beta (IL-1β)), IL2 (encodes Interleukin 2 (IL-2)),
IL2RA (encodes Interleukin 2 Receptor Alpha Chain), IL6
(encodes Interleukin 6 (IL-6)), IL7 (encodes Interleukin 7 (IL-
7)), CXCL8 (encodes C� X� C Motif Chemokine Ligand 8),
TNF (encodes Tumor Necrosis Factor).

CTD was further manually explored to obtain the exact
interactions (mRNA expression, protein expression, gene
expression and protein secretion) between the investigated
drugs and genes. Binary interactions were identified (one
chemical and one gene), while complex interactions
(describing more than two molecules and/or genes) were
removed, as well as the “no effect” interactions. The exact
interaction type could be obtained for 11 out of 13 drugs
present in the CTD and 13 genes (Supp. Table S3).

Our gene set (15 genes) was further analyzed by
Cytoscape version 3.8.0. Cytohubba plug-in and MCC
method to identify and rank the top 5 genes with the
highest inter-connections, the so-called hub genes (Fig-
ure 5A). Colour of the nodes represents the intensity of the
correlation, meaning that yellow represents the lowest and
red the highest correlation. It should be noted that IL6 was
found to be the gene with the highest correlation among
the hub genes and was also among the most common
interacting genes for the candidate drugs, since all the
investigated drugs affected this gene except ramipril and
atazanavir. CCL2 was also both among the hub and the
most interacting genes, found to be affected by all the
candidate drugs except bazedoxifene and salvianolic acid B.
Naringin was the only drug that interacted with all the hub

Table 3. Candidate drugs for COVID-19 treatment and genes they interact with (http://ctdbase.org).

Genes connected with potential COVID-19 treatment
Drug ACE2 AGT CCL2 CCL3 CRP CSF3 IL1B IL2 IL2RA IL6 IL7 IL10 CXCL8 CXCL10 TNF

Salvianolic acid B + + + +

Atorvastatin + + + + + + + + + +

Naringin + + + + + + + + +

Montelukast + + + + + +

Dipyridamole + + + + +

Lopinavir + + + + +

Fulvestrant + + + + + + + + +

Ritonavir + + + + + + +

Telmisartan + + + + + + + + +

Bazedoxifene + +

Bortezomib + + + + + + +

Atazanavir + +

Ramipril + +
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genes, while lopinavir interacted with all the hub genes
apart from CXCL8.

Our further analysis was aimed at constructing a tight
network between the 15 genes affected by the investigated
drugs, and predict additional 20 related genes that may be
important for COVID-19 therapy (GeneMANIA Cytoscape
plug-in) (Figure 5B). The results revealed that the majority
of the genes (70.84%) were in co-expression – purple lines,
which means that their expression levels are similar under
the defined conditions in the gene expression study.
10.07% of these genes were in co-localisation (blue lines),
which means that they are expressed in the same tissue or
their gene products are identified in the same cellular
location, while 8.93% where in physical interactions (red
lines), which means that there is an interaction between the
protein products of these genes.[49]

In order to further explore the biological importance of
our gene set, Pathway enrichment analysis was performed
using Cytoscape plug-in ClueGO+CluePedia version 2.5.6
and 1.5.6. KEGG, Reactome, and WikiPathways databases
were selected for the pathway analysis. The results have
shown that our set of genes (15 genes associated with the
candidate drugs for COVID-19 treatment+20 related genes
obtained by GeneMANIA Cytoscape plug-in) clustered
around 7 (Figure 6A) and hub genes around 4 main
pathways (Figure 6B).

CTD SetAnalyser tool was used to confirm and rank the
enriched pathways by the statistical significance (p<0.01).
Cytokine-cytokine receptor interaction, signaling by Inter-
leukins and Cytokine Signaling in Immune system were the
top tree molecular pathways connected with our gene set.
Other molecular pathways listed among the top 10 in the
CTD included Interleukin-10 (IL-10) signaling, Immune
System, Jak-STAT signaling pathway, Interleukin-17 (IL-17)

signaling pathway, Hematopoietic cell lineage, T-helper cell
17 (Th17) cell differentiation and TNF signaling pathway.

Cytokine-connected pathways were found significant for
the genes affected by the candidate drugs. Among them,
IL-10 signalling could be viewed as particularly important,
especially for the hub genes. IL-10 is an anti-inflammatory
cytokine, produced by T helper 2 lymphocytes (Th2), and
found to be increased in severe COVID-19 cases, along with
IL-6, encoded by the top hub gene in our study, IL6.[86] The
Janus kinase (JAK)-signal transducer and activator of tran-
scription (STAT) pathway (JAK-STAT signalling pathway) was
also found among the top 10 pathways connected with our
set of genes, which is significant because this pathway plays
critical roles in orchestrating of immune system, especially
cytokine receptors.[87]

As seen in the Supp. Table S3, some of the candidate
drugs were found to inhibit the expression or secretion of
several inflammatory-connected molecules. For example,
Naringin inhibited the expression of IL6 protein and IL1B
activity. Salvianoic acid B inhibited protein expression of
CRP, one of the main biomarkers of inflammation, while
Atorvastatin inhibited not only protein expression of CRP,
but also CXCL10, CXCL8 and IL6. Thus, our data mining of
drug-gene-disease associations has shown that, apart from
potentially acting as SARS-CoV-2 Mpro inhibitors, some of
the selected drugs might have other potential pleiotropic
effects. Taking into account that they were found to affect
the cytokine signalling pathways and systemic inflamma-
tion, and inhibit inflammatory protein secretion and
expression, they might also mitigate the severity of the
clinical picture in pneumonia known to occur in the severe
cases of COVID-19. Furthermore, Montesarchio et al. (2020)
suggested clinical benefit regarding early intervention with
IL-6-modulatory therapies in COVID-19 patients, and pro-

Figure 5. (A) Five hub genes obtained for genes connected with drugs that might be used in COVID-19 treatment. Colour of the nodes
represents the intensity of correlation with yellow being the lowest and red the highest (Cytohubba Cytoscape plug-in+MCC method), (B)
Tight network of genes connected with candidate drugs for COVID-19 treatment, together with 20 related genes (GeneMANIA Cytoscape
plug-in). Colour legend: co-expression – purple; co-localization – blue; physical interaction-red; pathway – light blue; predicted – orange.
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posed CRP as a potential biomarker of response to
treatment.[88] On the other hand, some of the drugs, like
Lopinavir, induced CCL2 mRNA expression and protein
secretion, CCL3 protein expression, IL1B mRNA expression,
IL6 protein expression and secretion. Similarly, Atazanavir
increased CCL2 and CCL3 protein expression, while Ritona-
vir increased IL6 mRNA expression, protein expression and
secretion, CCL2 protein expression and secretion, as well as
CCL3 protein expression.[89] Conclusively, several identified
drugs (lopinavir, ritonavir, atazanavir) may increase secre-
tion of pro-inflammatory cytokines, which might aggravate
cytokine storm. Another molecular pathway connected with
the candidate drugs that was singled out and should be
mentioned is IL-17 signaling pathway. The alterations in
Th17/IL-17 axis are widely recognized as potential targets
for therapeutic interventions in COVID-19.[90]

3.5 Analysis of the Most Promising Candidates

Final analysis of the most promising candidates was
performed according to consensus between predicted Mpro

affinities, predicted disposition in tissues relevant for
COVID-19, analysis of drug-gene-disease associations and
analysis of potential pleiotropic effects. Even though drugs
singled out through SBVS and ensemble docking (Table 2
and Supp. Figure S1) could be considered as potential Mpro

inhibitors, not all of them could be considered as equally
involved in other aspects of disease mechanism. Consider-
ing the wider context of COVID-19 disease, after analysis of

drug-gene-disease associations, following candidates (Ta-
ble 3) are selected as the most promising for further
consideration: salvianolic acid B, atorvastatin, naringin,
montelukast, dipyridamole, lopinavir, fulvestrant, ritonavir,
telmisartan, bazedoxifene, bortezomib, atazanavir and ram-
ipril. All of the selected candidates were highly scored after
ensemble docking which reflects their potential for inhibit-
ing of Mpro. Predicted poses of all of the promising
candidates were in agreement with experimental observa-
tions, as discussed above. Selected candidate drugs were
found to affect cytokine signaling pathways important in
systemic inflammation which could indicate their potential
pleiotropic effects (Figures 5 and 6). However, additional
analysis of currently available data on binary drug-gene
interactions (Supp. Table S3) revealed that lopinavir, ataza-
navir and ritonavir could even aggravate cytokine storm
associated with COVID-19 which should be considered as
caveats in their future chemotherapeutic evaluation.
Among the selected drugs with identified pleiotropic
effects, atorvastatin, naturally occurring polyphenols (salvia-
nolic acid B and naringin), bortezomib and ramipril show
lower tendency to distribute in tissues of interest (Table 2).
However, alternative dosing routes or higher doses should
be considered for future studies. Overall, the validity of
integrated repurposing approach is supported by referred
experimental data and clinical trials (Table 2) and lays the
foundations for future in silico antiviral drug repurposing
studies.

Figure 6. Molecular pathways connected with the candidate drugs. Genes are grouped in the middle and connected to the pathways they
regulate (pathways are represented as nodes) (Cytoscape plug-in ClueGO+CluePedia version 2.5.6 and 1.5.6. The two-sided hypergeometric
test+a Bonferroni step down correction and a k score=0.3) (A) Molecular pathways connected with the set of 34 genes (15 genes
associated with the candidate drugs for COVID-19 treatment+20 related genes obtained by GeneMANIA Cytoscape plug-in). Pathways are
grouped into 9 clusters, (B) Molecular pathways connected with the 5 hub genes obtained by Cytohubba Cytoscape plug-in. Pathways are
grouped into 3 clusters.
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4 Conclusion

In this work, we present in silico repurposing approach for
identification of potential inhibitors of SARS-CoV-2 Main
Protease (Mpro) that integrates diverse structure-based
molecular modeling techniques with QSPR-PBPK modelling
and drug-gene-COVID-19 analysis.

Through stepwise SBVS approach, 43 potential candi-
dates were selected for further analysis. Biological, clinical
and structural data on COVID-19 and Mpro reported so far
were in agreement with obtained results, which validate
used structure-based approaches as a practical tool for
future screening of larger databases. Selected candidates
were further analyzed in terms of their chemical nature and
different patterns in Mpro-ligand intermolecular interactions,
which gave us detailed understandings in chemical space
of interest for future anti-COVID-19 drug discovery proto-
cols. In addition to structure-based modelling, QSPR-PBPK
approach elicited the drugs with favorable disposition
properties, but also indicated the key factors that may limit
their systemic and tissue exposure. Complementary, data
mining of drug-gene-COVID-19 association singled out
candidates which modulate pro-inflammatory genes ex-
pression related to COVID-19 disease. Pathway enrichment
analysis suggested potential pleiotropic effects of selected
candidates that could modify severity of COVID-19 disease.
Overall, we demonstrated that repurposing studies should
not be based only on structure-based modeling; future
chemotherapeutic repurposing studies should be evaluated
in terms of drug-gene-disease considerations. Last but not
least, adequate tissue distribution is of great importance to
be examined for the virus infected tissues.
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