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ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the caus-
ative agent of COVID-19, the disease at the center of the current global pandemic.
While knowledge of highly structured regions is integral for mechanistic insights into
the viral infection cycle, very little is known about the location and folding stability of
functional elements within the massive (;30-kb) SARS-CoV-2 RNA genome. In this
study, we analyzed the folding stability of this RNA genome relative to the structural
landscape of other well-known viral RNAs. We present an in silico pipeline to predict
regions of high-base-pair content across long genomes and to pinpoint hot spots of
well-defined RNA structures, a method that allows for direct comparisons of RNA struc-
tural complexity within the several domains in SARS-CoV-2 genome. We report that the
SARS-CoV-2 genomic propensity for stable RNA folding is exceptional among RNA viruses,
superseding even that of hepatitis C virus (HCV), one of the most structured viral RNAs in
nature. Furthermore, our analysis suggests various levels of RNA structure across genomic
functional regions, with accessory and structural open reading frames (ORFs) containing
the highest structural density in the viral genome. Finally, we took a step further to exam-
ine how individual RNA structures formed by these ORFs are affected by the differences
in genomic and subgenomic contexts, which, given the technical difficulty of experimen-
tally separating cellular mixtures of subgenomic RNA (sgRNA) from genomic RNA (gRNA),
is a unique advantage of our in silico pipeline. The resulting findings provide a useful
roadmap for planning focused empirical studies of SARS-CoV-2 RNA biology and a prelim-
inary guide for exploring potential SARS-CoV-2 RNA drug targets.

IMPORTANCE The RNA genome of SARS-CoV-2 is among the largest and most complex
viral genomes, yet its RNA structural features remain relatively unexplored. Since RNA
elements guide function in most RNA viruses, and they represent potential drug targets,
it is essential to chart the architectural features of SARS-CoV-2 and pinpoint regions that
merit focused study. In this study, we found that RNA folding stability of SARS-CoV-2 ge-
nome is exceptional among viral genomes and we developed a method to directly
compare levels of predicted secondary structure across SARS-CoV-2 domains. Remarkably,
we found that coding regions display the highest structural propensity in the genome,
forming motifs that differ between the genomic and subgenomic contexts. Our approach
provides an attractive strategy to rapidly screen for candidate structured regions based on
base pairing potential and provides a readily interpretable roadmap to guide functional
studies of RNA viruses and other pharmacologically relevant RNA transcripts.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped posi-
tive-strand RNA virus and the etiological agent of COVID-19 (1), a highly infectious

human disease at the center of a worldwide pandemic (2–4). This virus is a member of
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the coronavirus family, known for having the largest genomes among all RNA viruses
(5). Almost 30 kb in length (6), the SARS-CoV-2 RNA genome presents new challenges
to RNA structural biology due to its size and complexity.

Following viral entry and uncoating, the genomic RNA serves as the template for
translation of a multicomponent replicase-transcriptase complex that is responsible for
synthesizing the viral transcriptome, which includes a series of subgenomic RNAs from
which other virion components and accessory protein factors are expressed (5).
Consistent with reports on other coronaviruses, the SARS-CoV-2 genome contains
highly conserved RNA structural elements that likely play pivotal roles in viral replica-
tion, including several structures in the untranslated regions (UTRs) and a ribosomal
frameshifting element (7). Although some of these motifs have been functionally stud-
ied and modeled in other betacoronaviruses (8–11), little is known about functional
structural elements in the overwhelming majority of regions within the SARS-CoV-2
genome.

In line with previous reports on other coronaviral genomes (12), SARS-CoV-2 was
recently suggested to form a genome-scale ordered RNA structure (GORS) (13, 14). As
shown in foundational work comparing several families of RNA viruses (12) and further
explored in later studies (15–17), the existence of GORS in positive-strand RNA viruses
correlates with features like fitness and persistence. These studies have also established
hepaciviral genomes as textbook examples of globally structured RNAs, and the most
studied member of this genus, hepatitis C virus (HCV), is among the most highly struc-
tured viral RNAs characterized to date. The abundant RNA structures found throughout
the (mostly) coding regions of that genome not only play individual functional roles
(18–20) but also contribute to its higher-order compaction (15).

In light of the pervasive importance of RNA structural elements in the life cycle of
RNA viruses, it is essential to understand the relative distribution of RNA secondary
structure in the SARS-CoV-2 genome on both global and local scales. A particularly
useful way to evaluate the “structuredness” of a viral RNA genome is to compare its
global folding stability to that of well-studied RNA sequences using minimum free
energy Z-scores (12). In this study, we used this approach to evaluate SARS-CoV-2
secondary structural stability relative to other structured viral genomes and also
globally unstructured RNAs. Inspired by this approach, we adapted this strategy to
identify and compare local regions of high base pair content (BPC) across long
genomes. By applying this strategy to SARS-CoV-2, we obtained a comprehensive
roadmap for the overall structural organization of the genome and the subgenomes,
providing a guide for designing experimental strategies to explore the role of these
elements in vivo.

Here, we show that the potential for stable RNA folding of the SARS-CoV-2 ge-
nome supersedes even that of HCV and discuss the potential biological consequen-
ces of this unprecedented level of global structural complexity. We developed a con-
venient pipeline to analyze the base pair content of any long RNA and to rapidly
identify regions with predicted well-defined structure across kilobase transcripts. We
used this pipeline to scan the SARS-CoV-2 genome and pinpoint regions with a high
propensity to form stable secondary structures, enabling direct comparisons of struc-
tural content among the functional domains of this massive viral genome. We
observed a remarkable enrichment of structured regions within open reading frames
(ORFs) that encode accessory and structural proteins, and we elaborate on the potential
roles these structures might play in the course of viral infection. Finally, we demonstrate
that SARS-CoV-2 ORFs can adopt different structures in the genomic and subgenomic
contexts.

The methods described in the present work enable investigators to extract base
pair content information from any RNA structural model, including both in silico predic-
tions and experimental chemical probing experiments. While we illustrate the utility of
this approach by predicting stable architectural features within the SARS-CoV-2 ge-
nome, the pipeline can be implemented for characterizing the architectural landscape
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of any long RNA, and it is particularly valuable during early stages of discovery, when
little is known about a virus or transcript. Therefore, our pipeline complements and
guides parallel experimental approaches for identifying regulatory and therapeutic tar-
gets (21).

RESULTS
The SARS-CoV-2 genome contains an unprecedented level of stable RNA

structure. As an initial global approach to evaluate SARS-CoV-2 RNA structural stabil-
ity, we used ScanFold (22) to calculate free-energy Z-scores in windows that were tiled
along the entire genome (see Materials and Methods) and analyzed their frequency
distribution. In parallel, we performed the same analysis with the HCV genome, which
is a hallmark example of globally structured viral RNA and one of the most highly struc-
tured RNA genomes ever characterized (12, 19, 23). West Nile virus was also included
for comparison, as viruses in the Flavivirus genus are thought to lack globally ordered
RNA genomes (12). Finally, we analyzed a composite set of human mRNAs as a nonviral
control believed to lack extensive internal RNA structure (Fig. 1).

As anticipated, the human mRNAs sampled showed little global tendency to form
stable RNA structures (median Z-score, 20.35 [Fig. 1]), which is consistent with the
presence of local UTR structures and relatively low levels of structure along open read-
ing frames (24, 25). In the case of the West Nile virus genome, a Z-score distribution
centered at20.2 (median) similarly suggests the absence of globally ordered RNA fold-
ing, in agreement with trends observed for other Flavivirus RNA genomes (12) and also
for RNAs originated from the genomes of double-stranded DNA (dsDNA) viruses like
human herpesviruses (26). In very local regions, the human mRNAs and flaviviral ge-
nome cases displayed a low frequency of highly negative Z-scores (e.g., values below
23, which indicate the presence of highly stable RNA secondary structures), but both

FIG 1 Distributions of Z-scores for the RNA genomes of SARS-CoV-2, HCV, and West Nile viruses and
a composite of human mRNAs. The bar plots are frequency distributions (y axis) of free-energy Z-
scores (x axis) calculated in sliding windows tiling each RNA. Each histogram is overlaid with a
Gaussian (normal distribution) fit represented by a solid blue curve.
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distributions suggest the absence of widespread base pairing. In contrast, Z-score dis-
tribution for the HCV genome was dominated by negative values (median Z-score, 21
[Fig. 1]), indicating a genome-wide propensity to form stable RNA base-pairings. This
observation agrees with previous genome-wide analyses of HCV structural content (12)
and studies of discrete RNA secondary structures throughout the HCV UTRs and coding
regions (19, 20, 27, 28).

The Z-score distribution for the SARS-CoV-2 genome is shifted far into the nega-
tive range (Fig. 1), indicating that the genome has a much greater propensity to form
stable secondary structures than other RNAs analyzed, by far more than is possible
by chance. This is consistent with the reported preference for ordered folding seen in
some coronaviral RNAs, like that of mouse hepatitis virus (MHV) (12). Most strikingly,
the SARS-CoV-2 Z-score distribution is centered about a significantly more negative
value (median Z-score, 21.5) than observed for HCV, suggesting that the SARS-CoV-2
genome has almost twice the propensity to form stable base pairings than one of the
most structured RNA genomes in nature and that it is likely to form extensive second-
ary structures throughout all of its functional domains, in both coding and noncod-
ing regions. This unusual level of RNA structural stability suggests a vast network of
functional RNA structures within the SARS-CoV-2 genome.

A versatile pipeline for quantifying base pair content within an RNA genome.
To map and visualize the entire SARS-CoV-2 RNA structural network, we developed a
pipeline for quantitating and comparing relative levels of base pair content (BPC) and
secondary structural features throughout the genome (Fig. 2). Initially, we used
SuperFold (29) to fold the 29.9-kb genome of SARS-CoV-2 in overlapping windows, en-
abling us to compute a preliminary full-length secondary structure and a genome-

FIG 2 A pipeline to predict and quantify the base pair content across SARS-CoV-2 genome and
identify well-defined structured regions. (A) A scheme depicting the steps to predict the secondary
structure of SARS-CoV-2 genome in windows using SuperFold. A histogram of base pair content (BPC)
values calculated from the predicted secondary structure (gray bar plot) is shown, and the median
BPC is indicated (0.61). (B) A strategy to identify well-defined structures. The scheme shows shaded
regions containing nucleotides that pass two criteria: high relative BPC (upper graph, dashed line
indicating the median value of 0.5) and low Shannon entropy (lower graph, dashed line indicating
the global Shannon median). The red square highlights one of the regions flagged as forming a well-
defined structure. (C) A Venn diagram showing the overlap between the total number of nucleotides
identified as having well-defined structure using the procedure for panel B and those nucleotides
with low average Z-scores (below the global median) as reported by Andrews et al. (13).
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wide Shannon entropy profile derived from base pairing probabilities. We then used
the resulting secondary structure to calculate the BPC by scanning the entire RNA in
sliding windows (see Materials and Methods). We found that the SARS-CoV-2 genome
is predominantly folded into discrete secondary structural motifs that are predicted to
have high thermodynamic stability, with an average BPC of 61% (Fig. 2A, median value
indicated). This finding agrees with the Z-score analysis, which indicated a global pro-
pensity for stable structural folding (Fig. 1). In order to directly compare the relative
structural contents of different regions, we also quantified the relative base pair con-
tent (BPCrel) for each section across the SARS-CoV-2 genome (Fig. 2B). We define BPCrel

as the percentile of BPC at a given site relative to the overall BPC distribution along the
length of the RNA (see Materials and Methods).

We then proceeded to sift through the genome, locating discrete regions of well-
determined RNA secondary structures. To accomplish this, we adapted a motif discov-
ery method that was originally developed for interpreting the results of chemical prob-
ing experiments (29). But instead of using SHAPE reactivities as an input, we used the
BPCrel distribution across the SARS-CoV-2 genome in conjunction with the correspond-
ing Shannon entropy profile (scheme shown in Fig. 2B). This enabled us to flag regions
with BPCrel values above 0.5 (i.e., representing BPC values above the predicted global
median) and correlate them with Shannon entropy values below the global median,
resulting in a metric we define as “high BPC/low Shannon” (see Materials and
Methods). This definition, which is analogous to the “low SHAPE/low Shannon” desig-
nation for flagging probable regions of uniquely determined secondary structure (29),
reveals that 9,101 nucleotides, or a third of the entire genome, are located in regions
of both high BPC and low Shannon entropy. Since nucleotides with low Shannon en-
tropy are likely to favor a single, well-defined folding state (30), high-BPC/low-Shannon
regions are, therefore, clusters of well-defined structures with potential functionality.
Our analysis therefore suggests a remarkable abundance of well-defined secondary
structures within the SARS-CoV-2 genome.

In order to assess the relative thermodynamic stability of specific structured regions
defined by this approach, we calculated the relative enrichment in stable base pairs as
defined by the ScanFold-Fold analysis in the work of Andrews et al. (13) and computed
the overlap between the two approaches (Fig. 2C). Importantly, we observed that 64%
of high-BPC/low-Shannon-entropy regions overlap with regions that have low average
Z-scores (also defined here relative to the overall median) and that this enrichment is
statistically significant (P value , 1e205; see Materials and Methods). In this way, we
confirmed that the SARS-CoV-2 RNA structural network has a high level of thermody-
namic stability.

The SARS-CoV-2 genome contains specific loci of well-defined RNA structures.
Given the abundance of secondary structural units that correlate with low Shannon
entropy values in SARS-CoV-2 (high BPC/low Shannon, as defined in Fig. 2), we
were interested in mapping their distribution across the genome and correlating
their location with other units of genomic architecture. Before embarking on this
strategy, we evaluated the methodology on a viral transcript that is reasonably well
characterized. To this end, we computed the predicted distribution of well-defined
structures (i.e., high BPC/low Shannon) in the (1) genomic RNA of hepatitis C virus
(HCV; JC1 strain). We found that several genomic domains in HCV are enriched with
well-defined structures as defined by our approach, including the 59 UTR and ORF
regions encoding the Core structural protein and nonstructural proteins NS4B and
NS5B (Fig. 3), which are known to harbor stable, functionally validated RNA struc-
tural elements (19, 23, 31). We observed that several of these elements overlap with
regions of high structural content across their genomic segments, and we predict
novel structures in regions of HCV that have not been the focus of prior investiga-
tion (Fig. 3 and Table 1). These results suggest that our strategy can be used to
accurately scan kilobases of RNA sequence for candidate RNA structural elements
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that merit downstream investigation, which is particularly valuable for viral tran-
scripts of unknown structural composition.

We then calculated the fraction of high-BPC/low-Shannon nucleotides in bins that
tile the SARS-CoV-2 genome, resulting in a genome-wide distribution of well-defined
structures that can be plotted as a function of position along the RNA. This distribution
can be represented as a heat map of well-defined structures along the full-length
SARS-CoV-2 genome (Fig. 4A), with expanded views of the initial two-thirds (59 UTR
and ORF1ab [Fig. 4B]) and the downstream one-third of the RNA (structural/accessory
ORFs and 39 UTR [Fig. 4C]). Various degrees of structural content are predicted across
the genome, ranging from 24% to 71% of well-defined structures within individual
domains (Fig. 5A).

To assess how these structured regions are distributed throughout the genomic
RNA, we started by analyzing the noncoding regions. As expected, we found a high
level of structural content in each of the untranslated regions (the 59 and 39 UTRs):
indeed, 61% of the 59 UTR and 41% of the 39 UTR are characterized by well-defined
structures (Fig. 4A and Fig. 5A), which is consistent with the presence of RNA regula-
tory elements that play roles in replication and translation of the virus.

However, unlike conventional mRNAs or flaviviral RNAs, RNA structural elements
are not predominantly confined to the UTRs, as they are observed throughout all cod-
ing regions of SARS-CoV-2 (Fig. 4A). Different regions of the ORF contain various
amounts of secondary structure. For example, we observe that 27% of ORF1ab con-
tains nucleotides within high-BPC/low-Shannon regions, which are spread sparsely
over more than 21 kb (;2/3 of the genome). These foci of well-defined RNA structures
are not uniformly distributed along this ORF, as individual NSP domains contain vastly
different degrees of secondary structure (Fig. 4B and Fig. 5B). The most upstream seg-
ment, NSP1, is the most structured region of ORF1ab, with 56% of its nucleotides form-
ing well-defined motifs (Fig. 5B). Importantly, the upstream half of the NSP1 segment
appears to be part of a large module that forms in conjunction with the 59 UTR, as a
peak of high BPC/low Shannon values encompasses both domains (Fig. 4B). This sug-
gests that, as observed in other coronaviruses (11), upstream regulatory elements of

TABLE 1Well-studied RNA structural elements in the HCV genome

RNA structural element (reference[s]) Sequence interval (HCV JC1) Genomic domain
IRES (65) 1–350 59 UTR
SL388 (19, 66), SL427 (19, 67) 417–488 Core
SL588, SL669 (19, 67) 588–749 Core
J750 (19, 23, 67) 751–824 Core
SL6038 (19) 6038–6186 NS4B
J7880 (23) 7880–7998 NS5B
SL8670 (23) 8655–9716 NS5B
SL9074 (68, 69), SL9198 (70) 9103–9257 NS5B

FIG 3 Distribution of well-defined RNA structures predicted for the HCV genome. The percentage of
nucleotides in well-defined structured regions (high BPC/low Shannon) was calculated in 100-nt bins tiling HCV
genomic sequence and is plotted as a function of the genomic coordinate (gray curve). Individual percentages
of each genomic bin are also represented as a heatmap in the graph (color legend on the top right-hand
corner). The locations of well-studied structural elements in the HCV genome are indicated with asterisks next
to their respective genomic divisions, and details on each individual element are presented in Table 1.
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the genome extend far into the ORF. The largest domain in ORF1ab, NSP3, contains
highly structured foci that can be organized into three big clusters (Fig. 4B): one cluster
is located adjacent to the 59 terminus of the domain (nucleotides [nt] 3200 to 3600), a
middle section displays multiple high-BPC/low-Shannon peaks (nt 4500 to 6500), and a
downstream segment is located near the 39 NSP3 terminus (nt 7450 to 8200). This
overall organization suggests that NSP3 contains independent modules of RNA sec-
ondary structure. Similar clusters of RNA structures are observed in NSP12 and -13, and
they occur roughly within the limits of each domain. In contrast, other NSP regions
(NSP4, -5, -6, -8, -9, -10, -14, -15, and -16) form structures that encompass the bounda-
ries of individual segments, suggesting a modular organization at the RNA level that
does not necessarily correlate with functionality at the protein level. Finally, we observed
that regions corresponding to NSP7 and NSP11 showed a complete absence of well-deter-
mined structures (Fig. 5B), thereby suggesting the presence of predominantly unstructured
regions in the genome.

The downstream third of the SARS-CoV-2 genome, which contains ORFs for struc-
tural and accessory proteins (the subgenomic RNA [sgRNA]-encoding region), displays
a much higher overall secondary structural content than ORF1ab and has 36% of its
sequence folding into well-determined structures (Fig. 4C). Remarkably, some of these
ORFs (ORF3a, -E, -M, -7ab, and -8) have a predicted structural content that is compara-
ble to or even higher than that of the UTRs (Fig. 5A), with the most prominent example
being ORF7ab (high BPC/low Shannon fraction of 70%). These highly structured ORFs

FIG 4 Distribution of well-defined RNA structures across the SARS-CoV-2 genome. (A) The percentage
of nucleotides in well-defined structured regions (high BPC/low Shannon) was calculated in 100-nt
bins tiling the genome and is plotted as a function of the genomic coordinate (gray curve). Individual
percentages of each genomic bin are also represented as a heat map in the same graph (color key
on the top right-hand corner). A scheme representing the genomic divisions of SARS-CoV-2 is shown
next to the plot to guide location of structured regions. (B) An expanded view of the initial two-
thirds of the genome from the graph in panel A is shown along with the genomic divisions of this
region (UTR plus ORF1ab and corresponding NSP divisions). (C) The downstream third of the genome
is expanded from the graph in panel A to zoom in on individual structural and accessory ORFs in this
region.
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are all relatively short (ranging from 236 to 852 nt), consisting of a series of well-
defined structures that are very closely spaced (Fig. 4C). On the other hand, longer
ORFs like S (spike) and N (nucleocapsid) contain shorter patches of well-defined
structures interspersed with longer, less structured regions, resulting in a some-
what lower structural content for these ORFs (30% for the S ORF and 24% for the N
ORF [Fig. 5A]).

Similar to patterns observed for ORF1ab, we also observed RNA structural mod-
ules that span multiple ORFs. One example is a module that spans the junction
between S ORF and ORF3a, including the transcription regulatory sequence (TRS) at
the intersection between them. Similarly, part of ORF6 folds into a substructure that
includes elements of ORF7a/b and -8, resulting in an extended structured region that
includes three TRS elements. These observations indicate that some TRSs in this
region might engage in structures with their surrounding ORFs, a feature that is likely
to influence sgRNA synthesis and replication. Taken together, these results suggest
the formation of numerous modules of well-determined RNA structure throughout
the SARS-CoV-2 genome and reveal important structural trends across its genomic
sections.

In order to evaluate the validity of our conclusions using an orthogonal data set, we
applied the same computational pipeline to compute the fraction of high-BPC/low-
Shannon-entropy nucleotides across ORF1ab (including the 59 UTR) using experimen-
tally determined chemical probing data obtained in infected cells (32). We then com-
pared the resulting output with our purely in silico results (Fig. 6). Despite the marked
differences expected between in silico and in cellulo settings, there is good overall
agreement between both data sets (Pearson’s R=0.73; Spearman’s rho= 0.75), which
confirms the predicted distributions of well-defined structural hubs throughout the

FIG 5 Quantification of well-defined structure in SARS-CoV-2 subdivisions. (A) The percentages of
nucleotides with well-defined structure (high BPC/low Shannon) are shown for each genomic section
of SARS-CoV-2. A cartoon of genomic regions is depicted above the bar plot, and each region is color
coded relative to the bar graph. (B) The percentages of nucleotides with well-defined structure (high
BPC/low Shannon) are shown (gray bars) for each NSP (nonstructural protein) section of SARS-CoV-2
ORF1ab. The horizontal dashed line (blue) represents the percentage corresponding to the entire
ORF1ab.
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genomic subdivisions of ORF1ab. These results provide an additional experimental vali-
dation of the methods we describe here, extending them to applications using experi-
mental data and suggesting broad applicability for characterizing structural trends in
long viral RNAs.

Secondary structural features depend on genomic versus subgenomic context.
Intrigued by the abundance of predicted RNA structures within the ORFs of SARS-CoV-
2, we asked whether individual ORFs might adopt different structures depending on
the context in which they are inserted, i.e., in genomic versus subgenomic RNAs. As a
direct application of base pair content analysis, we calculated the predicted folded
structure of one specific structural ORF that is present in both genomic RNA (gRNA)
and subgenomic RNA. We chose the Nucleocapsid ORF because it forms the most
abundant sgRNA (N sgRNA), which is estimated to be at least 1 order of magnitude
more abundant than other sgRNAs (6).

When comparing the N ORF base pair content in both the genomic and subge-
nomic contexts (Fig. 7A), one observes subtle differences in the upstream segment of
this ORF. Specifically, the upstream 434 nucleotides of N ORF show patches of signifi-
cantly higher base pair content in the subgenomic context than in the genomic con-
text. To understand this, we examined the specific predicted RNA secondary structure
in both contexts (Fig. 7B). In the genomic context, sequences upstream of the N region
(which belong to ORF8) are predicted to form base pairing interactions with the adja-
cent N ORF, resulting in a specific RNA structure that is uniquely dependent on the
genomic environment. In contrast, in the subgenomic context, upstream regions of
the N ORF are adjacent to the 59 leader sequence, which folds somewhat autono-
mously into an independent motif and makes fewer contacts with the adjacent N
sequences. As a result, upstream nucleotides of the N ORF form a compact alternative
secondary structure in the sgRNA that is distinct and more thermodynamically stable
and which has a higher overall BPC than the same sequence in the genomic context.

To test these theoretical predictions using experimental data, we isolated RNA from
SARS-CoV-2 infected cells that had been treated with selective 29-hydroxyl acylation
analyzed by primer extension (SHAPE) reagents and then selectively amplified

FIG 6 Comparison between in silico prediction in this study and experimental (in-cell SHAPE) structure
reported by Huston et al. 2020 (32) for the ORF1ab region (including the 59 UTR). The plots (gray lines) show
the distribution of well-defined structure (percent high base pair content/low Shannon entropy) calculated in
100-nt bins tiling the ORF1ab region from both structural models. The same values are represented as a heat
map in each graph to depict regions of high and low structural content according to the key shown on the
upper right-hand corner. A cartoon with the genomic subdivisions of ORF1ab is shown to guide data
visualization. The computed correlation coefficients between both data sets are shown in the table.
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FIG 7 Context-dependent formation of secondary structures in the SARS-CoV-2 nucleocapsid ORF. (A)
The base pair content for the N ORF (total of 1,260 nucleotides) is plotted as a function of the
nucleotide number for the genomic RNA (gray curve) and the N sgRNA (magenta curve). The x axis
numbering represents the N ORF nucleotide order (1 to 1260). (B) In silico secondary structure
predictions containing the upstream 434 nucleotides of the N ORF are shown for both genomic and N
subgenomic RNAs. The region containing structural differences identified in panel A is shown, and the
highlighted regions (yellow) show significantly different RNA folding in both contexts. In the genomic
RNA, the gray region represents a downstream segment of ORF8 and a 14-nt stretch of additional
sequence containing the TRS (59-ACGAAC-39). In the N subgenomic RNA, the gray region is the 59 leader
sequence and a homologous stretch of additional sequence containing the TRS. Structures were drawn
on VARNA (64). (C) Arc diagram comparison of in silico and in-cell SHAPE secondary structural models of
upstream N ORF. Base pairs involving the N ORF that are context dependent (forming exclusively in
either gRNA or sgRNA) are highlighted in orange. Base pairs forming within sequences upstream of the
N ORF (ORF8 in gRNA or the leader sequence in N sgRNA) are represented in gray, and base pairs
within the N ORF that are not affected by sequence context are drawn in blue. Green dashed boxes
show expanded junction regions in both cases (ORF8-N ORF in gRNA, 59 leader-N ORF in sgRNA).
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upstream regions of the N ORF in the sgRNA context and then separately in the gRNA
context. In this way, it was possible to obtain experimentally determined secondary
structural models for this same region of the N ORF in both distinct contexts and com-
pare them with our in silico predictions (Fig. 7C). Strikingly, this analysis not only con-
firmed that upstream regions of the sgRNA ORF are indeed affected by their adjacent
sequence context as predicted in silico but also confirmed the overall pattern of pre-
dicted secondary structure organization: in both theoretical and experimental models,
the adjacent ORF8 sequence interacts much more extensively with N ORF nucleotides
in the genomic context (orange gRNA arcs in Fig. 7C). In contrast, the 59 leader
sequence folds almost autonomously in the sgRNA, with the exception of a few poorly
determined long-range contacts (high Shannon entropy), resulting in more extensive
pairing among N ORF nucleotides in the sgRNA junction (orange sgRNA arcs in Fig.
7C). As a consequence, a more stable, compact structure forms at the upstream section
of the N sgRNA than within its cognate region of the gRNA.

These results suggest that the same RNA sequences can adopt completely different
structures in the subgenomic and genomic contexts, thereby potentially diversifying
functionality of the viral genome, with significant implications for RNA stability, proc-
essing, and molecular mechanism. A compact structure with high BPC in the upstream
segment of the N sgRNA might contribute to its stability as an independent transcript,
potentially explaining the unusually high abundance of this sgRNA. It will be important
to conduct genetic studies to assess this model and to perform analogous studies
on the other sgRNA/gRNA combinations to evaluate how they might influence viral
function. These limited studies exemplify the presence of context-dependent differen-
ces in the structures of specific viral RNA sequences, and they provide a framework for
sifting through vast coronavirus genomes (and other genomes) to identify discrete ele-
ments of dynamic RNA secondary structure.

DISCUSSION

The majority of biophysical and structural studies being conducted on coronavi-
ruses focus on the viral proteins, such as the virion constituents and components of
the replication-transcription machinery (33–36). However, RNA motifs within positive-
strand RNA viruses guide many processes that are critical for the virus life cycle (19, 20,
27, 28, 37). SARS-CoV-2 is unlikely to be an exception to this rule, particularly given
that, to our knowledge, it has the most elaborately structured RNA genome that has
ever been reported to date, and many of its constituent structures are conserved
across coronavirus families (7, 8, 10, 11). Until the present study was conducted, the ge-
nome of HCV was the landmark example of a highly structured viral RNA, and one of
the most structured ORFs in nature, distinguished by networks of functionally essential
RNA structural motifs throughout both the coding and noncoding regions (19, 23, 31).
However, we report here that the SARS-CoV-2 genomic RNA is nearly twice as compact
and structured as HCV based on its folding stability, even when adjusting for its vastly
greater overall length (;30 kb versus ;10 kb). RNA structural motifs within the UTRs
and ORFs of coronaviruses are seemingly larger and more complex than those observed in
other virus families (38–41), suggesting that an understanding of coronavirus RNA struc-
ture will play a key role in understanding the mechanistic processes and vulnerabilities of
this virus.

It is interesting to consider why the largest RNA genome might also be the most
highly structured. One hypothesis is that the idiosyncratic SARS-CoV-2 genomic archi-
tecture serves a protective function. Biophysical studies have shown that extensively
structured viral RNAs like HCV adopt highly condensed states in solution and that
these are inaccessible to external probe hybridization (15), which has implications for
primer design in viral test kits and for biological function. It is therefore reasonable to
expect that the SARS-CoV-2 genomic RNA might adopt structural states that affect the
way it interacts with viral, cellular, and exogenous factors. The architectural features of
the massive SARS-CoV-2 genome may confer protection against cellular nucleases,
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which would facilitate sustained infection in cells. In addition, the folded architecture
of the SARS-CoV-2 genome may enable it to hide in plain sight, reducing activation of
host pattern recognition receptors (42). In other well-structured positive-stranded RNA
viruses like HCV and murine norovirus (MNV), the formation of a genome-scale ordered
RNA structure (GORS) correlates with decreased activation of antiviral pathways (16,
43). Cell-based assays have shown that highly structured viral transcripts have a
reduced propensity to activate interferon responses compared with that of less struc-
tured viral RNAs (17). Understanding the interplay between the SARS-CoV-2 genome
architecture and elements of the host immune system will undoubtedly be a rich area of
future investigation.

Another consequence of the highly structured, compact SARS-CoV-2 RNA genome
is that its reduced dimensionality would facilitate interactions between RNA structural
elements that are otherwise far apart from one another in primary sequence. Bringing
genomic elements into close spatial proximity of one another will support the forma-
tion of long-range interactions between distant segments of the genome. Much like
the topologically associating domains (TADs) in the chromatin of eukaryotes (44), “RNA
TADs” in viral genomes might have the capacity to control replication, translation,
packaging, and many other processes, as suggested for structures that constrain ends
of the HCV genome (45, 46). There is already precedent for this within the coronavirus
family, as long-range contacts in the transmissible gastroenteritis virus (TGEV) genome
and cross talk between the 59 and 39 ends of the MHV genome have been proposed to
modulate aspects of sgRNA synthesis in each system (47, 48).

Given the many mechanistic implications for “structuredness” of the SARS-CoV-2
RNA genome, we were motivated to adapt and develop tools for quantifying overall
base pair content, and motif stability, relative to the expanse of an entire genome. For
example, to monitor the domain-level distribution of extensively base paired regions
across this RNA, we developed a general strategy for extracting the base pair content
from a secondary structure model using an approach that is readily applicable to any
theoretical or experimentally determined RNA structure prediction. By further applying
a Shannon entropy filter (30, 49), we were then able to focus our analysis on the
regions of greatest base pairing propensity and well-determined secondary structural
composition (high BPC/low Shannon). Downstream quantification of the density of
high-BPC/low-Shannon nucleotides enabled us to generate a preliminary profile of
their distribution along the entire RNA (Fig. 4), and we were able to use the same com-
putational approach on experimental data to validate our in silico predictions and con-
firm the structural trends reported for ORF1ab (Fig. 6). In this way, we could rapidly
map regions with high and low predicted RNA structural frequency along the SARS-
CoV-2 genome, producing a snapshot of the structural landscape for this RNA and
pinpointing areas that merit focused biophysical study. In massive RNAs, such as coro-
naviral genomes or certain eukaryotic mRNA transcripts, an approach that rapidly sifts
information on structural content and puts it into a global and spatial context is vital
for the discovery of regulatory modules and drug targets. The results and methods pre-
sented here will thus guide experimental approaches focusing on specific structures of
SARS-CoV-2 genome, not only facilitating construct and primer design but also provid-
ing a tool to evaluate potential structural differences within the complex pool of RNAs
produced during viral infection.

It is useful to reflect on the frequency and spatial distribution of secondary struc-
tures within the SARS-CoV-2 genome, as their placement along the genome is far from
uniform. Our analysis predicts that ORFs in the downstream third of the genome con-
tain the highest density of well-defined structures in the viral transcript. These ORFs
encode the sgRNAs and the accessory and structural proteins that are required during
later stages of replication (5, 6). One possibility is that more extensive RNA folding of
downstream segments might increase their relative stability and safeguard them for
later phases of viral infection. Importantly, several RNA structures in this segment
encompass the transcription regulatory sequences (TRSs), which are key to production

Tavares et al. Journal of Virology

March 2021 Volume 95 Issue 5 e02190-20 jvi.asm.org 12

https://jvi.asm.org


of the 39-nested sgRNAs (50). Given that TRS elements mediate the fusion of each ORF
terminus to the leader sequence during subgenomic replication, their structural con-
text is likely to affect the frequency of template switching (leader-to-body fusion) at
each fusion site, possibly involving interactions with the replicase-transcriptase com-
plex or other gRNA-interacting partners like the nucleocapsid protein (51, 52). The
numerous structures found within the coding sequences of this region may also con-
tribute to processes other than RNA synthesis, such as translational regulation (39, 53)
and infectivity (19).

RNA folding is expected to be influenced by sequence context (54), and it is there-
fore notable that many structures predicted in downstream regions of the SARS-CoV-2
genome appear to depend on transcript positional context, as many of them occur at
junctions between consecutive ORFs. Many potential structures will no longer form af-
ter leader-to-body fusion occurs at the junctional TRS sites (upon formation of an
sgRNA), suggesting that certain structures may have roles only in the context of full-
length genomic RNA and/or in longer sgRNAs that arise from upstream fusion events.
We explored one example of such a structure (Fig. 7), which involves base pairings
between a downstream segment of ORF8 and upstream segments of the N protein
ORF, which are ablated upon formation of the N sgRNA. Genomic structures of this
type may facilitate processes such as viral packaging (55) and may promote infectivity
(56). On the other side of the spectrum, secondary structures that form exclusively in
sgRNAs, such as the large motif predicted between the 59 leader sequence and the N
ORF (Fig. 7C), are expected to affect sgRNA properties like stability, abundance, and
the recruitment of sgRNA-specific factors. Systematic structural comparisons among
SARS-CoV-2 transcripts will certainly help to identify candidate genomic structures
with potential roles in infectivity and to provide a framework for rationalizing the rela-
tive stabilities and functions of sgRNAs.

The vast genome of SARS-CoV-2 and its complex transcriptome present new chal-
lenges to RNA science, immunology, and medicine. However, the SARS-CoV-2 system
and the intense attention it has attracted will also stimulate innovation, pushing
researchers to develop new strategies for addressing the many challenges of study-
ing and understanding exceptionally large RNA transcripts, particularly those in the
life cycle of pathogens. We hope that the results and methods described in this work
will provide a convenient roadmap to facilitate the design of new experiments for
understanding the modular architecture of the SARS-CoV-2 genome and for unravel-
ing the complex mechanisms of viral pathogenicity and host response. In addition,
by focusing on the most structured regions of the genome and mapping their distri-
bution, we seek to stimulate the search for promising new drug targets, thereby pav-
ing the way to novel therapeutic strategies against COVID-19 and other emerging
RNA viruses.

MATERIALS ANDMETHODS
MFE Z-score analysis. Folding minimum free-energy (MFE) Z-scores for SARS-CoV-2, HCV, West Nile

virus (WNV), and human mRNAs (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], beta-actin
[ACTB], hypoxanthine phosphoribosyltransferase [HPRT], and a-tubulin) were calculated with the
ScanFold program (57). ScanFold is a pipeline to scan and extract structural motifs from large RNA
sequences (22), and it has recently been used to guide the design of small molecules targeting a SARS-
CoV-2 frameshifting element (58). Part of the ScanFold suite, ScanFold-Scan uses ViennaRNA package
2.0 (59) to fold the target sequence in sliding windows and calculate the MFE secondary structure for
each window. The Z-score for each window is computed by calculating by the difference between the
native MFE and the average MFE of shuffled sequence controls and normalizing this difference by the
standard deviation of the shuffled MFE distribution. ScanFold-Scan default parameters were used (120-
nt window size, folding temperature of 37°C, mononucleotide shuffle procedure), with the exception of
the number of randomizations (set to 100) and the sliding step size (set to 1 nt). Z-score frequency distri-
butions for SARS-CoV-2, HCV, West Nile virus, and the composite of human mRNAs were calculated on
GraphPad Prism.

In silico RNA secondary structure modeling. Secondary structure predictions for the full-length
SARS-CoV-2 RNA genome, SARS-CoV-2 nucleocapsid (N) subgenomic RNA, and full-length HCV RNA ge-
nome were obtained using SuperFold with default settings as described by Smola et al. (29), which allow
for reasonable computation times for long RNAs such as the viral genomes analyzed in this study. Since
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no experimental constraints were used in the modeling, the SHAPE contribution was canceled by setting
both the SHAPE slope and intercept to 0 (–SHAPEslope 0; –SHAPEintercept 0). The default maximum
base pairing distance (600 nt) was used in both partition function and windowed folding steps. Briefly,
SuperFold calculates the base pairing partition function in 1,200-nt windows in steps of 100 nt along the
RNA, while removing interactions occurring within the terminal 300 nt at the 59 and 39 ends of each win-
dow, yielding an effective window size of 600 nt (equivalent to the maximum base pairing distance) that
is scanned across the full-length RNA; to compensate for the deweighting at the true 59 and 39 ends of
the RNA, additional partition function calculations on those termini are performed. Base pairing proba-
bilities are averaged across all windows in which a base pair is predicted to form. SuperFold then uses
the Fold function from RNAstructure (60) to calculate the minimum free-energy secondary structure in
3,000-nt sliding windows every 300 nt along the RNA; highly probable base pairs from the partition func-
tion calculation (P. 99%) are used as hard constraints in this step. Finally, a consensus secondary struc-
ture is obtained by outputting base pairs consistently predicted during windowed folding, i.e., occurring
in more than one-half of windows. The Shannon entropy for each nucleotide is computed with base
pairing probabilities derived from the partition function calculation.

BPC and BPCrel calculations. The base pair content (BPC) was calculated on Excel from the pre-
dicted secondary structure in sliding windows of 51 nt tiling the RNA in steps of 1 nt. For each nucleo-
tide, we define BPC as the fraction of base-paired nucleotides within the window centered about that
nucleotide. For the terminal 25 nucleotides at both ends of the RNA (window sizes, 51 nt), sliding
windows were truncated accordingly. The BPCrel, i.e., the relative base pair content for a given nucleo-
tide, was calculated with an in-house script by computing the percentile of the nucleotide’s absolute
BPC among the global set of BPC values comprising the entire RNA. Briefly, 100,000 values were
resampled with replacement (bootstrapping) from the set of BPC values. The bootstrapping is used as
a convention to approximate the percentile of BPC values across a common denominator, regardless
of the RNA tested. For each nucleotide, we then computed the fraction of bootstrapped values that lie
below that nucleotide’s BPC score. By doing this, the median BPC value for a given RNA is “normal-
ized” to 0.5, making for an intuitive measure of the relative significance of the magnitude of a given
nucleotide’s BPC value. In case the median value itself is present multiple times in the BPC data set,
the standardized median threshold shifts beyond 0.5, which can be corrected by resetting all median
BPC values with a BPCrel of 0.5. In this way, the rescaled BPC values (BPCrel) can be used for direct quan-
titative comparison of the structural content across any RNA.

Identification of well-defined structures (high BPC/low Shannon). BPC along with Shannon en-
tropy values were used to identify nucleotides likely to form well-defined structures. In SHAPE experi-
ments, this is accomplished by flagging those nucleotides with both low SHAPE reactivity and low
Shannon entropy values, after smoothing both data sets in sliding windows tiling the RNA in steps of 1
nucleotide (29, 61). Nucleotides with SHAPE reactivities and Shannon entropy values below the global
median of each respective distribution are considered highly structured and well defined. By analogy
with the “low SHAPE/low Shannon” concept, here we define “high BPC/low Shannon” nucleotides as
those likely engaged in well-defined structures. Shannon entropy values were first smoothed in 51-nt
sliding windows (steps of 1 nt) to match the BPC calculation parameters. After computing BPCrel values,
nucleotides with BPCrel greater than 0.5, i.e., above the global median of the distribution, and Shannon
entropy values below the global median were flagged as high BPC/low Shannon. The fraction of well-
defined structure in a given section of the RNA was then defined as the fraction of high-BPC/low-
Shannon nucleotides in that section. For the comparison between in silico and experimental results for
ORF1ab (Fig. 6), the high-BPC/low-Shannon distributions were computed from each individual structural
model: the SHAPE-derived model reported by Huston et al. from infected cells (32) was used to generate
the experimental distribution of well-defined structures across ORF1ab and compared against the in sil-
ico profile obtained in the present study for the same region (Fig. 4 and 6).

Overlap between high-BPC/low-Shannon regions and regions with low average Z-scores. It was
important to assess the overlap between nucleotides in well-defined regions as defined by our
approach (high BPC/low Shannon) and nucleotides with low average Z-scores (Zavg) from the
ScanFold-Fold analysis of SARS-CoV-2 reported by Andrews et al. (13). To this end, Zavg scores for
SARS-CoV-2 were downloaded from the Moss lab RNAStructuromeDB (https://structurome.bb.iastate
.edu/). In order to match the criteria we used to flag well-defined structures (high BPC/low Shannon,
both relative to the global median), low Zavg values are defined here as those occurring below the dis-
tribution median of Zavg values, i.e., regions with folding stability above the average. The statistical
significance of the overlap between both methods was evaluated on MATLAB by running simulations
of randomly distributed elements in both groups. The P value was estimated by computing the num-
ber of times an overlap equal or greater than the observed value was obtained and then dividing it
by the number of simulations.

Nucleocapsid sgRNA SHAPE-MaP probing and structure modeling. SARS-CoV-2 infection in Vero
cells, NAI SHAPE probing, and SHAPE-MaP library preparation were performed exactly as described by
Huston et al. (32). The following strategy was used to specifically target the nucleocapsid sgRNA: reverse
transcription (RT) was performed with MarathonRT (62) using a primer targeting the 39 end of the SARS-
CoV-2 39 UTR (59-TTTTTTTTTGTCATTCTCC-39); cDNA was then amplified with a forward primer targeting
the 59 end of SARS-CoV-2 59-leader sequence (59-ATTAAAGGTTTATACCTTCCCAG-39) and a reverse
primer targeting the 39 end of the SARS-CoV-2 39 UTR (59-TTTTTTGTCATTCTCCTAAGAAG-39). In conjunc-
tion with a short PCR extension time (2min), this RT-PCR design allows for selective amplification of the
N sgRNA sequence and cannot efficiently amplify intervening regions in the gRNA or other sgRNAs. To
verify selective amplification of the N sgRNA, the correct amplicon size (1,686 bp) was confirmed by
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gel electrophoresis. Libraries were sequenced on the Illumina NextSeq 500/550 platform using a
2� 75-bp paired-end sequencing. Sequencing data were analyzed using the ShapeMapper 2 analysis
pipeline (63), aligning reads to the N sgRNA sequence. To ensure that sequencing reads corresponded
to the N sgRNA, alignments generated with the ShapeMapper 2 were visualized on IGV (v2.8.2) to con-
firm the presence of high-quality chimeric reads that span the TRS junction site between the leader
sequence and the nucleocapsid ORF. SuperFold (29) was then used to model the secondary structure
of the N sgRNA using in-cell SHAPE reactivities and the same modeling parameters as described by
Huston et al. (32). The experimental secondary structure model for the SARS-CoV-2 genomic RNA pre-
viously reported (32) was used for comparison of the N ORF RNA folding between genomic and subge-
nomic contexts.

Reference sequences. The SARS-CoV-2 reference genome from Wu et al. (1) was used for all analy-
ses, along with the protein annotations deposited in NCBI (GenBank accession numbers MN908947.3
and NC_045512.2). Human beta-actin mRNA (NM_001101.5), human GAPDH mRNA (NM_002046.7),
human HPRT mRNA (NM_000194.3), human a-tubulin 1 mRNA (NM_006009.4), West Nile virus genome
(NY99 sequence, based on DQ211652.1 reference) and HCV genome (JC1 sequence, based on JF343782.1
reference) sequences were used for Z-score analysis.

Data availability. Data sheets, sequence files, and the script used to calculate relative BPC values
are available at the GitHub repository: https://github.com/pylelab/SARS-CoV-2_global_local_structure.
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