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Osteoporosis is becoming a highly prevalent disease in a large proportion of the global
aged population. Serum metabolite markers may be important for the treatment and early
prevention of osteoporosis. Serum samples from 32 osteoporosis and 32 controls were
analyzed by untargeted metabolomics and lipidomic approaches performed on an ultra-
high performance liquid chromatography and high-resolution mass spectrometry
(UHPLC-HRMS) system. To find systemic disturbance of osteoporosis, weighted gene
correlation network analysis (WGCNA) and statistical methods were employed for data-
mining. Then, an in-depth targeted method was utilized to determine potential markers
from the family of key metabolites. As a result, 1,241 metabolites were identified from
untargeted methods and WGCNA indicated that lipids metabolism is deregulated and
glycerol phospholipids, sphingolipids, fatty acids, and bile acids (BA) are majorly affected.
As key metabolites of lipids metabolism, 66 bile acids were scanned and 49 compounds
were quantified by a targeted method. Interestingly, hyocholic acids (HCA) were found to
play essential roles during the occurrence of osteoporosis and may be potential markers.
These metabolites may be new therapeutic or diagnosis targets for the screening or
treatment of osteoporosis. Quantified measurement of potential markers also enables the
establishment of diagnostic models for the following translational research in the clinic.
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INTRODUCTION

Osteoporosis is a progressive systemic bone disease that is characterized by bone loss and
microstructural deterioration and results in increased bone fragility, which affects over 200
million people worldwide (Curtis et al., 2017; Compston et al., 2019). Complications of
osteoporosis such as chronic pain, fracture and disability seriously affect the quality of life of
elderly individuals. Fracture is the most serious complication, with more than 8.9 million
osteoporosis-related fractures occurring annually (Cruz-Jentoft and Sayer, 2019). As the global
population ages, osteoporosis and its complications are becoming an increasingly serious public
health burden (Sànchez-Riera et al., 2014; Tarrant and Balogh, 2020). Osteoporosis is also a highly
insidious disease. Due to the absence of obvious symptoms and sensitive biomarkers, many patients
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are diagnosed only after a fracture has occurred (Wang et al.,
2019; Fang et al., 2020). Furthermore, the first-line drugs used to
treat osteoporosis are associated with a substantial number of
complications, and the overall therapeutic effects are
unsatisfactory (Park et al., 2013; Komm et al., 2015). This
indicates that we do not fully understand osteoporosis and the
therapeutic targets required.

Metabolites are the ultimate functional products that manifest
both genetic and environmental variations, and they combine
external stimuli with intracellular signals (Peng et al., 2015).
Metabolic profiles obtained using metabolomics techniques
under different conditions are closely related to human health
(Leslie and Beyan, 2011). Osteoporosis is a metabolic bone
disease, and studies have indicated that significant changes in
endogenous metabolites modulate bone remodelling in a mouse
model of osteoporosis (Nam et al., 2018). Moreover, in the
treatment of osteoporosis, oestradiol changed 27 intracellular
metabolite levels by correcting lipid and amino acid disorders
(Liu et al., 2015). Metabolomics characterizes metabolites in
biological samples to provide information on pathway activity,
which provides a suitable approach for the study of osteoporosis.
Non-targeted metabolomics platforms aim to enlarge the
coverage of endogenous metabolites for a better understanding
metabolic pathways or screening potential biomarkers. Thus, the
challenges for untargeted metabolomics are detection, discovery
and identification of differential metabolites. Targeted
metabolomics methods focused on a limited number of
compounds and provides sensitive and precise measurement of
metabolites. The combination of the two approaches has greatly
facilitated the discovery of biomarkers and the understanding of
pathophysiological mechanisms (Xuan et al., 2020).

Changes in human serum metabolites might reflect
pathophysiological alterations caused by various diseases (Shu
et al., 2020, 19). Here, metabolic alternations in patients with
osteoporosis were analyzed by untargeted metabolomic and
lipidomic methods. To better understand the metabolic
deregulations occurred in the patients, WGCNA algorithm
and multivariate statistical methods were applied. Then
targeted metabolomics method performed on a triple
quadrupole MS was employed to obtain an in-depth
measurement of the key metabolites and their related
compounds. The quantitative results may help understanding
the metabolic pathway and the establishment of a diagnostic
panel, which enables the diagnostic and treatment applications in
the clinic.

MATERIALS AND METHODS

Reagents and Solutions
Mass spectrometry level methanol, acetonitrile, isopropanol,
formic acid and ammonium acetate were purchased from
Fisher Scientific (Fair Lawn, United States). Mass spectrometry
level ammonium bicarbonate and methyl tert-butyl ether
(MTBE) were purchased from Sigma-Aldrich (St. Louis,
United States). Ultra-pure water (18.2 mΩ cm) was used to
prepare using Milli-Q purified water system (Merck KGaA,

Darmstadt, Germany). Reference bile acid standards and
isotope internal standards were purchased from Avanti Polar
Lipids (Alabama, United States), Cayman Chemical (Ann Arbor,
United States), Cambridge Isotope Laboratories Inc. (Tewksbury,
United States), IsoSciences (Ambler, United States), Sigma-
Aldrich (St. Louis, United States) and Toronto Research
Chemicals (Toronto, Canada). For more information about
standards, please referred to Supplementary Table S1.

Participants and Criteria
From June 2020 to January 2021, serum samples were collected
from osteoporosis patients (OS group, n � 32) at the First
Affiliated Hospital of Dalian Medical University. The OS
group inclusion criteria were based on the 2014 National
Osteoporosis Foundation (NOF) clinical guidelines (Cosman
et al., 2014). The exclusion criteria included any mental or
organic diseases, cancer, metabolic or hereditary bone disease,
and hormone use in the past 6 mo. The serum samples of the
control group (Con group, n � 32) were collected from health
individuals at an admission physical examination. The age and
sex constituent ratio of the control group matched that of the OS
group, and the controls did not have any of the above-mentioned
OS group exclusion criteria. All patients signed informed consent
forms, and the project was approved by the Ethics Committee of
First Affiliated hospital of Dalian Medical University.

Serum Sample Collection and Pretreatment
Serum samples were collected from OS patients on the first
morning in a fasted state. Likewise, all Con samples were
collected at the same time point and under the same fasting
conditions as the OS samples were. All samples were immediately
stored in a −80°C freezer and thawed at 4°C before pre-treatment.
First, 150 μl of each sample was transferred to 1 ml 96-DeepWell
plates (Thermo Scientific, United States), and then, 600 μl of
methanol was added to the sample to precipitate the protein.
Next, the mixture was vortexed for 5 min for better mixing and
distribution and centrifuged at 5300 RPM for 20 min (4°C). Two
replicates of the 200 μl upper layer were transferred to 450 μl 96-
well plates (Thermo Scientific, United States); the samples were
concentrated and dried by vacuum centrifugation. The polar
metabolite extractions in these two plates were redissolved for
positive and negative ion detection with untargetedmetabolomics
analysis. The remaining upper layers of all samples were mixed
and similarly distributed at 200 μl per replicate as quality control
(QC) samples (Salem et al., 2016).

To extract lipids from serum, 120 μl methanol was added to
20 μl of sample in a 1.5 ml EP tube (Axygen, United States). Next,
the mixture was vortexed for 180 s, and 360 μl of methyl tert-
butyl ether (MTBE) and 100 μl of ultrapure water were
subsequently added to the solution. The mixture was vortexed
for 10 min, kept at room temperature for another 10 min, and
finally centrifuged at 13,000 × g for 15 min (4°C). 200 μl of lipid
extract from the upper layer was transferred to a 1.5 ml EP tube
and dried, similar to the protocol for the polar metabolite
extractions described above. The lipid extractions were then
redissolved for lipidomics analysis. QC samples of lipids were
also prepared.
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Moreover, a standard curve configuration was essential for
metabolite-targeted quantification. Therefore, we precisely
weighed the standards and adjusted the concentration to
1.0 mg ml−1 as a stock solution. An appropriate volume of
each stock solution was diluted step by step to 465 μg L−1,
232.5 μg L−1, 116.25 μg L−1, 58.125 μg L−1, 29.0625 μg L−1,
14.531 μg L−1, 7.266 μg L−1, 3.633 μg L−1, 1.816 μg L−1,
0.908 μg L−1, 0.454 μg L−1, 0.227 μg L−1 and 0.114 μg L−1 with
the extraction solution. Next, 80 μl of each sample was
transferred to 1 ml 96-DeepWell plates, and 320 μl of
methanol: acetonitrile (1:1, v:v), which included a 50 ng ml−1

bile acid isotope internal standard, was added. After 5 min of
vortexing, the mixture was centrifuged at 5300 RPM at 4°C for
20 min. The 260 μl upper layer was transferred to 450 μl 96-well
plates and dried as described above. Afterwards, the extraction
was redissolved for bile acid-targeted metabolomics analysis. The
mixture of QC samples was also distributed at 260 μl per replicate
and dried (Choucair et al., 2020).

Untargeted Metabolomic and Lipidomic
Analysis
The UHPLC-HRMS system, which was used for untargeted
metabolomics analysis, was composed of an Ultimate
3000 ultra-high performance liquid chromatograph and Q
Exactive Quadrupole-Orbitrap High-Resolution Mass
Spectrometer (Thermo Scientific, United States).

The polar metabolite extracts were separated by reversed-
phase chromatography for positive and negative ion detection.
Metabolites were separated by using an Excel 2 C18-PFP column
(3.0 μm, 2.1 × 100 mm; ACE Co., United Kingdom) for positive
detection and eluted with 0.1% formate/water as mobile phase A
and acetonitrile as mobile phase B. The linear gradient ramped
from 2% mobile phase B to 98% in 10 min. For the negative
detection mode, the mobile phases consisted of water (phase A)
and acetonitrile/methanol (phase B), both of which contained
ammonium bicarbonate buffer salt, and were employed to elute
metabolites separated on an Acquity HSS C18 column (1.8 μm,
2.1 × 100 mm; Waters Co., United States). The mobile phase
gradient was as follows: 0 min 2% phase B ramped to 100% in
10 min, and another 5 min was used for column washing and
equilibration. The flow rate, injection volume and column
temperature of both the positive and negative modes were set
at the same conditions: 0.4 ml min−1, 5 μl and 50°C.

The chromatographic separation for lipidomic was carried out
in positive ionization detection mode. An Accucore C30 core-
shell column (2.6 μm, 2.1 × 100 mm; Thermo Scientific,
United States) was utilized for lipid molecule separation at
50°C, and the lipids were eluted with 60% acetonitrile in water
(phase A) and 10% acetonitrile in isopropanol (phase B), both of
which contained 10 mM ammonium formate and 0.1% formate.
The separation gradient was optimized as follows: initial 10% B
ramping to 50% in 5 min and further increasing to 100% in
23 min. The other 7 min were used for column washing and
equilibration using a 0.3 ml min−1 flow rate.

For polar metabolite detection, the Quadrupole-Orbitrap mass
spectrometer was operated under identical ionization parameters

with a heated electrospray ionization source except ionization
voltage: sheath gas, 45 arb; aux gas, 10 arb; heater temperature,
355°C; capillary temperature, 320°C and S-Lens RF level, 55%.
The metabolomic extracts were profiled in full scan mode under
70,000 FWHM resolution with AGC 1 × 106 and 200 ms max
injection time. Data were acquired using a scan range of
70–1,000 m z−1. The lipid molecules were ionized using the
same parameters mentioned above. At a 70,000 full width half
maximum (FWHM) full scan resolution, the settings differing
from those of the polar metabolite analysis included the
300–2000 m z−1 scan range and AGC target 3 × 106.

Targeted Metabolomics Analysis
A total of 66 bile acids (Supplementary Table S2) were scanned
and quantified on a Waters Acquity UPLC (Waters Corp.,
Milford, United States) coupled with a Sciex 5500+ triple
quadrupole (QQQ) mass spectrometer (AB Sciex, Singapore).
The bile acids were chromatographically resolved on an C18-PFP
column (3 μm, 2.1 × 50 mm; ACE, United Kingdom) after 2.5 μl
aliquots of bile acid extract was injected. Water containing 2 mM
ammonium acetate was used as phase A, and acetonitrile was
used as phase B. The chromatographic gradient ramped from
17% phase B to 30% in 10 min, ramped to 55% in 3 min, rapidly
climbed to 95% in 1 min and remained for 3 min; another 5 min
was used for column washing and equilibration. The flow rate was
set at 0.4 ml min−1. The metabolites were ionized by a TurboV
heated electrospray ionization source and then detected by
scheduled multiple reaction monitoring mode. The main
parameters were optimized as follows: negative ion spray
voltage was −4.5 kV, curtain gas pressure was 35 psi, ion gas 1
and 2 pressure were 50 psi, and heater temperature was 550°C.

Date Processing
According to the recommendation of the Metabolomics
Standardization Initiative (MSI) (Sumner et al., 2007), first-
level annotation required chromatographic retention time,
primary mass spectrometry and secondary mass spectrometry
information, which was consistent with the standards. At the
second level, the polar metabolites were structurally annotated by
searching against local databases, mzCloud library (Thermo
Scientific, United States), Kyoto Encyclopedia of Genes and
Genomes (KEGG) and the Human Metabolome Database
(HMDB). On the other hand, untargeted lipid data were
processed with LipidSearch (Thermo Scientific, United States)
software, including peak picking and lipid identification. For
metabolite identification or structural annotation, accuracy of
the mass of a precursor within ±10 ppm was a prerequisite. The
AUC values were extracted as relative quantification information
of polar metabolites and lipids with TraceFinder software
(Thermo Scientific, United States). Regarding targeted bile acid
detection, internal calibration was conducted with Analyst
software and OS-MQ software (AB SCIEX, Singapore) for
quantitative analysis of bile acids.

Statistical Analysis
We used R package “pwr” for classical Power Analysis. Next,
metabolites with missing value percentages above 50% were
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excluded, and then the K-nearest algorithm (KNN sample-wise)
was employed to impute the missing values. For the purpose of
guaranteed uniqueness of metabolites and lipids, molecules
detected by multiple methods were retained only once. The
normalization of untargeted metabolomics data consisted of
three steps: sample calibration, data transformation and data
scaling. Firstly, Sample calibration was used to correct sample
reproducibility due to batch effects or systematic errors in
detection. Secondly, we performed Log transformation on
untargeted metabolomics data, which was often used to
convert data into normal distribution. Finally, UV scaling was
used to pre-process orthogonal projections to latent structures
discriminant analysis (OPLS-DA) data. For the bile acid targeted
analysis, the mass concentration of serum extraction was
transformed to the molar concentration of the original sample
based on the molecular weight and dilution factor. Multivariate
analysis, such as principal component analysis (PCA) and OPLS-
DA, was conducted with SIMCA-P software (Umetrics, Sweden).
Univariate analysis including independent samples Student’s
t-test p-value, Benjamini-Hochberg false discovery rate q-value
(p-value < 0.05, q-value < 0.2) (Oshansky et al., 2014; Park et al.,
2019; Shi et al., 2020, 16) and heatmap drawing was performed on
the MetaboAnalyst website (http://www.metaboanalyst.ca) (Xia
and Wishart, 2010b, 2010a; Chong et al., 2018). We applied the
WGCNA package in the R environment Version 4.0.3 (R Core
Team, 2020) to construct co-expression modules of highly
correlated metabolites (Langfelder and Horvath, 2008).
Moreover, receiver operating characteristic (ROC) curves and
box plots were generated with GraphPad Prism 8.0 (GraphPad
Software Inc., United States). Binary logistic regression and
biomarker model establishment were based on SPSS Statistics
26.0 software (IBM, United States). Cytoscape 3.8.0 (https://
cytoscape.org/, Cytoscape Consortium, United States) was used
for biological network construction and visualization (Shannon
et al., 2003).

RESULTS

Study Design and Clinical Characteristics
Serum samples from 32 patients with osteoporosis and 32 healthy
individuals were collected. The annotated serummetabolites were
compared and clustered by multivariate analysis, univariate
analysis and WGCNA. To clarify the results, targeted analysis
of bile acids was performed using another aliquot of the serum
samples from the same two groups. Diagnostic model was
established using the quantitative BAs’ data. The workflow of
this study was summarized in Figure 1.

No significant differences were found in the clinical
characteristics including sex, age, glucose, creatinine, and etc.
between the matched groups of Controls and OS. Detailed clinical
information is listed in Supplementary Table S3.

Untargeted metabolomics was employed to describe the
characteristics of serum metabolism among the participants. A
total of 1,241 metabolites (1,083 metabolites remaining after data
screening and cleaning) were identified. In addition, 366 polar
metabolites accounted for 33.8% of the total, and 717 lipids
accounted for 66.2%. Among them, 266 triacylglycerols (TGs)
accounted for the largest proportion (24.6%). The total ion
chromatogram (TIC) displayed the panoramic view of non-
targeted metabolomics. The extracted ion chromatogram (XIC)
provided a visual presentation of targeted bile acid detection
(Supplementary Figure S1). The coefficient of variation (CV)
distribution of QC, which indicated the reproducibility of the
detection method, is shown in Supplementary Figures S2,S3.

Metabolic Profiling of Osteoporosis
To illustrate the metabolic alterations between the two groups,
OPLS-DA of polar metabolites (Figure 2A) and lipids
(Figure 2B) were used. An overall separation can be observed
between the two groups, in both platforms. Volcano plots of polar
metabolites (Figure 2D) and lipids (Figure 2E) show the

FIGURE 1 | The design and workflow of this study.
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differences and average intensity change ratio between the two
groups. Most of the polar metabolites decreased, while the lipids
increased in the OS group. The relative contents of these
metabolites could be visualized by a heat map (Figure 2C).
The differential metabolites identified mainly included amino
acids (AAs), fatty acids (FAs), glycerophosphocholines (PCs),
glycerophosphoethanolamine (PE), TGs and BAs. Notably, the

serum contents of lysophosphocholines (LPC) in the OS group
was significantly lower than that in the Con group, which was in
contrast to the trends of other lipids, such as PE and TG. In
Figures 2F,G, 4-Hydroxyproline and FA (20:0) levels decreased
significantly in the OS group, while cyclic Melatonin and TG (18:
0/18:0/18:0) levels increased obviously in the OS group
(Supplementary Tables S4,S5).

FIGURE 2 |OPLS-DA score plots of metabolites (A) and lipids (B). In the heatmap, blue indicates lower relative intensity, and red indicates higher relative intensity
(C). The red dots of the metabolites (D) and lipids (E) in the volcano plots indicated an increase in the OS group, and the blue dots indicate a decrease. 4-Hydroxyproline
and cyclic melatonin were representative metabolites (F). FA (20:0) and TG (18:0/18:0/18:0) were representative lipids (G).
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FIGURE 3 | Soft threshold selection was based on scale-free topology R2 and mean connectivity (A). A module cluster tree was used to visualize the distribution of
metabolites in each module (B). The correlation coefficients and p-values between modules and osteoporosis (C). The MMI networks of the pink (D) and magenta (E)
modules. The correlation of MMI was based on debiased sparse partial correlation (DSPC). The heatmap of osteoporosis-related metabolites and lipids that were
differentially expressed between the OS and Con groups (F). Schematic plot of FA synthesis metabolism and the mutual transformation between subclasses of
lipids (G). Black text represents undetected metabolites, red text represents significantly enriched metabolites, and green text represents significantly depleted
metabolites when the OS group is compared with the Con group.
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Construction of Co-expression Modules by
WGCNA
To find out the interaction of the differential metabolites,
WGCNA, an innovative analysis method, was used to
construct a metabolite interaction network considering
weighted factors. According to the relative intensity data of
1,083 metabolites, the correlation between the metabolic co-
expression module and the clinical phenotype of osteoporosis
was analysed by the WGCNA software package. First, the
hierarchical clustering method was used to check the outliers,
and no outliers were found. The soft threshold was 9 (scale-free
topology R2 � 0.882, slope � −1.29, mean connectivity � 20.5);
subsequently, the merged cut height was set to 0.2 with a
minimum module size of 30. A total of 10 modules were
obtained, among which, the grey module was a group of
metabolites that could not be included in the co-expression
network construction. This module should be reduced as
much as possible for the robustness of the model. Pearson
correlation analysis was used to evaluate the correlation
between modules (Supplementary Table S6). The results
suggested that there was a significant positive correlation
among the green, red and blue modules and that there were
no significant negative correlations among modules. The
differences between the osteoporosis patients and healthy
controls were the clinical features those are concerned about.
From Figure 3C, we found that the pink (Supplementary Table
S7) and magenta (Supplementary Table S8) modules were
significantly related to the occurrence of osteoporosis. The
metabolites in pink were expressed at low levels in the OS
group, while the change trend of the metabolites in the
magenta module was the opposite.

Metabolite-Metabolite Interaction (MMI)
Network Construction
The differences between the OS group and Con group were
compared in the two modules. The pink module contained 43
metabolites, of which 25 metabolites were significantly
downregulated and none upregulated (Supplementary Figure
S4G). In addition, levels of all 45 metabolites in the magenta
module were significantly elevated (Supplementary Figure S4I).
Furthermore, metabolites with the greatest fold change (FC) ratio
between the two groups in each module were selected as
representatives. LPC (18:0/0:0) and LPC (16:0/0:0) in the pink
module decreased significantly in the OS group. In contrast, TG
(17:0/18:0/18:0) and TG (16:0/16:0/24:0) were significantly
higher in the OS group than in the Con group. To identify the
relationship between the key metabolites in each module, an
MMI network was constructed based on the internal connectivity
of the metabolites. Surprisingly, the MMI of the pink module
(Figure 3D; Supplementary Table S9) indicated that among the
various metabolites downregulated in the OS group, the highly
weighted metabolites were mainly LPC. Moreover, the MMI of
the magenta module suggested that the upregulated metabolites
in the OS group were mainly TG and PE (Figure 3E;
Supplementary Table S10).

Disorders of Lipids Pathways
Patients with osteoporosis had significant abnormal lipid
metabolism (Supplementary Table S11). As shown in Figures
3F,G, levels of PC, PE, diacylglycerols (DG), TG, ceramides (Cer)
and sphingomyelins (SM) in the serum of osteoporosis patients
were dramatically increased. The relative serum concentrations of
LPC, lysophosphatidylethanolamine (LPE), Acetylcarnitine and
FA, especially saturated FA, decreased in patients with
osteoporosis. In addition, most of the FA chains in TG and
PE were long-chain saturated FAs. The changes in different BAs
also varied between the two groups. These characteristics
indicated that dysregulation of lipid metabolism may
contribute to the occurrence of osteoporosis.

Dysregulation of BAs
To validate whether abnormal bile acid metabolism is involved in
the occurrence of osteoporosis, a targeted method was carried out
on the same batch of serum samples (Supplementary Table S12).
49 bile acids were detected from the samples. Similarly, the OPLS-
DA score plot showed a significant separation between the OS
group and the Con group (Figure 4A). The volcano plot indicated
that five BAs (or ratios) decreased and that 11 increased in
osteoporosis (Figure 4B). Furthermore, the concentrations of
16 BAs (or ratios) in each sample are shown in a heatmap
(Figure 4C).

A diagnostic panel was established based on differentially
expressed BAs using binary logistic regression. After variable
screening, the box plot of five potential BAs, glycohyocholic acid
(GHCA), dehydrocholic acid (DHCA), deoxycholic acid 3-
glucuronide (DCA-3G), ursocholic acid (UCA), and
deoxycholic acid/cholic acid (DCA/CA), showed that GHCA,
DCA-3G, and DCA/CA levels in osteoporosis patients were
significantly higher than those in healthy controls. In addition,
DHCA and UCA, which were classified as hyocholic acid species
(HCAs), were higher in healthy controls (Figure 4D). This
diagnostic panel for osteoporosis was concluded as follows:
Logit[P ] � 24.063 × GHCA − 53.524 × DHCA − 21.971×
UCA + 54.302 × DCA − 3G + 0.615 × DCA/CA − 123.056 In the
equation, P is the predicted probability of osteoporosis, and each
BA represents its serum concentration (nmol L−1). The AUC
values of the five bile acid biomarkers were as follows: GHCA,
AUC � 0.859 (0.7756–0.962); DHCA, AUC � 0.841
(0.744–0.937); DCA-3G, AUC � 0.928 (0.867–0.990); UCA,
AUC � 0.741 (0.617–0.864); and DCA/CA, AUC � 0.718
(0.591–0.844). Noticeably, performance of the diagnostic panel
in the diagnosis of osteoporosis was superior to that of each bile
acid biomarker alone (Figure 4E). Moreover, the prediction
accuracy of this diagnostic panel was 100% (Figure 4F). The
results highlighted the diagnostic potential of bile acids.

DISCUSSION

In the present study, we characterized the differences in
metabolite and lipid profiles between osteoporosis patients and
healthy volunteers using LC-MS metabolomics. WGCNA was
utilized to identify metabolites that are closely related to
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osteoporosis onset. Lipid metabolism disorders, mainly
abnormalities in fatty acid metabolism, sphingolipid
metabolism and BA metabolism, were involved in the
initiation of osteoporosis. BAs are involved in lipid digestion
and are also important signalling molecules in lipid metabolism.
The difference in BAs between osteoporosis patients and healthy
volunteers was significant, especially in HCAs. Moreover, the
AUC of the 5-metabolite panel provides a promising diagnostic
potential. These results demonstrated the role of BAs in
osteoporosis.

LPC and LPE are components molecular of membrane and
take part in signal transduction (Bai et al., 2014; Rindlisbacher
et al., 2018). These compounds are converted from PC and PE by
phospholipase A2 (PLA2), a calcium-dependent protein
(Hirabayashi et al., 2017). The levels of lyso-lipids were

decreased in patients with osteoporosis, while PC and PE
levels were increased. The results implied that PLA2 enzyme
activity is decreased due to disorders of calcium and phosphorus
metabolism, leading to a decrease in LPC, LPE and free fatty acid
(FFA) levels. Studies have shown that LPC has pro-inflammatory
activity and promotes osteoblast apoptosis (Brys et al., 2019). The
accumulation of LPC in bone tissue may lead to the decrease of
serum LPC.

Cholesterol is the precursor of vitamin D, bile acids, and
steroid hormones, all of which are important regulators of bone
metabolism (Hoppel, 2003; Hernandez et al., 2019). BAs regulate
the homeostasis of cholesterol, glucose and fat-soluble vitamins,
and play a crucial role in maintaining mineral homeostasis (Ma
and Patti, 2014; Ruiz-Gaspà et al., 2020). DCA and TCA differed
notably in bone tissues of old mice and young mice models of

FIGURE 4 | OPLS-DA plot of absolute quantitation of BAs (A). Volcano plot of absolute quantitation of BAs (B). Heatmap of selected BAs that were significantly
changed in the volcano plot (C). After analysis by binary logic regression, five BA biomarkers were visualized in the form of box plots (D). The ROC curve of the above five
biomarkers and the diagnostic panel (E). The prediction accuracy of the diagnostic panel is shown by a heatmap (F).
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osteoporosis in the literature (Nam et al., 2018). In our results,
BAs changed significantly among osteoporosis patients. However,
no significant differences in serum CA, chenodeoxycholic acid
(CDCA), DCA and lithocholic acid (LCA). Nevertheless, their
derivatives, such as DCA-3G, 23-nordesoxycholic acid (Nor-
DCA) and isolithocholic acid (iso-LCA), were significantly
different between the two groups. Further exploration of the
functions of these BAs is needed.

Interestingly, a significant deregulation of HCAs was found in
this study. HCAs are a group of 6a-hydroxylated bile acids that
account for a minimal proportion of the total BAs in humans and
mice but constitute nearly 80% of BAs in pigs (Spinelli et al.,
2016). A recent study reported that HCAs were involved in
maintaining glucose homeostasis. HCA promoted glucagon-
like peptide-1 (GLP-1) production in enteroendocrine cells by
simultaneously activating the membrane G protein-coupled

receptor TGR5 and inhibiting farnesoid X receptor (FXR) in a
dose-dependent manner, which enhanced insulin secretion and
eventually reverted to normoglycaemia (Zheng et al., 2021).
Epidemiological investigations found that patients with
diabetes have a higher risk of osteoporosis. Succinate
enhanced osteoclasts by activating succinic acid receptors in
diabetes-associated osteoporosis (Guo et al., 2017). However,
in this study, GHCA and taurohyocholic acid (THCA) levels
were significantly increased, but there was no significant
difference in blood glucose between the two groups. Therefore,
the correlations between HCAs and osteoporosis are independent
from the occurrence of diabetes.

The molecular ratio of the upstream and downstream of the
metabolic pathway is usually used to reflect the catalytic
enzymatic activity (MahmoudianDehkordi et al., 2019; Nho
et al., 2019). To investigate the mechanisms contributing to

FIGURE 5 | Dysregulation of BA metabolism in osteoporosis.
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BA alterations in osteoporosis, the ratios of three types of bile
acids were compared. The results revealed that bile acid metabolism
was converted from the classical pathway to the alternative pathway
(CA: CDCA). Since the gut microbiota is believed to be closely
connected to osteoporosis, the dysregulation of the gut flora may
alter BA levels consequently (Jones et al., 2014; Devlin and Fischbach,
2015;Wahlström et al., 2016). A significant change in secondary BAs
was found according to the ratio (DCA:CA). CA is affected by
bacterial 7A-dehydroxylase in the gut to produce DCA, which has
cytotoxic effects and can result in the destruction of the
mitochondrial membrane (Schulz et al., 2013). There
was a change in the progression of taurine conjugation of
secondary BAs in the liver (taurolithocholic acid (TLCA): LCA).
These results indicated that gut microbiota and related BA
metabolism may act as an important role in the occurrent
osteoporosis (Figure 5).

Although our study provided original insights into the
pathogenesis of osteoporosis, there were still some limitations.
First, the sample size was relatively small, and therefore, we could
not stratify the metabolites associated with disease progression
according to severity. Second, although the diagnostic model had
good diagnostic performance, it still needs to be validated in a
larger cohort. Finally, this study was a retrospective study, and the
causal relationship between differential metabolites and
osteoporosis requires further investigation.

CONCLUSION

Our integrated metabolomic strategy was demonstrated to be
practical for the screen of novel biomarkers, which highlights the
lipids and bile acids metabolism disorders in patients with
osteoporosis. Bile acids change from the classical pathway to
the alternative pathway, and HCAs are involved in the occurrence
and development of osteoporosis. The deregulation of lipids and
the BAs provides a potential basis for the diagnosis and treatment
of osteoporosis. Our study confirmed the importance of the
combination of untargeted and targeted metabolomic method
especially for the trnslational research in the clinic.
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