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Graft regeneration after anterior cruciate ligament (ACL) reconstruction surgery is a complex three-stage process, which usually
takes a long duration and often results in fibrous scar tissue formation that exerts a detrimental impact on the patients’
prognosis. Hence, as a regeneration technique, stem cell transplantation has attracted increasing attention. Several different stem
cell types have been utilized in animal experiments, and almost all of these have shown good capacity in improving tendon-bone
regeneration. Various differentiation inducers have been widely applied together with stem cells to enhance specific lineage
differentiation, such as recombinant gene transfection, growth factors, and biomaterials. Among the various different types of
stem cells, bone marrow-derived mesenchymal stem cells (BMSCs) have been investigated the most, while ligament stem
progenitor cells (LDSCs) have demonstrated the best potential in generating tendon/ligament lineage cells. In the clinic, 4
relevant completed trials have been reported, but only one trial with BMSCs showed improved outcomes, while 5 relevant trials
are still in progress. This review describes the process of ACL graft regeneration after implantation and summarizes the current

application of stem cells from bench to bedside, as well as discusses future perspectives in this field.

1. Introduction

Anterior cruciate ligament (ACL) injuries account for more
than 50% of all knee injuries [1], which may cause knee insta-
bility, resulting in meniscal damage and osteoarthritis. When
tears occur, ACL reconstruction (ACLR) surgery is usually
undertaken, which yields the best therapeutic effects and
postoperative evaluation scores for patients [2]. There are
over 175,000 patients undergoing ACL surgery annually in
the US alone [3], but more than 10% of patients experience
reinjuries, muscular atrophy, delay in healing, poor proprio-
ception, and graft failure after reconstruction in long-term

follow-ups [4-7]. Hence, the major challenge is how to
improve postoperative graft healing.

After transplantation, the graft goes through a complex
three-staged healing process involving necrosis, remodeling,
and ligamentization, which may take around 2 years [8].
Moreover, fibrous scar tissue is often formed at the interface,
instead of a natural insertion [9, 10]. When a tissue is charac-
terized by poor healing capacity, such as tendon and liga-
ment, regenerative strategies are usually considered. Several
common regenerative approaches, such as stem cells, bioma-
terials, and bioactive molecules, have been investigated and
proven to be effective [11-13]. Among these, stem cells are
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extremely appealing, due to their self-renewal capacity, long-
term viability, and multilineage differentiation potential [14].
In particular, mesenchymal stem cell (MSC) can differentiate
into various terminally differentiated lineages, which can be
utilized to engineer mesenchymal-derived tissues, and also
promote healing by secreting various immunoregulatory
molecules, such as paracrine trophic mediators [15, 16]. To
induce stem cells to differentiate into a specific lineage, vari-
ous differentiation inducers are usually utilized, such as
recombinant gene transfection, growth factors, and biomate-
rials. Indeed, an increasing number of preclinical research
studies have confirmed that inducers could enhance bone-
to-tendon healing with better biomechanical properties and
more mature tissue formation. Several clinical trials have
been attempted, but so far, it is still uncertain whether stem
cell augmentation could facilitate the healing process.

The purpose of this review is to describe the natural
healing process after ACL graft implantation and summa-
rize the current application of stem cells from bench to
bedside, as well as discuss future prospects in this field.

2. Process of ACL Graft Regeneration

From the posterior part of the inner surface of the lateral fem-
oral condyle, the ACL runs anteriorly, medially, and distally to
the tibia [17]. The main component of ACL tissue is consti-
tuted of parallel and closely arranged collagen fibers, and
fibroblasts are distributed along the long axial among the col-
lagen fibers [18]. There are three characteristic stages of graft
healing after ACL reconstruction in both humans and animals
[19]: (i) early phase associated with necrosis and hypocellular-
ity, (i) remodeling phase associated with revascularization
and cell activities, and (iii) ligamentization phase associated
with restructuring towards the native ACL [20].

During the early stage, necrosis occurs in the graft centra,
which leads to a release of various cytokines, such as tumor
necrosis factor- (ITNF-) a, interleukin (IL) 1-p, IL-6, and
chemokines, which may trigger growth factor expression
[21, 22]. Some host cells (neutrophils, macrophages, and
MSC) migrate to the graft periphery [11, 12, 21], and towards
the inner tendon [11]. Collagen fibrils begin disintegrating
[13], and no graft revascularization could be observed [23,
24]. The collagen fibers of tendon display a bimodal distribu-
tion, with large collagen fibers constituting the majority.
However, during healing, small fibers increase while large
ones decrease (Figure 1(a)). Additionally, new surgery with
attached graft may skip early necrosis, which retains the
native blood supply [25, 26].

During the remodeling stage, large amounts of growth
factors are released, which stimulates cell migration and
proliferation as well as extracellular matrix synthesis and
revascularization [22, 27, 28]. The hypercellular region at
the perimeter consists of mesenchymal stem cells and
fibroblasts [29]. Activated fibroblasts secrete various
growth factors, which almost completely cease at the end
of the remodeling stage [22]. The large diameter collagen
fibrils get depleted [20], while the Sharpey-like fibers form
to counteract shear stress and to attach the tendon graft to
bone [30] (Figure 1(b)).
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During the maturation stage, cellularity and mechanical
properties become gradually similar to intact ACL but never
reach the original levels [31, 32]. Progressive mineralization
occurs, with subsequent bony ingrowth into the graft surface.
Small collagen fibers predominate while large ones could
hardly be seen, which differ significantly from normal ACL,
with an unclear bimodal distribution (Figures 1(c) and
1(d)). Moreover, during this stage, more osteoarthritic
changes and cartilage damage could be observed, with no
significant differences in the expression of inflammatory
cytokines or biomarkers [33].

Based on the above description, the graft healing process
is slow and requires a long duration. The remodeling stage is
finished by 9 months at the earliest [20, 34], and ligamentiza-
tion could be observed after 2 years [8]. In the clinic, patients
are usually recommended to return to low and moderate
intensity exercise after 6 months [35-37], and typically
regain about 85% function eventually [38]. Hence, a safe
and effective approach to expedite the healing process is
needed to restore the natural biomechanics of tendon, which
is required for rapid return to preinjury activity levels.

3. Stem Cell Therapy for Graft Regeneration

Stem cells show remarkable ability for self-renewal, long-
term viability, and multilinear culture [14], which is an
essential element in tissue engineering technology. In differ-
ent cultures, stem cells could differentiate into nerve cells,
hepatocytes, or blood cells. Combined with materials science,
it is possible to construct similar tissues and organs to substi-
tute the injured part. It has been widely proven that stem cells
are effective in many diseases, such as central nervous system
damage, and corneal destruction [39, 40]. Recent scientific
literature has demonstrated promising outcomes of stem cell
augmentation for ligament reconstruction in animal models
[41-43] (Figure 2 and Table 1). However, the application of
stem cells in ACLR requires further consideration of cell
resource, differentiation induction, and cell fate.

3.1. Selection of Stem Cell Sources. There are several common
cell sources in tissue engineering, such as embryonic stem
cells (ESCs), induced pluripotent stem cell (iPSC), adipose
tissue-derived stem cells (ADSCs), bone marrow-derived
mesenchymal stem cells (BMSCs), and tendon/ligament
stem/progenitor cells (TDSCs/LDSCs). In particular, MSC
is the focus of much interest, as these cells are easily isolated
from a variety of adult tissues and cultured in vitro. Cells
from different sources have varying propensities to differen-
tiate into various tendon/ligament lineages, and hence, it is
imperative to weigh the pros and cons of various different
stem cell types (Table 2).

3.1.1. BMSC. BMSCs have multipotential capacity to differen-
tiate into osteoblasts, chondrocytes, and adipocytes and hence
have been most widely studied for enhancing tendon-bone
healing, yielding satisfactory outcomes (Figure 2(d)). Sakagu-
chi compared the proliferative capacities of different stem cell
types and observed that BMSCs were retained even at passage
10, whereas that of ADSCs was lost at passage 7 [44], thus
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cytokine release; neutrophils, macrophagocytes, and mesenchymal stem cells (MSC) can be observed in the interface in order, and then
macrophagocytes and MSC migrate into the inner tendon. The collagen fibers displayed a bimodal distribution, with large ones
constituting the majority; (b) remodeling stage marked with Sharpey fibers (arrow), cell migration, vascularization, ECM remodeling,
various growth factor activities, and disordered organization of collagen fibers (bimodal distribution with small ones constituting the
majority); (c) ligamentization stage marked with vascularization gradually disappearing, fibrocartilage formation, and ordered collagen
with almost unimodal small fibers; (d) normal ACL, 4-layer direct insertion including ligament, fibrocartilage, mineralized fibrocartilage,
and bone in order. The collagen fibers showed unclear bimodal distribution.
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FIGURE 2: Features of included animal studies. (a) Cell resources; (b) augmentations; (c) animal models; (d) general study outcomes. BMSC:
bone marrow-derived mesenchymal stem cells; ADSC: adipose-derived stem cells; hUCB-MSC: human umbilical cord blood-derived
mesenchymal stem cells; TDSC: tendon-derived stem cells; LDSC: ligament-derived stem cells.

showing the greater stability of BMSCs. However, these cells
are not considered as the optimal choice due to the risk of
ectopic ossification and donor injury. The therapeutic effects
of BMSCs are thought to result from migration of the cells
to inflammatory sites and suppression of inflammation. They
are rarely involved in colonizing the healing tissue as part of
the tissue repair mechanisms [45].

Lim et al. [46] implanted hamstring tendon autografts
into the bone tunnel in rabbits, which was coated with MSCs
embedded within a fibrin glue carrier in one limb, and fibrin

glue only in the other limb, resulting in cartilage-like inser-
tions rather than scar tissue. A similar study showed that
BMSC:s could decrease tunnel widening [47].

3.1.2. ADSC. ADSCs have the advantages of abundant and
ready availability, as well as capacity for secreting various
factors, such as VEGF, hematopoietic factors, and immuno-
regulatory factors, to promote tissue repair and growth. Over
500 times more stem cells can be obtained from adipose
tissue than from an equal tissue volume of bone marrow
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TaBLE 1: Recent animal studies on stem cell therapy for ACL graft regeneration.
Author Augmentation/induction ~ Animal  Evaluation = Outcome Other outcomes
Hur Fibrin glue Rabbit His, CT +
Lim Fibrin glue Rabbit His, Mech +
Fan Silk scaffold Rabbit His, Mech, CT +
Fan Silk scaffold Pig  His, Mech, CT +
Li Triphasic silk graft Rabbit His, Mech, CT +
Zhu Electrospun scaffolds Rabbit His, Mech, CT + eiﬁg;;:?:;gg;;)ifzbéﬁﬁ; iemn’fisa}iie(in
Vaquette PCL electrospun mesh Sheep His, Mech +
Zhang PLGA silk scaffold Rabbit His, Mech
Li Cu-BG/PET Rat  His, Mech, CT
Lu Decellularized allogenic ST ~ Rabbit His, Mech, CT + Decellulszz:;i taﬁl%g;;ggz?fscs are
BMSCs Setiawati VEGF Rabbit 1115 Mech, +
MRI
Teng PRP Rabbit His, Mech, CT + PRP enhances osteogenic differentiation
Zhu BMP2 gene therapy Rabbit His, Mech +
Chen bFGF/BMP2 gene therapy ~ Rabbit His, Mech, CT + C(;?ggfgfz i/t[sptzhzlrlldl:rfeGgi()eﬁgi‘jczire
Wang TGF gene therapy Rabbit His, Mech, CT
Dong BMP2 gene therapy Rabbit  His, Mech
Wei  TGFB/VEGE gene therapy ~ Rabbit  His, Mech N n(i;’gl;:;i?gfzﬁ':tﬁgg 1\2 EeGgrl:‘fn i"g;fjr
Li PDGF gene therapy Rabbit His +
Fan ;glgggsgﬁgsggfgﬁgag; Rabbit  His, Mech N
Pauly CTGF-electrospun scaffolds  Rabbit  His, X-ray +
Kosaka Fibrin glue Rabbit  His, Mech +
Teuschl Silk scaffold Sheep His, CT )
Parry PCLF+PET scaffold Rabbit His, Mech, CT +
BMP-2/FGF-2 induced stem cells to
ADSCs Kouroupis Leeds-Keio biomaterial; Pig His. Mech / differentiate
BMP-2/FGF-2 ’ towards bone and ligament at the ends and
central part of the biomaterial scaffold
Zhang  Runx2genetherspy  Rabbit His,Mech, CT  + (il Guinces oveo fas ferentacon
Mifune Injected Rat  His, Mech, CT +
Mifune Cell sheet Rat His, Mech + Cell sheet is better than injection
Ruan Silk-collagen sponge scaffold Rabbit  His, X-ray +
LDSCs Hu SDF-1 releasing collagen-silk Rabbit His, CT +
CD34+ LDSCs have positive effects;
Takayama VEGF gene therapy Rat His, Mech / overexpression of VEGF impairs
biomechanics
Kawakami BMP2 gene therapy Rat His, Mech + BMP2 enhances osteogenic differentiation
TDSCs Lui Cell sheet Rat  His, Mech, CT +
sMSCs Ju Gel injection Rat His +
hUCB-MSCs Jang Fibrin glue Rabbit His, CT
Park 3D bio-printed scaffold Rabbit His, CT +

PRP: platelet-rich plasma; His: histology; Mech: mechanics; PCLF+PET: polycaprolactone fumarate scaffolds with polyethylene terephthalate; bFGF: basic
fibroblast growth factor; BMP2: bone morphogenetic protein 2; TGF: transforming growth factor; VEGF: vascular endothelial growth factor; PDGF:
platelet-derived growth factor; ST: semitendinosis; PCL: polycaprolactone; BMSCs: bone marrow-derived mesenchymal stem cells; ADSCs, adipose-derived
stem cells; sSMSCs: synovial mesenchymal stem cells; hUCB-MSCs: human umbilical cord blood-derived mesenchymal stem cells; PLGA: lactic-co-glycolic
acid; Cu-BG/PET: copper-containing bioactive glass polyethylene terephthalate; Runx2; PCLF+PET: polycaprolactone fumarate+polyethylene terephthalate
sutures; SDF: stromal cell-derived factor 1; CTGEF: connective tissue growth factor; bFGF: basic fibroblast growth factor.
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TaBLE 2: The advantages and disadvantages of commonly utilized stem cell types in ACL graft regeneration.

Formulation Msc content Advantages Disadvantages
Greai}o)xlie;[atlon Low content
BMSCs 0.01-0.001% [142] . . Donor pain and infection
Low immunoreaction
. Less homogeneous
Easy to obtain
Abundant resource
More homogeneous Enzymatic processing
~10
ADSCs 1% [143] Factor secretion Low ligament differentiative potential [53]
Less immunogenic than BMSCs
Same derived resource Slow erowth
TDSCs/LDSCs 3-4% [56] Better epigenetic regulation [144] &
h . Low content
Cell-line maintainment [145]
. Ethic issue
ESC - Indefinite self-renewal [146] Tumorigenicity [147]

Totipotency

Immunogenicity [148]

BMSCs: bone marrow-derived mesenchymal stem cells; ADSCs: adipose tissue-derived stem cells; TDSCs/LDSCs: tendon/ligament stem/progenitor cells; ESCs:

embryonic stem cells.

[48], and proteomic analysis of ASC secretome identified a
total of 2416 distinct proteins [49]. In addition, ADSCs show
lower risk of ectopic ossification, with less immunogenicity
than BMSCs [50], causing less damage to the donor site,
without the limitations associated with age-related decline
of BMSCs. Indeed, ADSCs have demonstrated their suitabil-
ity for various cell therapy applications including angiogeni-
city, osteogenicity, immunomodulation, and promotion of
tissue remodeling [51, 52]. However, a study showed that
ADSCs cannot continuously upregulate ligament-related
markers with growth factors in vitro, as it exhibits a bias
towards adipogenic differentiation [53].

It has been reported that ADSCs promote the early heal-
ing processes of tendon and bone in rabbits [43]. But Teuschl
et al. [54] found that additional ADSCs did not result in any
additional benefit for osteointegration, as compared with the
silk scaffold group histologically, which showed ambiguous
function.

3.1.3. TDSC/LDSC. It has been reported that tissue-specific
stem cells may retain a residual “epigenetic memory” of their
tissue of origin [55]. When back at their tissue of origin, they
could adapt to the environment better, survive longer, and
differentiate more easily. TDSCs were first isolated from
human hamstring tendon in 2007 [56], while a later study
showed the possibility of isolating TDSCs from very small
fragments of tendon tissue [57]. These cells proliferated
faster, exhibited higher clonogenicity and less immunogenic-
ity, and had more multilineage differentiation potential than
BMSCs [58, 59]. However, the purity of TDSC populations is
highly debatable, as it displayed lower adipogenic and osteo-
genic capacities than ADSCs [60], and lower multilineage
differentiation potential than LDSCs [61]. TDSC-related
studies are rare but seem promising, exhibiting high teno-
genic potential and maintaining high chondroosteogenic
gene expression [59].

Originating from the ligament tissue [62], CD90+CD73+
LDSCs tend to differentiate into ligament-committed cells or
chondrocytes, as compared with BMSCs [63, 64]. The appli-

cation of LDSCs in vivo has yielded generally positive
results, when combined with silk scaffold, cell sheet, and
injection [65, 66]. In particular, CD34+ vascular cells from
ligament tissue are considered as another type of adult stem
cell and have proven eflicacious in tendon-bone regenera-
tion [66, 67]. As a promising cell source, ACL-derived
iPSCs are also under study [68]. The common problem of
both is that low cell numbers necessitate expansion, which
may influence phenotypic maintenance. Still, TDSCs and
LDSCs are considered the most promising cell types for
ACL regeneration.

3.1.4. Other Stem Cell Types. hUCB-MSCs: hUCB-MSCs
have the advantages of noninvasive isolation method, supe-
rior tropism, and high differentiation potential. Transplanta-
tion in rabbits enhanced bone-tendon healing effectively,
without immune rejection [69, 70], while the application of
human amniotic mesenchymal stem cells (hAMSCs) is still
under research [71].

Synovium-derived MSCs (sMSCs): after injury, a local
increase of MSCs was observed, and these MSCs were identi-
fied as sMSCs rather than BMSCs [72]. sMSCs can poten-
tially promote collagen fiber production, which resembles
Sharpey’s fibers at the early stage.

ESC/iPSCs: ESCs could differentiate into any tissue or
cell type, but therapeutic applications of these cells have been
subjected to serious and prolonged legal/ethical discussion.
On the other hand, iPSCs avoided ethical issues associated
with ESC and also offered the possibility for autologous
regeneration of any tissue. Cord and peripheral blood are
attractive sources of reprogrammable cells for generating
iPSCs [73, 74]. As a promising cell source, ACL-derived
iPSCs are still under research [68]. But current outcomes of
therapeutic applications in animal models seem controver-
sial, with transplantation of ESCs into the knee joint of mice
resulting in teratoma formation and subsequent destruction
of the joint [75]. By contrast, composite grafts with iPSCs
in pigs showed similar morphological and biochemical char-
acteristics to normal ACL [76].



Exosome: no related research studies have been reported
yet. However, the application of exosomes in tendon injury
and tendinopathy in animal models showed satisfactory out-
comes, which enhanced osseointegration, biomechanics, and
histology [77-79], which is a promising therapeutic strategy
for ACLR.

3.2. Differentiation Induction

3.2.1. Biologic Factors. It is a consensus that growth factors
could regulate cell proliferation, ECM elaboration, neovas-
cularization, and mechanical properties. Hence, knowing
the exact signaling mechanisms involved in ligament devel-
opment and repair are essential for improving ACL regener-
ation, but our current knowledge is much limited and further
research needs to be done. Functionally, it has been empiri-
cally shown that various growth factors exert positive effects
on ligament tissues. Such as transforming growth factor
(TGF), fibroblast growth factor (FGF), insulin-like growth
factor (IGF), platelet-derived growth factor (PDGF), and epi-
dermal growth factor (EGF), with all having been proven to
increase cell proliferation, fibroblastic differentiation, and
ECM deposition. As a combination of these factors, PRP
could induce mass release of growth factors within one hour
following intra-articular administration, which seems a con-
venient and efficient tool, but related meta-analysis studies
found no significant benefit for ACLR in the clinic [80, 81].

Teng et al. found that PRP promoted BMSC osteodif-
ferentiation in vitro. Moreover, PRP+BMSCs yielded better
tendon-bone healing in rabbits [82]. Single growth factor,
such as VEGF [83], also achieved good outcomes. To
maintain the effects of these cytokines, gene therapy is a
good solution. Runx2 gene upregulated the expression of
osteogenic markers and enhanced tendon-bone healing with
more new bone tissue formation, without heterotopic ossifi-
cation [84]. The same results were achieved with BMP2,
bFGF, TGF, VEGF, and PDGF gene transfection. Cotransfec-
tion of multiple genes is more powerful and efficient for oste-
ogenic differentiation rather than either single gene therapy
in Chen et al.’s study [85].

3.2.2. Mechanics. Mechanical loading has been demonstrated
to influence cell proliferation, differentiation, apoptosis,
and ECM production without growth factors [86-88]. In
fibroblasts, mechanical stimulus has been shown to
increase cell proliferation, and ECM deposition [89]. It
improves tendon-bone healing after ACLR by increasing
the amount of fibrocartilage and mechanics. In vitro,
BMSC/TC coculture stimulated by mechanical stretch
showed higher expression levels of collagen I/III, alkaline
phosphatase, osteopontin, and tenascin C [90], as well as
BMSC alone [88]. In fact, the time, direction, magnitude,
and frequency of mechanical stimulation would all influence
the cell condition. Early mechanical loading on MSCs inhib-
ited the expression of collagen type I, collagen type II, and
fibronectin but enhanced these during the proliferation stage
[91]. 8% but not 4% cyclical strain on ligament fibroblasts
resulted in better proliferation and collagen production
[92]. But it is difficult to control these mechanical parameters
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in vivo, so we need further investigations of the cultured envi-
ronment before implantation. These could explain how pro-
longed immobilization would result in the mechanics of
damage within the clinic [93].

3.2.3. Biomaterials. In tissue engineering, cell differentia-
tion can be induced by growing the cells on scaffolds with
specific composition, architecture, and physicochemical
and mechanical properties. Biomaterials not only play a
load-bearing role in ACL reconstruction but is also a dif-
ferentiation inducer.

In native ACL, type I collagen constitutes roughly 90% of
the tissue volume, so the use of collagen-based scaffolds has
been extensively investigated. Collagen could promote teno-
genic differentiation induction, and the collagen-induced
tenogenic cells could then arrest osteogenic differentiation
mediated by paracrine signals [94]. But immunogenicity
and low mechanical strength often limit the application of
collagen-based scaffolds. Similar to collagen, silk is a natural
biologic material with good tensile strength and biodegrada-
tion, but its limited cell adhesion requires some special mod-
ification, such as with arginine-glycine-aspartic acid. Silk
scaffolds have also been shown to support BMSC attachment
and proliferation within a three-dimensional environment
and can induce synthesis of fibroblastic markers upon the
application of dynamic mechanical loading [95]. Moreover,
the hydrophilic properties of silk also influence the prolifera-
tion of seeded cells [96]. Electrospinning is a popular and
simple technique for fabricating scaffolds with fiber diame-
ters in the nanometer to micron range. Studies showed good
capacity of polymer material-based electrospun fibers in
promoting tendon fibroblast and MSC proliferation, as well
as ECM deposition [97, 98]. Various mechanical parameters
of different materials may affect the differentiation of stem
cells, such as elastic modulus [99, 100], hydrophilicity or
hydrophobicity [101], and substrate topography [102]. Stem
cells seeded on aligned nanofibers displayed a more
elongated shape with more Scx and ECM marker expression
than randomly oriented nanofibers [102, 103]. Graphene-
quantum dots could promote MSC osteogenic and adipo-
genic differentiation [104].

So far, silk scaffold, electrospun scaffold, and decellular-
ized allograft with BMSCs have demonstrated good osseoin-
tegration capacity [105-107]. To simulate the insertion
stratified structure better, a triphasic silk-based graft was
established with BMSCs, chondrocytes, and osteoblasts
seeded on different areas of the graft [42]. More novel mate-
rials combined with biologics are gaining in popularity.

3.3. Cell Fate. The fate of implanted stem cells remains
controversial. Ju et al. used the fluorescent marker Dil dye
to track implanted sMSCs, which initially stayed at the
tendon-bone interface, and then differentiated into fibro-
blasts, with the potential of producing collagen fibers or
secreting various cytokines for collagen fiber synthesis. But
Dil-labeled cells could no longer be observed after 4 weeks
[108]. There are three plausible reasons to explain this: miss-
ing label, cell replacement, or apoptosis. Lui et al. used the
grafts wrapped with the GFP-TDSC sheet for ACLR, but only
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few GFP+ cells could be detected at the tunnel interface and
the intra-articular graft midsubstance, with the cell number
reducing with time [59]. Takeuchi et al. used engineered Tg
pigs to track how endogenous cells infiltrate into the graft
[12]. The graft was first surrounded by synovia-like tissue
with fluorescence at first, then a large number of metaboli-
cally active oval cells infiltrated the peripheral region of the
graft, resulting in a shift to an equal distribution of oval and
spindle-shaped cells. Eventually, spindle-shaped fibroblast-
like cells were uniformly distributed, resembling the natural
ACL histology.

In some ACL injury models, exogenous cells were
detected in the synovium, injured ACL, meniscus, cartilage
of femoral condyles, and myotendinous junction of the quad-
riceps [109, 110]. Transplanted MSCs may produce growth
factors such as PDGF, bFGF, and TGF-f3, which promote
native ACL cell proliferation and migration [111]. Maerz
et al. found that tail-injected circulating MSCs preferentially
migrate to the synovium of the injured joint, with the upreg-
ulation of SDF-1 (chemokines) in the synovial fluid. How-
ever, MSC did not enter the intra-articular tissues [110].

The objective of these studies was to form a normal
insertion structure, but the source of newly formed fibro-
cartilage cells remains a mystery. Due to differentiation
of the original cells, whether these are derived from trans-
planted exogenous stem cells or recruited endogenous cells
remains ambiguous. How do these MSCs differentiate into
fibroblast or other lineages? Tracking of cell fate needs to
be more rigorously investigated.

4. Clinical Applications

The search in electronic databases such as PubMed, Embase,
and Cochrane Library resulted in 9 clinical trials (Figure 3),
including 5 ongoing trials and 4 completed trials [112-115]
(trial details see Appendix), highlighting the ongoing evolu-
tion of this field.

Based on the published results of completed clinical
trials, the overall outcome was quite disappointing
(Table 3). Wang et al. showed that the injection of alloge-
neic BMSCs after ACL reconstruction is safe and tolerable,
improving the symptoms and delaying the progress of OA
[112]. However, Silva et al. found no significant acceleration
in tendon-bone healing with MRI [114]. Alentorn-Geli et al.
utilized ADSC:s in 20 soccer players with ACL reconstruction
and found no statistically significant difference compared to
ACLR alone, with respect to pain, biomechanical functions,
and MRI scores [115]. Park et al. [116] conducted a 2-year
follow-up with patients with hUCB-MSC augmentation and
found no statistical differences in biomechanical functions,
arthroscopic findings, or tunnel enlargement. Additionally,
a noncontrolled trial utilizing autologous bone marrow aspi-
rate combined with PRP and platelet lysate found safe out-
comes with MRI and evaluation of clinical function [113].

5. Prospects

5.1. Cell Transplantation. Though preclinical studies have
shown promising outcomes, the general clinical effects of

stem cells on ACL graft regeneration are controversial, and
the heterogeneity of transplanted stem cells needs to be fur-
ther investigated with more high-quality research studies
needed for an accurate and comprehensive conclusion. The
clinical application of stem cells is a complex process, in view
of the host tissue environment, time, cell adhesion, and dose.
Due to the poor blood supply and insufficient nutrition
provided by the articular cavity, too much cell injection will
lead to necrosis, while too little will not yield a satisfactory
effect. Dose- and time-dependent clinical research studies
need to be carried out.

The timing of injecting or transplanting stem cells
requires further consideration. Based on the process of graft
regeneration as described above, two different therapeutic
strategies for utilizing stem cells in ACL regeneration have
been proposed: (a) during the early stage, transplanted stem
cells make up for the hypocellularity, and the immunoregula-
tory property of MSCs (especially BMSCs) reduces inflam-
mation reaction, as well as facilitate recruitment/activation
of endogenous stem cells. Macrophages would accumulate
for repair at the tendon-bone interface but often result in
the formation of a scar tissue rather than normal insertion
site [117], and so the regulation of macrophages by stem cells
can enhance tendon-bone healing; (b) the application of stem
cells during the remodeling stage may avoid apoptosis of
transplanted cells due to poor blood supply. After angiogen-
esis and ECM deposition, the inner environment may be
more suitable for stem cells to implant during the noninflam-
matory stage [118], but formed ECM may block the
implanted cells to migrate towards the inner tendon. Addi-
tionally, abundant growth factors such as bFGF, TGF-p1,
and PDGF [22] have demonstrated potent effects on teno-
genic differentiation induction [119-121].

Different delivery methods have their own pros and cons.
To attract stem cells into the scaffold, chemokines can be
applied [65]. To simulate the insertion stratified structure, a
triphasic silk-based graft was established with different cell
types [42, 122], with specific induction treatment being
applied to different parts of the graft. Decellularized allogenic
scaffold is more similar to the original environment and
enables easy seeding of cells [107]. To solve the problem of
biocompatibility, biodegradability, and immunogenicity, cell
sheet is a new option, which can be harvested from
temperature-responsive culture dishes, and it has indeed
shown promising outcomes in animal studies [59, 66]. In
the clinic, due to the limitations of biomaterial approval,
most trials deliver stem cell via injection, which often results
in substantial loss of MSCs. Grafts wrapped in stem cell
collagen seem a safe and simple solution. In summary, a
carrier with great natural biodegradability, cell adhesion, bio-
mechanics, biocompatibility, and insertion spatial simulation
is required, and silk-based scaffolds have shown promising
potential.

5.2. Differentiation of Stem Cells into Tendon/Ligament Cell
Lineages. In embryos, tendon development requires both
physiological and biomechanical stimulation [123, 124].
Temporal coordination of various physiological signals at
early developmental stages, such as TGF-f, BMP, and FGF
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Number of projects
w

BMSCs

Completed (+)
m Completed (-)
B Ongoing

ADSCs

MPCs hUCB-MSCs

FiGure 3: The number of ongoing and completed clinical projects with positive or negative results in the application of different stem cell
lineages after ACL reconstruction. BMSC: bone marrow-derived mesenchymal stem cells; MPC: mesenchymal precursor cell; ADSC:
adipose tissue-derived stem cell; hCDB-MSC: human cord blood-derived mesenchymal stem cell.

TaBLE 3: Published clinical trials of stem cell therapy for ACL graft regeneration.

Author Cell Patient* Follow-up Evaluation Outcome Other outcomes
resource
Wang etal. [112] BMSCs 11 vs. 6 ) Adverse event; pain; Less pain, symptoms, bone expansion, joint space
8 ’ ’ y function; MRI; LifeQ narrowing, and cartilage volume loss
Silva et al. [149] BMSCs 20 vs. 23 ly MRI - No signal-to-noise ratio difference
Alentorn-Geli . .
etal. [115] ADSCs 20 vs. 19 ly Pain; function; MRI -
hUCB- 10 vs. 10 Adverse event; KT; .
Park et al. [116] MSCs s, 10° 2y function; arthroscopy — Safe but no clinical advantage

*The experimental group (ACLR+stem cell) vs. the negative control group (ACLR); “the experimental group (ACLR+stem cell+HA) vs. the negative control

group (ACLR) vs. the positive control group (ACLR+HA).

[125-127], as well as biomechanical stimulation at later
stage [123], promotes tenogenic differentiation. The origin
of ACL is still under research. Most joint tissues derive
from GDF5(+) mesenchymal cell [128], of which Lgr5
+/Scx+/Col22al- interzone cells are restricted within the
ligament lineage [129]. Scx+/Sox9+ precursors are also
considered as the origin of the ACL [130], although exact
signaling mechanisms involved in ligament development
are still unclear. Several markers of embryonic tendon
development were identified, but these do not provide
functional properties. Based on embryonic tendon devel-
opment, step induction is a logical method for simulating
the development of tenocytes, with enhanced self-renewal,
and long-term viability. Chen et al. induced hESCs to dif-
ferentiate into MSCs and subsequently allow the MSCs to
form tendon-like tissues with mechanical stress in vitro
and in vivo [131].

Learning from embryonic tendon development can
improve tendon tissue engineering strategies with adult stem
cells, and tenogenic cues and markers will need to be estab-
lished for step-wise induction [132]. Some studies have deliv-
ered MSCs together with exogenous proteinogenic growth
factors to induce tenogenic differentiation. TGF is considered
as an inducer of the tendon transcription factor Scx [70, 127],

which can direct MSC differentiation towards the tenogenic
lineage [119]. FGF mainly promotes matrix production for
tendon maturation [120], and FGF4 treatment has been
shown to significantly downregulate the gene expression
levels of all tendon markers (Scx, TGFf32, Tnmd, Col I, and
elastin) in MSCs but can only downregulate the mRNA levels
of elastin in TDSC [121]. The BMP family of growth factors
is essential to both osteogenic and chondrogenic differentia-
tion [126], which may activate cytoskeletal reorganization
or the Smad signaling pathway [133, 134]. In particular,
BMP-12/13/14 signaling has been shown to be proteinogenic
[135]. CTGF also plays an auxiliary role during tenogenic dif-
ferentiation, by activating Scx, Tnmd, and other ECM
marker expression, inducing fibroblastic effect and ECM
production [136, 137]. In addition, Wnt signal was found
to induce Tnmd expression in BMSCs via glycogen synthase
kinase-3 [138]. These signaling factors play key roles in
tendon differentiation and regeneration.

All stem cell therapies have the inherent risk of tumorige-
nicity, due to the aberration of chromosomal, copy number,
and single nucleotide, hindering clinical translation [139,
140]. Hence, some researchers have turned to exosomes as
an alternative, the specific vesicles secreted by stem cells,
which can directly deliver the bioactive factors with low risk
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of tumorigenicity and undesired spontaneous differentiation.
A similar tool is conditioned medium (CM), which repre-
sents a mixture of different factors secreted by the cells. The
application of BMSC-CM accelerates graft-bone incorpora-
tion and midsubstance ligamentization and enhances differ-
entiation as well [141]. These cell-free preparations have
the advantages of less ossification, less calcification, and easy
restoration, with various different proteins, nucleic acids, and
lipid components being linked to their potency.

5.3. Current Challenges in Stem Cell Therapy for ACLR.
Although challenges exist, preclinical evidence predicts a
promising future for stem cell approach to ACLR, despite
most (3/4) clinical research studies showing controversial
outcomes. Currently, there are several ongoing human clini-
cal trials in this area. Due to few studies on stem cell therapy
for ACLR, we are unable to conduct a deep meta-analysis in
this systematic review. In general, how exactly stem cells
participate in human ACL regeneration and whether it has
clinical benefits will require further study.

In addition, because stem cell transplantation is a biolog-
ical therapeutic strategy, the stability and oncogenicity of
stem cells require consistent long-term safety verification.
The published scientific literature confirms the short-term
(<24 months) safety and tolerance of stem cells in ACLR,
but the implanted cells need long-term tracking, which has
been poorly studied to date.

Third, the choice of the stem cell source is another impor-
tant consideration. Stem cells derived from different sources
all showed good capacity in promoting regeneration, but their
relative effects need to be compared to optimize the therapeu-
tic efficacy. With respect to availability and ease of isolation,
ADSCs and BMSCs may have advantages over other stem cell
types. In terms of proliferative capacity and ligamentous
differentiation potential, TDSC/LDSC is regarded as having
the most potential, but limited cell quantity may limit clinical
applications. Proper differentiation of alternative stem cell
lineages either in vitro or in vivo will be particularly crucial,
because they are capable of differentiating into multiple tissue
types. Current applications in humans are at the primary
stage, so the differentiation induction in vivo is not mature
and safe. Moreover, the implantation methodology and cell
fate have been discussed previously, including the dose, time,
supplementary agent, and material.

6. Conclusion

Almost all utilized stem cell lineages showed good capacity in
promoting tendon-bone regeneration in animal models.
Among the various different stem cell types, BMSCs are most
commonly investigated, while LDSC/TDCS showed better
potential for tendon/ligament lineage-specific differentiation.
With differentiation inducers, such as growth factors,
mechanical stimuli, and biomaterials, stem cells have better
capacity to differentiate into ligament, fibrocartilage, and
bone, as well as regulate inflammation through paracrine
pathways, promoting graft regeneration. The application of
stem cells in the clinic often results in disappointing out-
comes and needs further investigations.
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