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Abstract: Presepsin is an early indicator of infection, and Krebs von den Lungen 6 (KL-6) and
Surfactant Protein A (SP-A) are related to the pathogenesis of pulmonary infection and fibrosis.
This study aimed to establish reference intervals (RIs) of presepsin, KL-6, and SP-A levels and to
evaluate the possible influence of neonatal and maternal factors on presepsin, KL-6, and SP-A levels
in umbilical cord blood (UCB). Among a total of 613 UCB samples, the outliers were removed. The
RIs for presepsin, KL-6, and SP-A levels were defined using non-parametric percentile methods
according to the Clinical and Laboratory Standards Institute guidelines (EP28-A3C). These levels
were analyzed according to neonatal and maternal factors: neonatal sex, gestational age (GA), birth
weight (BW), Apgar score, delivery mode, the presence of premature rupture of membranes (PROM),
gestational diabetes mellitus (GDM), and pre-eclampsia. Presepsin, KL-6, and SP-A levels showed
non-parametric distributions and left-skewed histograms. The RIs of presepsin, KL-6, and SP-A levels
were 64.9–428.3 pg/mL, 43.0–172.0 U/mL, and 2.1–36.1 ng/mL, respectively. Presepsin, KL-6, and SP-
A levels did not show significant differences according to sex, GA, BW, Apgar score, delivery mode,
PROM, GDM, and pre-eclampsia. The median level and 97.5th centile RI of KL-6 showed a slight
increase with increased GA. We established RIs for presepsin, KL-6, and SP-A levels in large-scaled
UCB samples. Further investigation would be needed to determine the clinical significance.

Keywords: presepsin; KL-6; SP-A; reference interval; umbilical cord blood

1. Introduction

Neonatal sepsis and lower respiratory infection are some of the leading causes of
neonatal morbidity and mortality [1]. Neonatal sepsis is a syndrome characterized by
non-specific signs and symptoms of systemic infection [2]. Neonatal respiratory infection is
a heterogeneous syndrome with diverse and unknown etiology [3]. To be diagnosed with
neonatal sepsis or respiratory infection, a physical examination is the cornerstone of clinical
practice, and a blood culture or a chest X-ray is a gold standard [3,4]. However, clinical
manifestations in neonates are ambiguous and non-specific. The conventional blood culture
takes a long turn-around time and shows a high false-negative rate because of inadequate
blood volume [5]. Exposure to radiation in neonates may increase the risk of cancer [6].

Given the limitations of the clinical manifestations and current gold standard, an
accurate biomarker is necessary for the timely and accurate diagnosis of neonatal sepsis
and respiratory infection. For neonatal sepsis and respiratory infection, there are many
biomarkers commonly used in clinical practice: C-reactive protein (CRP), procalcitonin,
interleukins, and cell adhesion molecules [4,7]. However, no single biomarker is relevant to
others in diagnosing neonatal sepsis or respiratory infection.

A cluster of differentiation 14 (CD14) is a glycoprotein expressed in the membrane
surface of diverse cells and serves as a high-affinity binding site to lipopolysaccharides (LPSs);
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it is implicated in the recognition of various bacterial products [8]. Presepsin is the truncated
form of the soluble CD14 (sCD14). Presepsin is a new biomarker with clinical utility in early
inflammation and sepsis, proven to have high sensitivity and specificity [9–12]. Krebs von
den Lungen 6 (KL-6) and Surfactant Protein A (SP-A) are expressed in type II alveolar
epithelial cells and are associated with lung injury [13]. The levels of KL-6 and SP-A are
increased in interstitial pneumonia [14].

Reference intervals (RIs) are the most widely used clinical decision-making tools that
help clinicians diagnose diseases. The RIs could vary according to sex, age, and ethnic-
ity [15]. Thus, each clinical laboratory should validate the RIs in a local population [16].
The validation of RIs for neonates is very difficult because of the limitation of obtaining
sufficient reference neonatal samples [17]. Alternatively, umbilical cord blood (UCB) is col-
lected at birth without any invasive procedure [18]. Thus, UCB could be a good alternative
in neonatal studies, which have many restrictions.

Although the previous studies investigated the diagnostic value for presepsin, KL-6,
and SP-A in UCB [19–22], few studies were conducted on the RIs for presepsin, KL-6, and
SP-A [23–26]. Therefore, we aimed to establish the RIs for presepsin, KL-6, and SP-A in
large-scaled samples and to evaluate the possible influence of neonatal and maternal factors
on presepsin, KL-6, and SP-A levels in UCB.

2. Materials and Methods
2.1. Study Population and Sample Collection

This retrospective study was conducted at the Konkuk University Medical Center
(KUMC), a 900-bed tertiary-care hospital. From April 2020 to May 2022, UCB samples
were collected from umbilical cord veins using syringes when neonates were delivered.
This study consecutively obtained 613 UCB samples without the selection of the maternal
population. It was difficult to obtain a sufficient number of samples from healthy neonatal
subjects and it provoked ethnic issues related to the use of neonatal samples [27]. Thus, an
indirect method for determining the RIs was used [28]. Samples were collected into a serum
separating tube (Greiner BioOne GmbH, Frickenhausen, Germany) and were immediately
centrifuged at 2300 rpm for 10 min. The separated sera were frozen at −70 ◦C in small
aliquots to avoid repeated freezing and thawing until testing. Presepsin was claimed to be
stable at −20 ◦C or lower for up to 60 days by a manufacturer, and KL-6 and SP-A were not
reported for stability. Samples were excluded if they (1) were hemolytic and clotted samples
and (2) did not have sufficient volume for testing. Maternal and neonatal demographic and
clinical information were collected using electronic medical records: neonatal sex, single or
twin, gestational age (GA), birth weight (BW), Apgar score at one and five minutes (min),
maternal age, delivery mode, the presence of premature rupture of membranes (PROM),
gestational diabetes mellitus (GDM), and pre-eclampsia. The characteristics of the study
population are summarized in Table 1. This study defined preterm as a neonate born before
37 gestational weeks. Low BW was defined as weight less than 2500 g. The levels of Apgar
scores were divided into two groups based on seven, since seven to ten Apgar scores at
one and five min are considered normal. The healthy group was defined as a group with
neonatal factors with the term, normal BW, and above 7 Apgar score and maternal factors
with NSVD and without PROM, GDM, and pre-eclampsia. The Institutional Review Board
of the KUMC reviewed this study protocol and exempted the approval of the study with
waived informed consent (KUMC, 2020-07-027).

2.2. Measurement of Presepsin, KL-6, and SP-A Level

Presepsin, KL-6, and SP-A levels were measured in 613 UCB samples according to
manufacturers’ instructions. The frozen samples were thawed at room temperature for at
least 30 min. The presepsin, KL-6, and SP-A levels were measured using HISCL Presepsin
assay kit, HISCL KL-6 assay kit, and HISCL SP-A assay kit (Sysmex Corp., Kobe, Japan) on a
fully automated analyzer, the HISCL-5000 (Sysmex Corp., Hyogo, Japan), in batches within
2 months of storage. These kits were developed based on the sandwich chemiluminescence
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enzyme immunoassay. Each assay utilized two types of mouse monoclonal antibodies
against presepsin, KL-6, or SP-A in the samples: biotinylated antibodies and the alkaline
phosphatase (ALP)-labeled antibodies. ALP decomposed substrate to an intermediate,
which emitted a luminescent signal. The intensity of the emitted signal was calculated
according to the calibration curve. A quality control assay was performed daily after
calibration at two levels according to the manufacturer’s instructions. The coefficient of
variation value of within-run, between-run, or within-laboratory precision at two levels
showed <11.5% for presepsin, <2.2% for KL-6, and <1.8% for SP-A. The analytical measure-
ment ranges were 20 to 30,000 pg/mL for presepsin, 10 to 6000 U/mL for KL-6, and 1.0 to
1000 ng/mL for SP-A.

Table 1. Characteristics of the study population (n = 613).

Characteristics UCB

Neonate information
Male, n (%) 329 (53.7)
Twin, n (%) 40 (6.5)
GA, weeks 38.6 (37.7–39.3)
Preterm, n (%) 106 (17.3)
BW, g 3145 (2790–3450)
Low BW, n (%) 93 (15.2)
Apgar score at 1 min 8 (7–8)
Apgar score at 5 min 9 (9–9)

Maternal information
Age, years 34.0 (34.0–34.0)
C/S, n (%) 328 (53.5)
PROM, n (%) 85 (13.9)
GDM, n (%) 93 (15.2)
Pre-eclampsia, n (%) 36 (5.9)

Marker
Presepsin, pg/mL 191 (160–248)
KL-6, U/mL 76.5 (64.5–99.8)
SP-A, ng/mL 16.2 (10.1–23.4)

Abbreviations: UCB, umbilical cord blood; n, number; GA, gestational age; BW, birth weight; min, minute; C/S,
cesarean delivery; PROM, premature rupture of membranes; GDM, gestational diabetes mellitus; KL-6, Krebs von
den Lungen 6; SP-A, surfactant protein A.

2.3. Statistical Analysis

Data were checked for normal distribution and homogenous variation by the Kolmogorov–
Smirnov test. Data were presented as numbers (percentage) or medians (interquartile
range, IQR). In a total of 613 samples, extreme outliers (37 in presepsin, 12 in KL-6, and
4 in SP-A) were excluded by a double-sided Grubbs test, and the remaining samples
(576 in presepsin, 601 in KL-6, and 609 in SP-A) were analyzed. For presepsin, KL-6,
and SP-A, a non-parametric method was used to establish the RIs according to the Clin-
ical Laboratory Standards Institute (CLSI) guidelines EP28-A3C [29]. The study popula-
tion was divided into subgroups according to neonatal factors, including neonatal sex,
37 gestational weeks, BW of 2500 g, seven Apgar scores at one min, and maternal factors,
including delivery mode, the presence of PROM, GDM, and pre-eclampsia. Previous studies
on factors affecting presepsin, KL-6, or SP-A levels showed controversial results, so common
factors used in neonatal and maternal studies were selected for partitioning [23–26]. The
robust method was performed for the subgroup with small samples, less than 120, to
compare the RIs between subgroups. In the robust method, the bootstrapping estimated
the confidence intervals for RIs, randomly creating large data from the initial results. The
median and IQR of the subgroup were compared by the Mann–Whitney U test. The follow-
ing formula calculated the statistical significance of the mean difference between subgroups:

z = |x1 − x2|/
[(

s1
2

n1

)
+
(

s2
2

n2

)]1/2
, where x1 and x2 are the means of each subgroup, where

s1 and s2 are the variances, and where n1 and n2 are the numbers of total reference numbers
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in each subgroup [24]. The critical value, z*, was determined to be 4.8 by the formula of
z* = 3[(n1 + n2)/240]1/2 [29]. Age-related RIs were estimated by z-scores normal distri-
bution analysis. All statistical analyses used MedCalc Software (version 20.014, MedCalc
Software, Ostend, Belgium).

3. Results

Presepsin, KL-6, and SP-A levels showed non-parametric distributions and left-skewed
histograms (p < 0.001 for all) (Figure 1). In the total group, the median levels for presepsin,
KL-6, and SP-A were 186.5 pg/mL (range 28–508 pg/mL), 76.0 U/mL (range 20–213 U/mL),
and 16.1 ng/mL (range 0.2–61.0 ng/mL), respectively (Table 2). The RIs of presepsin,
KL-6, and SP-A levels were 64.9–428.3 pg/mL, 43.0–172.0 U/mL, and 2.1–36.1 ng/mL,
respectively. Table 2 also shows the RIs of presepsin, KL-6, and SP-A levels for subgroups
divided by neonatal factors. The median levels for subgroups by neonatal factors did not
show statistical differences. The z-values for all neonatal factors were less than the critical
value (z* = 4.8). The RIs of presepsin, KL-6, and SP-A levels for subgroups divided by
maternal factors were presented in Table 3. The median levels for subgroups by maternal
factors did not show a statistical difference. The z-values for all maternal factors were less
than the critical value (z* = 4.8). Therefore, a single RI could apply to neonatal and maternal
factors for presepsin, KL-6, and SP-A. In the healthy group, the RIs of presepsin, KL-6, and
SP-A levels were 62.0–458.0 pg/mL, 35.1–154.7 U/mL, and 2.5–38.5 ng/mL, respectively
(Table 4). In presepsin and SP-A, the z-values for sex were less than the critical value
(z* = 4.8). In KL-6, the z-value for sex was 8.5, which is higher than the critical value
(z* = 4.8) (p = 0.015).
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Figure 1. Distributions of presepsin, KL-6, and SP-A in UCB (n = 613). The distributions of
(A) presepsin, (B) KL-6, and (C) SP-A were all non-parametric and showed left-skewed histograms.
Abbreviations: KL-6, Krebs von den Lungen 6; SP-A, surfactant protein A; UCB, umbilical cord blood.

Table 2. Reference intervals of the total group for presepsin, KL-6, and SP-A according to neonatal
factors.

Parameters Total
Sex GA BW Apgar Score at 1 min

Male Female Term Preterm Normal Low ≥7 <7

Presepsin, pg/mL
n 576 310 266 480 96 488 88 485 91
Median (range) 186.5 (28–508) 186.0 (28–508) 187.5 (38–489) 186.0 (28–508) 187.5 (29–465) 185.0 (28–508) 190.5 (29–465) 188.0 (28–506) 183.0 (38–508)
RI 64.9–428.3 67.8–436.1 59.7–424.7 64.1–432.0 5.3–361.2 66.2–431.6 13.6–361.3 66.1–448.7 2.5–354.0
Lower limit a 59.0–77.0 31.0–83.0 54.0–82.0 59.0–81.0 2.3–38.2 60.0–77.0 −16.7–47.5 56.0–85.0 −12.7–17.7
Upper limit a 409.0–460.0 393.0–497.0 404.0–460.0 394.0–461.0 330.2–389.5 403.0–461.0 327.4–390.9 403.0–382.8 319.2–387.4
Z-value 0.8 0.6 0.6 0.9

KL-6, U/mL
n 601 323 278 498 103 509 92 507 94
Median (range) 76.0 (20–213) 76.0 (23–197) 78.0 (20–213) 77.0 (20–213) 74.0 (28–192) 77.0 (20–213) 74.0 (28–181) 76.0 (20–213) 78.0 (28–189)
RI 43.0–172.0 39.2–157.8 45.0–186.0 44.0–171.5 9.8–141.1 45.0–172.8 6.9–142.3 43.7–172.6 15.3–146.5
Lower limit a 34.0–46.0 31.0–46.0 34.0–48.0 34.0–46.0 −0.7–21.7 34.0–47.0 −2.4–18.5 34.0–47.0 3.5–27.2
Upper limit a 156.0–186.0 147.0–175.0 163.0–191.0 158.0–187.0 127.6–153.2 156.0–189.0 128.7–154.6 156.0–187.0 134.0–158.3
Z-value 1.6 0.4 0.5 0.4
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Table 2. Cont.

Parameters Total
Sex GA BW Apgar Score at 1 min

Male Female Term Preterm Normal Low ≥7 <7

SP-A, ng/mL
n 609 327 282 504 105 516 93 512 97
Median (range) 16.1 (0.2–61.0) 15.7 (0.2–43.0) 16.8 (0.5–61.0) 16.1 (0.2–61.0) 16.2 (0.5–41.3) 16.0 (0.2–61.0) 16.8 (0.5–36.9) 16.3 (0.2–61.0) 15.7 (0.5–37.1)
RI 2.1–36.1 2.4–35.8 1.6–36.8 2.4–36.3 1.8–36.1 2.4–36.5 1.3–36.1 2.5–36.3 3.5–37.0
Lower limit a 1.3–2.6 1.3–2.7 0.7–2.6 1.2–2.6 0.3–3.3 1.2–2.6 −0.3–2.9 1.5–2.7 1.3–6.2
Upper limit a 34.8–37.2 34.7–37.1 34.6–40.5 34.7–37.3 33.2–38.7 34.9–39.4 33.4–38.6 34.3–36.6 33.5–39.9
Z-value 0.3 0.6 0.5 0.1

a Lower limit and upper limit were represented as the 90% confidence interval of reference limits. Abbreviations:
KL-6, Krebs von den Lungen 6; SP-A, surfactant protein A; GA, gestational age; BW, birth weight; min, minute;
n, number; RI, reference range.

Table 3. Reference intervals of the total group for presepsin, KL-6, and SP-A according to maternal
factors.

Delivery Mode Presence of PROM Presence of GDM Presence of Pre-Eclampsia

NSVD C/S Non-PROM PROM Non-GDM GDM Non-Pre-
Eclampsia

Pre-
Eclampsia

Presepsin, pg/mL
n 272 304 495 81 490 86 544 32
Median (range) 189.5 (28–497) 202.3 (38–508) 188.0 (28–506) 179.0 (60–508) 186.5 (28–508) 186.0 (51–489) 186.5 (28–508) 187.0 (38–409)
RI 60.0–430.4 71.1–428.6 63.6–431.2 6.0–342.4 69.7–428.9 16.1–349.7 65.3–430.8 0.1–355.4
Lower limit a 31.0–82.0 56.0–81.0 55.0–81.0 −26.9–43.6 60.0–83.0 −16.9–51.2 59.0–79.0 −39.7–53.3
Upper limit a 360.0–461.0 410.0–489.0 409.0–461.0 306.1–379.5 410.0–460.0 317.1–381.7 410.0–461.0 304.6–412.6
Z-value 0.1 1.3 1.1 0.2

KL-6, U/mL
n 281 320 517 84 513 88 566 35
Median (range) 75.0 (20–213) 77.5 (74–83) 77.0 (20–213) 74.0 (45–192) 76 (23–213) 78.5 (20–192) 77 (20–213) 73 (28–135)
RI 34.3–171.8 44.0–174.9 41.0–171.1 10.4–133.7 48.9–172.3 12.3–146.3 45.0–173.7 21.0–122.4
Lower limit a 30.0–46.0 39.0–47.0 33.0–45.0 −2.0–25.3 35.0–47.0 1.1–26.5 34.0–47.0 9.6–35.5
Upper limit a 147.0–192.0 151.0–187.0 156.0–187.0 119.4–148.7 156.0–186.0 132.9–159.2 158.0–187.0 109.4–136.0
Z-value 1.4 1.0 0.3 2.3

SP-A, ng/mL
n 284 325 525 84 518 91 573 36
Median (range) 16.3 (0.2–61.0) 15.9 (0.5–44.2) 16.0 (0.5–61.0) 16.7 (0.2–41.3) 15.9 (0.2–61.0) 17.6 (0.5–37.2) 16.1 (0.2–61.0) 15.9 (1.5–35.6)
RI 2.3–37.2 1.6–35.5 2.3–35.9 3.2–37.8 2.4–36.5 0.9–35.0 2.1–36.4 3.1–37.2
Lower limit a 0.7–2.7 1.2–2.6 1.3–2.6 0.5–6.1 1.3–2.6 −0.7–2.5 1.2–2.6 0.5–2.6
Upper limit a 33.4–41.3 34.6–36.9 34.5–37.1 34.1–41.2 34.9–39.4 32.5–37.3 34.7–37.3 31.7–41.4
Z-value 0.5 0.8 0.0 0.2

a Lower limit and upper limit were represented as the 90% confidence interval of reference limits. Abbreviations:
KL-6, Krebs von den Lungen 6; SP-A, surfactant protein A; NSVD, normal spontaneous vaginal delivery; C/S,
Cesarean delivery; PROM, premature rupture of membranes; GDM, gestational diabetes mellitus; n, number; RI,
reference range.

Table 4. Reference intervals of the healthy group for presepsin, KL-6, and SP-A.

Parameters Total
Sex

Male Female

Presepsin, pg/mL
n 167 91 76
Median (range) 192.0 (28.0–497.0) 188.0 (28.0–497.0) 195.5 (60.0–481.0)
RI 62.0–458.0 15.9–363.3 36.3–351.9
Lower limit a 28.0–102.0 −16.3–52.8 1.7–73.1
Upper limit a 403.0–497.0 325.8–395.1 313.8–385.2
Z-value 1.5

KL-6, U/mL
n 171 91 80
Median (range) 77.0 (23.0–172.0) 71.0 (23.0–172.0) 83.0 (40.0–167.0)
RI 35.1–154.7 16.0–129.8 24.3–138.0
Lower limit a 23.0–48.0 7.1–27.8 14.6–33.9
Upper limit a 144.0–172.0 118.7–139.2 127.1–150.0
Z-value 8.5
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Table 4. Cont.

Parameters Total
Sex

Male Female

SP-A, ng/mL
n 609 327 282
Median (range) 15.7 (1.3–61.0) 15.7 (0.2–43.0) 16.8 (0.5–61.0)
RI 2.5–38.5 −3.7–32.9 −3.0–36.4
Lower limit a 1.3–3.6 −6.3–1.2 −7.6–1.2
Upper limit a 33.0–61.0 29.8–36.0 32.1–41.0
Z-value 2.2

a Lower limit and upper limit were represented as the 90% confidence interval of reference limits. Abbreviations:
see Table 2.

Regarding the associations of presepsin, KL-6, and SP-A levels with GA, the presepsin
level for 34 to 40 gestational weeks and SP-A level for all gestational weeks showed
relatively constant 2.5th and 97.5th centile RIs (Figure 2). The ranges from 2.5th to 97.5th
centile Ris of KL-6 levels were 53.1–77.5, 36.3–110.2, 26.8–132.4, 24.3–143.6, and 28.6–143.7
for 24, 28, 32, 36, and 40 gestational weeks. The median level and 97.5th centile RI of KL-6
showed a slight increase as the GA increased.
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Figure 2. The levels of presepsin, KL-6, and SP-A according to the GA (n = 576 in presepsin, n = 601
in KL-6, and n = 609 in SP-A). These scatter diagrams show the levels of (A) presepsin, (B) KL-6,
and (C) SP-A according to the GA. The black central line indicated the median level and the gray
curved line indicated 2.5th to 97.5th centile RIs. Abbreviations: KL-6, Krebs von den Lungen 6; SP-A,
surfactant protein A; UCB, umbilical cord blood; GA, gestational age.

4. Discussion and Conclusions

This study aimed to establish RIs for presepsin, KL-6, and SP-A levels in UCB. We
compared the RIs according to neonatal and maternal factors; there was no statistical
difference between subgroups according to neonatal sex, 37 gestational weeks, a BW of
2500 g, seven Apgar scores at one min, delivery mode, PROM, GDM, and pre-eclampsia.
The median level and 97.5th centile RI of KL-6 showed a slight increase with the increase in
GA, but not presepsin and SP-A.

Establishing RIs in neonates is challenging. First, a prevalent portion of neonate
samples can be collected from hospitalized patients, and it is very difficult to obtain healthy
neonate samples that serve as a reference. Second, regarding the weight of the neonate,
it is difficult to obtain a sufficient volume of samples, and blood collection in preterm
neonates and low birth weight neonates is more restricted than in healthy neonates [30].
Third, various alterations would occur during the transition from the fetal to the neonatal
period [31]. Last, the neonate is a rather heterogeneous group with a wider range of
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GA than that of pediatrics and adult. Therefore, it is not surprising that there are few
studies about neonatal RIs, and neonatologists still struggle to diagnose their patients.
Nevertheless, establishing RIs is essential in neonates.

For presepsin, this study showed that the median levels and RIs were 186.5 pg/mL
(range 28–508 pg/mL) and 64.9–428.3 pg/mL in the total group and 192.0 pg/mL (range
28–497 pg/mL) and 62.0–458.0 pg/mL in the healthy group. In a previous study, the median
levels and RIs were 620 pg/mL and 352–1370 pg/mL in the preterm group and 603.5 pg/mL
and 315–1178 pg/mL in the term group, respectively [25]. The previous study used a direct
method with whole blood (capillary blood via heel puncture), whereas this study used
an indirect method with UCB. The direct comparison of RIs was difficult for both studies
using different methodologies. However, this study showed remarkably low RIs. Another
study reported physiologic variation in the early neonatal period. The median levels were
318.5 pg/mL (range 99.2–1180 pg/mL) at birth, 343.8 pg/mL (range 129.0–655.0 pg/mL)
at first day of life, and 180.5 pg/mL (range 89.5–421.5 pg/mL) at fifth day of life [32]. In
those previous studies, the RIs were measured using whole blood, whereas this study
measured RI using UCB. Depending on the blood origin, such as UCB, whole blood, or
venous blood, the results could show significantly different consequences [33]. Thus, it
is essential to establish presepsin RIs in UCB independently. In this study, RIs between
subgroups divided by neonatal and maternal factors did not show a statistical difference.
A previous study compared presepsin RIs in UCB, term, and preterm neonates related to
neonatal sex, GA, delivery mode, BW, PROM, pre-eclampsia, GDM, and neonatal clinical
status [26]. Similar to this study, RIs in UCB did not show statistical differences except
PROM. The previous study included PROM with maternal chorioamnionitis, whereas this
study included PROM without any maternal infection sign. Amniotic fluid and UCB are
normally sterile environments from antigenically abundant exposure. Antigen exposure
in the intrauterine environment, such as chorioamnionitis, may indicate a remarkable
increase in presepsin levels [34]. In addition, our findings revealed that presepsin RIs were
independent of GA, although studies on the association between presepsin RI and GA have
been previously reported controversially. The design of this study using UCB differed from
the previously reported studies that measured presepsin levels using whole blood after
birth and analyzed GA by a binary comparison of preterm and term [10,35].

Our findings revealed that the median levels and RIs of KL-6 were 76.0 U/mL and
43.0–172.0 U/mL in the total group and 77.0 U/mL and 35.1–154.7 U/mL in the healthy
group. There were no neonatal and maternal factors affecting KL-6. In agreement with
this study, only one study reported that the median level of KL-6 was 73.0 U/mL and
RI was 44.3–148.2 U/mL in UCB. The distributions between KL-6 levels with sex, GA,
BW, delivery mode, and Apgar scores at one min were not statistically significant [24].
In this study, the RIs between the total group and the healthy group did not show a
significant difference, whereas the RIs between males and females in the healthy group
showed statistical significance. However, the clinical significance is uncertain. Thus,
further investigation would be necessary for the effect of KL-6 on sex. The median level
and 97.5th centile RI of KL-6 tended to be slightly increased as GA increased. KL-6 is
mainly produced by type II alveolar epithelial cells [13]. The injury of alveolar epithelial
cells increased alveolar vascular permeability, and KL-6 levels in blood increased [36]. KL-6
levels were higher in children and adults than in neonates because of increased exposure to
environmental risk factors such as air pollution and smoking [24]. However, UCB used
in this study is not yet affected by pulmonary respiration, so alveolar epithelial cell injury
cannot be explained. The results of this study could present that alveolar or bronchial
maturation according to GA increase could contribute to the increase in KL-6 levels.

SP-A has a potential role in innate immune responses by facilitating the pulmonary clear-
ance of bacterial or viral infection [37]. In addition, SP-A is associated with acute lung injury
and lung fibrosis, indicating alveolar damage and leakage of SP-A into the circulation [38].
In this study, the median levels and RIs were 16.1 ng/mL and 2.1–36.1 ng/mL in the total
group and 15.7 ng/mL and 2.5–38.5 ng/mL in the healthy group. The RIs of SP-A between
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subgroups according to neonatal and maternal factors did not show statistical differences,
and SP-A levels indicated constant levels according to the increase in GA. Similar to this
study, a normal range of SP-A was previously reported from 3.5 to 20.7 ng/mL in UCB [23].
However, in disagreement with this study, the previous study revealed the association
between the SP-A level and GA (p = 0.0001) and between the SP-A level and BW (P = 0.002).
However, the previous study explained that the increased SP-A levels were related to the
labor effect caused by uterine contraction rather than GA or BW [23]. Pressure such as
labor promoted the secretion of pulmonary surfactant and increased SP-A levels in alveolar
spaces [39]. Elevated pressure sequentially contributed to the leakage of SP-A from alveolar
spaces into the blood [23]. Contrary to the previous study, this study was not analyzed
for factors that could induce SP-A leakage. Therefore, we concluded that there was no
association between SP-A and GA.

This study has several limitations. First, although UCB is a safe and non-invasive
method to measure parameters in neonates, it is difficult to directly reflect or predict
the neonate status after birth because the transition from the fetus to the neonate is the
most complex physiologic process that occurs in many organs and blood [30]. Thus,
this study can better predict the intrauterine status of neonates rather than the postnatal
period. Second, this study compared the distributions of RIs for presepsin, KL-6, and
SP-A according to neonatal and maternal factors. We did not explore the multidimensional
aspects of multiple factors that could affect the level of each biomarker. However, this study
aimed to establish RIs for presepsin, KL-6, and SP-A levels and to compare distributions of
presepsin, KL-6, and SP-A levels between each subgroup.

In conclusion, this study established the RIs of presepsin, KL-6, and SP-A levels in
UCB according to the CLSI guidelines (EP28-A3C). The RIs of presepsin, KL-6, and SP-A
levels were not affected by neonatal and maternal factors, so single RIs could be applied to
each factor for the three biomarkers. The median level and 97.5 centile RI of KL-6 tended
to be slightly increased as GA increased, and it should be noted that the variation in KL-6
level might increase as lung maturation progresses. Further investigation would be needed
to determine the clinical significance.
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