CONSTITUENT COMPOSITION AND BIOLOGICAL ACTIVITY OF ESSENTIAL OIL FROM Artemisia sublessingiana

E. M. Suleimen,^{1,2} Zh. A. Ibataev,^{1,3} R. N. Suleimen,^{4*} and G. K. Mamytbekova¹

Artemisia sublessingiana Krasch. ex Poljakov (Asteraceae) is a perennial herbaceous plant that grow in eastern, central, southern, and southeastern Kazakhstan [1].

Raw material for the studies was collected in the budding phase during an expedition in the third decade of August 2019 in the vicinity of Zhezqazghan (Karaganda Region). A specimen (2019.08.28.04.01) is preserved in the herbarium of the Biology-Geography Faculty of E. A. Buketov Karaganda University.

Previously, flavonoids (isorhamnetin-3-*O*-rutinoside and 5,7,4'-trihydroxy-6,3'-dimethoxyflavone) and a sesquiterpene lactone (arsubin) [1, 2]; the flavonoids eupatilin, 3',4'-dimethoxyluteolin, 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone, hispidulin, apigenin, and velutin and the sesquiterpene lactone 8α ,14-dihydroxy-11,13-dihydromelampolide [3] were isolated from this plant. Compounds isolated by us were tested *in silico* against COVID-19 main protease enzyme (M^{pro}). Flavonoid compounds turned out to be highly promising with respect to the discovery of drugs for the COVID-19 pandemic [3].

The contents of the valuable constituent santonin in various *Artemisia* species were reported [4]. It was found that *A. sublessingiana* contained ~0.16 g of santonin per 100 g of air-dried raw material. The elemental composition of ash from *A. sublessingiana* and the fatty-acid and amino-acid compositions were previously studied [5].

According to the literature, the essential oil composition of *A. sublessingiana* has not been previously studied. In continuation of the determination of essential oil compositions of *Artemisia* species [6–8], it was studied by us using gas-chromatography-mass-spectrometry (GC-MS).

Essential oil of *A. sublessingiana* was obtained from various plant parts (aerial part, seeds, stems) by steam distillation in a Clevenger apparatus using hexane as a trap [9].

GC-MS analysis of *A. sublessingiana* essential oils was performed under conditions analogous to those in the literature [10] using a Restek Rxi[®]-1ms capillary column (0.25 mm × 30 m × 0.25 μ m). Constituents were identified using the NIST 2014 database. Table 1 presents the constituent composition of the *A. sublessingiana* essential oils. The main constituents (> 3.0%) of the essential oils from the aerial part were 3-thujanone (18.9%), chrysanthenone (3.6%), camphor (17.9%), *cis*-chrysanthenyl acetate (31.3%), and nerol acetate (3.1%); from seeds, 1,8-cineol (12.0%), *β*-thujone (31.8%), 3-thujanone (18.4%), and camphor (14.8%); from stems, 1,8-cineol (11.8%), *β*-thujone (15.5%), 3-thujanone (34.3%), and camphor (17.2%).

Literature data were used to identify obscure constituents of the essential oil such as artedouglasia oxides A, C, and D and laciniata furanones E, F, and H [11, 12].

The cytotoxic activity of the essential oils from *A. sublessingiana* was studied using *Artemia salina* larvae and the literature method [13]. DMSO was used as the solvent. The antibiotic actinomycin D or staurosporine was used as a control. The experiments found that essential oil obtained from the aerial part at all concentrations exhibited cytotoxicity with lethality of larvae reaching 96%. Essential oil from seeds was cytotoxic at all concentrations with lethality of 75–96%. Essential oil from stems at concentrations of 10 and 5 mg/mL was cytotoxic with lethality of larvae reaching 96% while cytotoxicity was not found at a concentration of 1 mg/mL.

1) Kazakh University of Technology and Business, 37A Kaiym Mukhamedkhanova St., Nur Sultan, 010000, Kazakhstan, e-mail: syerlan75@yandex.kz; 2) Sh. Ualikhanov Kokshetau University, 2 Abaya St., Kokshetau, 020000, Kazakhstan; 3) S. Seifullin Kazakh Agrotechnical University, 62 Zhengis Ave., Nur Sultan, 010011, Kazakhstan, e-mail: ZharkynAstana@gmail.com; 4) L. N. Gumilev Eurasian National University, 2 Satpaev St., Nur Sultan, e-mail: kasim_rai@mail.ru. Translated from *Khimiya Prirodnykh Soedinenii*, No. 4, July–August, 2022, pp. 646–648. Original article submitted January 30, 2022.

TABLE 1. Constituent Composition of Essential Oil from A. sublessingiana

Constituent	RII	Essential oil content, %			
		stems	aerial part	seeds	
7-Methyl-3,4-octadiene	843	0.2		0.1	
Ethyl 3-methylbutanoate	848	0.1	0.2	0.1	
Tricyclene	915	0.2	0.1	0.1	
<i>α</i> -Pinene	925	0.2	1.2	0.3	
Camphene	939	2.2	1.8	2.3	
Sabinene	963	0.7	0.2	0.8	
β-Pinene	966	0.2	0.1	0.2	
Mesitylene	983		0.2		
Pseudocumene	983	0.1			
Unk. 1	985	0.1			
<i>α</i> -Terpinene	1008	0.2		0.2	
1,2,4-Trimethylbenzene	1010		0.2		
<i>o</i> -Cymene	1016	0.7	0.4	0.8	
<i>a</i> -Limonene	1020		0.1		
β -Phellandrene	1021			0.1	
1,8-Cineol	1027	11.8	1.1	12.0	
γTerpinene	1051	0.4	0.1	0.3	
cis-Sabinene hydrate	1068			0.1	
Unk. 2	1085		0.1		
Filifolone	1097		0.6	0.1	
β-Thujone	1106	15.5	1.5	31.8	
3-Thujanone	1115	34.3	18.9	18.4	
Chrysanthenone	1118	0.6	3.6	0.6	
<i>α</i> -Campholenal	1121		0.1		
cis-2-Menthenol	1121			0.5	
trans-Pinocarveol	1135		0.9	0.3	
cis-Sabinol	1136			0.1	
Camphor	1141	17.2	17.9	14.8	
Unk. 3	1144	0.5			
Pinocarvone	1153	0.5	0.9	0.3	
cis-Chrysanthenol	1157	0.5	0.3	0.3	
Isothujol	1159	0.1			
1,3,4-Trimethyl-3-cyclohexenyl-1-carboxaldehyde	1160	0.1			
Borneol	1163	1.5	0.3	0.9	
Terpinen-4-ol	1171	1.2	0.4	0.9	
<i>p</i> -Cymen-8-ol	1180	0.2	0.2	0.1	
a-Terpineol	1187			0.4	
Myrtenal	1190	0.2	0.2	0.1	
Myrtenol	1193	0.6	0.2		
3-Methylbut-3-enyl (<i>E</i>)-2-methylbut-2-enoate	1195		0.1		
trans-Piperitol	1201	0.1		0.2	
Verbenone	1203	0.1			
Unk. 4	1207	0.3			
<i>p</i> -Cymenol	1231	0.1		0.1	
Ciminal	1255	0.2	0.2	0.1	
Carvone Bingritong gyide	1241	0.3	0.5	0.2	
Diperitone	1249	0.1		0.2	
rip Chrysonthenel agetate	1255	0.0	21.2	0.2	
a Citrol	1254		0.2		
arcillal Bornyl acetate	1205	0.1	0.2		
Unk 5	1200	0.1	0.5		
trans-Sahinyl acetate	1201	0.8	0.1	0.5	
Methyl cis-cinnamate	1207	0.0	0.3	0.5	
Thymol	1299		0.2	0.1	

TABLE 1 (continued)

Constituent	DII	Essential oil content, %		
Constituent	KII	stems	aerial part	seeds
Carvacrol	1302	0.2		
Unk. 6	1309	0.1	0.7	0.1
Myrtenyl acetate	1318		0.2	
Hexyl tiglate	1329		0.2	
trans-Dihydrocarvyl acetate	1332			0.1
<i>α</i> -Terpinyl acetate	1341			0.1
cis-Chrysanthenyl propionate	1346		0.1	
Nerol acetate	1379		3.1	
2-(Acetylmethyl)-3-carene	1389		0.5	
<i>cis</i> -Jasmone	1392	0.3		0.2
2-Ethylidene-6-methyl-3,5-heptadienal	1394	0.1	0.8	0.2
Isocaryophyllene	1403			0.1
Aristolene	1454	0.1	0.2	0.1
cis-Muurol-3,5-diene	1459			0.1
Germacrene D	1460		0.3	
2-Isopropenyl-4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalene	1462		0.3	
γGurjunene	1473			0.1
Artedouglasia oxide C	1499	0.2		0.1
Laciniata furanone G	1502	0.2		0.2
Artedouglasia oxide A	1513	0.3		0.1
Laciniata furanone F	1519	0.3		0.1
Laciniata furanone E	1528	0.2		0.2
Laciniata furanone H	1539	0.2		0.1
Spathulenol	1562	0.2	0.2	0.2
Artedouglasia oxide D	1565	0.2		
2-Phenylethyl tiglate	1572		0.5	
Isobutyl pentanoate	1581			0.2
<i>τ</i> -Cadinol	1646		0.1	
(1R,7S,E)-7-Isopropyl-4,10-dimethylenecyclodec-5-enol	1676		0.1	
Squalene	2803			0.4
Total		95.3	92.3	91.0

TABLE 2. Antiradical Activity of Essential Oils at Various Concentrations, %

Sample	Concentration, mg/mL					
	0.1	0.25	0.5	0.75	1.0	
Butylhydroxyanisole (BHA)	80.82 ± 4.30	81.23 ± 2.22	82.30 ± 3.17	83.08 ± 2.33	83.88 ± 2.01	
A. sublessingiana (seeds)	20.32 ± 2.03	20.18 ± 3.37	20.19 ± 2.32	22.45 ± 4.64	32.68 ± 3.08	
A. sublessingiana (stems)	11.96 ± 3.27	11.99 ± 3.54	13.22 ± 3.68	14.31 ± 3.72	18.55 ± 3.19	
A. sublessingiana (aerial part)	10.38 ± 4.17	10.08 ± 3.18	11.31 ± 3.69	11.98 ± 2.17	16.03 ± 2.04	

Antiradical activity was determined by the literature method [14, 15]. The tested essential oils showed low antioxidant activity as compared to the standard (butylhydroxyanisole) (Table 2).

ACKNOWLEDGMENT

The studies were financially supported by the Science Committee, Ministry of Education and Science, Republic of Kazakhstan (Grant No. AR13067774), Search for Biologically Active Compounds and Their Use in Agriculture; No. AR14869784, Isolation, Composition, and Biotesting of Essential Oil from Rare Plant Species of the Far East and Southern Kazakhstan; and Grant No. AR08051842, Composition and Biological Activity of Essential Oils from Plants of Central and Southeastern Asia. We thank Zh. B. Iskakova (Kazakh University of Technology and Business) for support and assistance with the biological activity studies and Prof. M. Yu. Ishmuratova (E. A. Buketov Karaganda University) for assistance with collection and identification of the plant raw material.

REFERENCES

- 1. T. V. Ryakhovskaya, A. M. Manadilova, and O. A. Sapko, Chem. Nat. Compd., 21, 381 (1985).
- 2. V. A. Tarasov, Sh. Z. Kasymov, and G. P. Sidyakin, Chem. Nat. Compd., 7, 722 (1971).
- 3. R. I. Jalmakhanbetova, Ye. M. Suleimen, M. Oyama, E. B. Elkaeed, I. H. Eissa, R. N. Suleimen, A. M. Metwaly, and M. Yu. Ishmuratova, *J. Chem.*, Art. ID 5547013, 8 (2021).
- 4. Z. Sakipova, N. S. H. Wong, T. Bekezhanova, A. Sadykova, A. Shukirbekova, and F. Boylan, *PLoS ONE*, 12 (3), e0173714 (2017).
- 5. J. Jenis, A. Kurmanbayeva, Zh. Shynykul, Ye. Yang, and M. A. Dyusebaeva, Int. J. Biol. Chem., 11 (2), 117 (2018).
- D. A. Sampietro, E. F. Lizarraga, Z. A. Ibatayev, A. B. Omarova, Y. M. Suleimen, and C. A. N. Catalan, *Nat. Prod. Res.*, 30, 1950 (2016).
- 7. E. M. Suleimen, Z. A. Ibataev, Z. B. Iskakova, M. Y. Ishmuratova, S. A. Ross, and C. H. G. Martins, *Chem. Nat. Compd.*, **52**, 173 (2016).
- 8. E. M. Suleimen, G. G. Sisengalieva, A. A. Adilkhanova, R. V. Dudkin, P. G. Gorovoi, and Z. B. Iskakova, *Chem. Nat. Compd.*, **55**, 154 (2019).
- 9. State Pharmacopoeia of the USSR, No. 2, General Methods of Analysis. Medicinal Plant Raw Material, MH USSR, 11th Ed., Moscow, 1990, 400 pp.
- 10. H. G. Mierendorf, E. Stahl-Biskup, M. A. Posthumus, and T. A. van Beek, *Flavour Fragrance J.*, 18 (6), 510 (2003).
- 11. N. R. Andriamaharavo, Retention Data, NIST Mass Spectrometry Data Center, 2014.
- 12. E. M. Suleimen, Zh. A. Ibataev, Zh. B. Iskakova, and M. Yu. Ishmuratova, Chem. Nat. Compd., 51, 1184 (2015).
- 13. Ye. M. Suleimen, Zh. A. Ibatayev, Zh. B. Iskakova, M. Yu. Ishmuratova, and C. H. G. Martins, *Bull. Karaganda Univ. Chem. Ser.*, **1** (81), 8 (2016).
- 14. O. Sawant, V. J. Kadam, and R. Ghosh, J. Herbal Med. Toxicol., 3 (2), 39 (2009).
- 15. M. A. Zhunusova, E. M. Suleimen, Zh. B. Iskakova, M. Yu. Ishmuratova, and R. M. Abdullabekova, *Chem. Nat. Compd.*, **53**, 775 (2017).