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ABSTRACT

Cancer-associated somatic mutations outside
protein-coding regions remain largely unexplored.
Analyses of the TERT locus have indicated that non-
coding regulatory mutations can be more frequent
than previously suspected and play important roles
in oncogenesis. Using a computational method
called SASE-hunter, developed here, we identified
a novel signature of accelerated somatic evolution
(SASE) marked by a significant excess of somatic
mutations localized in a genomic locus, and priori-
tized those loci that carried the signature in multiple
cancer patients. Interestingly, even when an affected
locus carried the signature in multiple individuals,
the mutations contributing to SASE themselves
were rarely recurrent at the base-pair resolution. In
a pan-cancer analysis of 906 samples from 12 tumor
types, we detected SASE in the promoters of several
genes, including known cancer genes such as MYC,
BCL2, RBM5 and WWOX. Nucleotide substitution
patterns consistent with oxidative DNA damage and
local somatic hypermutation appeared to contribute
to this signature in selected gene promoters (e.g.
MYC). SASEs in selected cancer gene promoters
were associated with over-expression, and also
correlated with the age of onset of cancer, aggres-
siveness of the disease and survival. Taken together,
our work detects a hitherto under-appreciated and
clinically important class of regulatory changes in
cancer genomes.

INTRODUCTION

Today the catalog of cancer gene mutations is approach-
ing near-saturation (1), and yet oncogenic mutations in
non-coding regions, which cover ∼98% of the genome and
harbor major regulatory elements (2), remain mostly un-
charted. TERT promoter mutations have demonstrated that
non-coding oncogenic mutations could be as common as
the classic cancer gene mutations (3,4), and a thorough
assessment of such mutations could lead to new direc-
tions in cancer diagnosis, patient stratification and thera-
pies (5). There is increasing evidence for functional muta-
tions in non-coding regions with regulatory consequences
(6–8). More recently, large-scale genomics approaches have
identified recurrent, non-coding mutations affecting reg-
ulation of genes such as TERT (3,4,9), SDHD (10) and
CLPTM1L (controlled by TERT promoter mutations) (11)
in melanoma.

Even though recurrent cancer mutations have received
major attention so far, oncogenic mutations need not al-
ways be recurrently detected at the same base position in
multiple samples (e.g. TP53 oncogenic mutations are dis-
tributed throughout the locus (12)), and we argue that non-
coding mutations are no exceptions. Clusters of cancer mu-
tations can be indicative of accelerated somatic evolution in
the tumor genome, perhaps due to context-dependent mu-
tagenesis and/or selection. Mutations that lead to loss-of-
function of tumor suppressor elements or create novel reg-
ulatory elements (e.g. super-enhancers) driving oncogenic
expression are expected to be positively selected during tu-
morigenesis. Importantly, similar signatures have been de-
tected in human genome evolution, where human accel-
erated regions (HARs) acquired significantly more substi-
tutions than expected after divergence from the common
ancestor with chimpanzees (13), and those were associ-
ated with regulatory functions and potentially contributed
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to human-specific attributes (13–15). Currently available
methods, which aim to detect recurrent mutations, are not
tailored to detect the signature of accelerated somatic evo-
lution in cancer genomes. Therefore, we developed a novel
computational approach called SASE-hunter to identify
regulatory elements with cancer-associated signatures of ac-
celerated somatic evolution (SASE). SASE-hunter searches
for genomic regions with a significantly higher abundance
of somatic mutations in a genomic element (e.g. gene pro-
moters) than that expected by chance and prioritizes those
loci that carry the signature in multiple cancer patients. We
analyzed 906 completely sequenced cancer genomes from
multiple cancer types with SASE-hunter to address the fol-
lowing questions. (i) How frequently are the signatures of
accelerated somatic evolution detected in non-coding regu-
latory regions such as gene promoters? Availability of gene
expression and clinical data for the same samples, as well as
emerging evidence for regulatory driver mutations in gene
promoters motivated us to focus on the gene promoters. (ii)
Do these promoters show signatures of distinct mutagenic
processes? (iii) What is the regulatory and clinical relevance
of this signature in cancer?

MATERIALS AND METHODS

Data sets

We obtained genome-wide somatic mutation data for 849
samples of 10 different tumor types from the Interna-
tional Cancer Genome Consortium (ICGC) (16), 32 lung
adenocarcinoma samples from the TCGA (17), and also
25 metastatic melanoma samples from Berger et al. (18);
each cohort had at least 10 samples. Typically tumor and
matched normal genomes in the ICGC and TCGA cohorts
were sequenced using Illumina GAIIx at a depth of 30X or
higher. The majority of the melanoma samples were metas-
tases from melanomas originating from hair-bearing skin.
Tumor samples ME015 and ME032 were obtained from
cutaneous melanoma metastases originating from hairless
skin and a clinical history of chronic ultraviolet light ex-
posure resulted in the primary melanoma, ME009. Tumor
and matched peripheral blood samples from the same pa-
tients were sequenced at high depth (for 5 cases 30X and
30X haploid coverage for tumor and matched normal, re-
spectively, using Illumina GAIIx, and for the remaining 20
cases, 65X and 32X haploid coverage, respectively, using Il-
lumina HiSeq2000). Taken together, our Pan-cancer data
set included 14 cohorts, representing 906 samples from 12
different cancer types. There were over 16 million somatic
mutations in the combined data set. The number of somatic
mutations per sample varied by orders of magnitude within
and between cancer types. In addition, for validation pur-
poses, we used data from another lymphoma study that per-
formed whole genome sequencing of 40 de novo lymphoma
cases at median coverage of 33.9X (19).

Identification of genomic regions carrying SASE

We considered several issues while identifying genomic re-
gions carrying SASE. First, mutation burden varies be-
tween cancer types, and also between samples within the

same tumor type. Even within a sample, mutation detec-
tion rate (per Mb) varies throughout the genome due to GC
content, chromatin, replication timing pattern etc (20,21).
Therefore, we decided to compare the mutation burden in
the seed region to a locally constructed null model calcu-
lated based on mutation frequency in the genomic neigh-
borhood (e.g. flanking regions (22,23)) for the same sam-
ple(s) Second, even within a region, genomic context can
affect DNA damage, repair processes and selection, thereby
modulating mutational landscape (24). For instance, in pro-
tein coding regions evolutionary constraints on the first
two bases in a codon are typically much higher than that
on the third base. Furthermore, repetitive regions have
increased incidence of polymerase slippage-related muta-
tions. Therefore, even within the seed region and its flank-
ing regions, we decided to exclude islands of dissimilar ge-
nomic elements (e.g. exons and repetitive regions were ex-
cluded while searching for SASE in promoters). Third, the
choice of parameters (e.g. seed regions, size of flanks), con-
straints and statistical tests depends on the problem at hand.
Therefore we decided that the tool should be fast, versa-
tile, have a programmatic interface and able to accommo-
date user-specified needs. The computational framework,
reported here, dubbed SASE-hunter (Signatures of Somatic
Evolution-hunter), written in Python 2.7, meets the above
requirements. SASE-hunter accepts (i) a bed or VCF file
containing the genomic co-ordinates of the somatic mu-
tations, (ii) a bed file listing candidate genomic regions,
(iii) the window size for flanking regions (default: ±20 kb
of the candidate region), (iv) the choice for statistical test
(permutation or Fisher’s exact test; default: Fisher’s exact
test) and (v) a bed file containing allowable genomic seg-
ments from which seed and flanking regions can be included
(or excluded) as inputs. Filtered seed regions are the seg-
ment(s) of candidate genomic regions that overlap with the
allowable segments, while the filtered flanking regions are
the allowable, neighboring segments of the filtered seed re-
gions within the given window. For each filtered seed region,
statistical significance of enrichment of somatic mutations
in the filtered region, relative to that in the filtered flank-
ing region is estimated using permutation or Fisher’s exact
test. Permutation P-values were similar to that obtained by
Fisher’s exact test, but opened up the possibility for more
complex, user-defined randomization strategies. For each
genomic region (e.g. promoter) P-values from each sam-
ple were combined using Fisher’s method in order to deter-
mine significance of the promoter across all samples. User-
guide and example files for SASE-hunter are provided at
http://www.sjdlab.org/resources.

Identification of promoters under accelerated evolution in tu-
mor genomes

We obtained the list of all known, protein-coding genes
from the Ensembl-v75 (human genome: hg19), chose their
respective longest transcripts and defined their promoters
as 5 kb upstream to 1 kb downstream of the predicted tran-
scription start sites. We chose the flanking regions to be
within the ±20 kb of the promoter regions. This window
was narrow enough to have comparable genomic context as
the seed region (promoter), and yet large enough to have
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sufficient number of mutations for meaningful statistical
analysis. For validation purposes, P-values were also gener-
ated with variable flanking region sizes (40 kb and 100 kb;
Supplementary Table S1). Within the seed and flanking re-
gions, we carefully chose the Tier-II+III genomic regions
(Tier-II: non-coding, conserved and non-repetitive; Tier-
III: non-coding, non-conserved and non-repetitive), which
are non-coding and non-repetitive, as allowable, filtered re-
gions and excluded exons and repetitive regions (Tier-I and
IV, respectively). For each tumor sample, we overlaid the
somatic mutations on the filtered seed and flanking regions,
and computed statistical significance of the enrichment us-
ing permutation and/or Fisher’s test. P-values were FDR
adjusted. Mutations in individual samples were acquired in-
dependently, and therefore, P-values from multiple samples
were combined using Fisher’s method in order to determine
the overall statistical significance for each promoter.

Conservation and functional genomic Analysis

Functional elements are typically conserved over evolution,
and mutations that occurred at evolutionarily conserved po-
sitions might be functionally more relevant than those at
other positions in the genome. We downloaded base-by-
base multi-species evolutionary conservation, as quantified
by the GERP++ rejected substitution (RS) score (25), for
the entire hg19 human genome. We repeated SASE analy-
ses after masking the base positions in the allowable regions
that were highly divergent during evolution (GERP score ≤
5, 3, 1), and found consistent results (Supplementary Ta-
ble S2). DNase hyper-sensitivity, chromatin, transcription
factor binding sites determined by ChIP-seq experiments in
multiple human cell lines was downloaded from the EN-
CODE database (human genome reference: hg19) (2).

Expression and clinical data analysis

Eight of the cohorts in our study also had gene expression
data (RNAseq) available. Individual cohorts covered be-
tween 20 502 and 55 889 transcript isoforms. Normalized
read counts were expressed as counts per million for the
lymphoma cohort. For each SASE signature, we grouped
the samples, which had SASE at a given promoter and those
that did not. We then compared expression levels (normal-
ized read counts) of the corresponding genes between the
two groups using a Mann–Whitney test. Clinical data in-
cluding age, tumor stage and survival for the cohorts were
downloaded from the respective repositories. Many can-
cer types did not have survival data (e.g. Melanoma cohort
(18)), while some other cancer types (e.g. lymphoma (16))
had good prognosis, and most of the patients were alive dur-
ing the time of data-freeze. We applied correction for mul-
tiple testing wherever applicable.

RESULTS

SASE-hunter––a framework for detecting signatures of ac-
celerated somatic evolution

We developed SASE-hunter to identify genomic re-
gions carrying signatures of accelerated somatic evolution
(SASE) in cancer (see Methods for details; Figure 1A). In

brief, it detects the genomic segments that acquired a signifi-
cant excess of somatic mutations compared to that expected
by chance based on a locally constructed null model, and it
prioritizes those that are detected in multiple samples in the
same cohort. We further integrated expression data to eval-
uate their regulatory consequences. We note three impor-
tant attributes of the framework, which allow it to account
for technical biases and distinct functional constraints in
different parts of the genome.

First, we adopted a sample-by-sample analysis approach
for two reasons: mutation burden varies by orders of magni-
tude between patients (26), and in a pooled analysis, a small
number of samples with excessive mutation burden could
potentially bias the overall trend; furthermore cancer is a
heterogeneous disease, and signatures arising from genetic
profiles of a subset of the patients might not always be ap-
parent when pooled across the entire cohort.

Second, we implemented a local null model using a sub-
sampling approach for genomic inference. Mutation rates
vary between distal genomic regions depending on replica-
tion timing, genomic and epigenomic contexts, and such
variations may not be similar between individuals due
to differences in the epigenetic makeup of their tumors
(20,21,27). In addition, some genomic regions have poor se-
quencing coverage (e.g. centromeres) and hence can show
artificial depletion in reported mutations. It is non-trivial to
include all covariates in an explicit model. In contrast, a lo-
cally constructed null model can accommodate these issues
implicitly.

Lastly, we made provisions to explicitly define additional
constraints. For instance, in the protein-coding regions, sub-
stitutions in the third bases of the codons are more easily ac-
commodated compared to that in the first two bases; more-
over repetitive regions show distinct mutational patterns
arising from polymerase-slippage. Therefore, while identi-
fying SASE in non-repetitive, non-coding regions in gene
promoters, we masked coding bases as well as repetitive se-
quences within the promoter regions.

SASE-hunter is implemented in Python. The framework
allows a user to choose the target regions (e.g. gene pro-
moters), specify the size of the genomic neighborhood for
subsampling approach, define the excluded regions and de-
tect statistical significance using permutation or Fisher’s
test (see Methods for details).

Detecting signatures of accelerated somatic evolution in gene
promoters in pan-cancer data set

We analyzed mutation data for 14 cohorts, representing 906
samples from 12 different cancer types using SASE-hunter
(Figure 1B). Availability of multi-platform data for the same
samples, as well as emerging evidence for regulatory driver
mutations motivated us to focus on the gene promoters. Vi-
sualization of mutational landscape indicated that many ge-
nomic regions had mutation clusters (e.g. MYC promoter
region, Figure 1C). Using SASE-hunter, we interrogated the
predicted promoters (-5 kb to +1 kb of transcription start
site) of the primary transcript of known protein-coding
genes, and identified those with SASE in ≥3 cancer patients
(>2% of patients) in a cancer cohort. A summary of the
results is provided in Table 1 and Supplementary Table S1
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Figure 1. Summary of the approach and results. (A) A schematic representation showing SASE-hunter analysis pipeline. (B) Mutational landscape around
MYC promoter together with additional evolutionary and functional annotations. Mutations in Tier-II+III regions of predicted promoters (5 kb upstream
to 1 kb downstream of transcription start site) are shown in gray, those in Tier-I+IV regions of predicted promoters are shown in cyan. The mutations
in Tier-II+III regions in the flanks are shown in orange. (C) A summary of the data set used in this analysis. Manhattan plot showing significant gene
promoters in (D) lymphoma and (E) melanoma samples and (F) lung adenocarcinoma. The two horizontal lines show uncorrected P-value threshold of
0.05 and also that corresponding to FDR adjusted P-value threshold of 0.05 in respective cohorts. The genes deemed significant after FDR correction and
also show abnormal expression or clinical relevance are highlighted. Complete list of the significant genes is provided in Supplementary Table S1.

while we discuss representative cases below. For the signif-
icant genes detected by SASE-hunter, we found consistent
results when we used alternative window sizes, filtered the
mutations at base-positions with low evolutionary conser-
vation, or pooled the samples in the cohort (Supplementary
Tables S2–S4). The number of samples available was insuf-
ficient to survey all non-coding elements in the genome in

an unbiased manner for SASE, and detect meaningful sta-
tistical significance after correction for multiple testing.

In the ICGC malignant lymphoma cohort (16), SASE-
hunter detected evidence for accelerated somatic evolu-
tion in the promoters of 10 genes (FDR-corrected P-value
≤ 0.05; present in ≥3 samples; Figure 1D; Supplemen-
tary Table S1), several of which play important roles in
hematopoiesis and/or tumor development. For instance,



Nucleic Acids Research, 2015, Vol. 43, No. 11 5311

Table 1. Selected genes that carried signatures of accelerated evolution in the promoters

Genes Position Cancer type
Cohort (total

samples)

# samples
with

significant
SASE

FDR adjusted
P-value

BTG2 chr1:203274619:203278730:+1 Malignant Lymphoma MALY-DE (44) 4 9.29E-10
TCL1A chr14:96176304:96180533:-1 Malignant Lymphoma MALY-DE (44) 4 7.88E-05
MYC chr8:128747680:128753674:+1 Malignant Lymphoma MALY-DE (44) 3 1.35E-04
BCL2 chr18:60790579:60987361:-1 Malignant Lymphoma MALY-DE (44) 5 2.60E-04
CD83 chr6:14117872:14137149:+1 Malignant Lymphoma MALY-DE (44) 3 1.07E-03
RBM5 chr3:50126341:50156454:+1 Melanoma Melanoma (25) 7 3.07E-07
WWOX chr16:78133310–79246564:1 Lung Adenocarenoma LUAD (32) 4 7.30E-04

CCDC168 chr13:103381801:103389159:-1 Colon cancer COAD-US (19) 4 1.04E-04
CCDC168 chr13:103381801:103389159:-1 Endometrial cancer UCEC-US (131) 4 1.64E-08

Only those cases that are found in multiple cancer types, show associated gene expression changes, or clinical attributes are listed. The complete catalog of
genes carrying signatures of accelerated evolution in the promoter are shown in Supplementary Table S1.

BCL2 and MYC are master regulators of hematopoietic
differentiation and major cancer genes in lymphoma (28).
BTG2 has anti-proliferative properties and is involved in the
regulation of the cell cycle G1/S transition (29); its over-
expression is correlated with increased migration and poor
clinical prognosis in bladder cancer (30). TCL1 has been im-
plicated in human T cell leukemias (31). CD83 and IGLL5
are broadly expressed in hematopoietic cell types. More-
over, the majority of identified SASE targets in lymphomas
were genes previously shown to be targets of somatic hyper-
mutation (SHM) by the member of Apobec family of pro-
teins AICDA (also known as AID) (32). AID-dependent
SHM in non-Ig genes has been shown to be a pivotal lym-
phomagenic event through several mechanisms: transcrip-
tional deregulation, induction of dsDNA breaks as a result
of DNA repair, induction of translocations and possibly
even deaminase-dependent DNA demethylation (reviewed
in (33)). AID has been shown to be required for bcl-6 de-
pendent lymphomagenesis in in vivo mouse models (34). So-
matic mutations in these gene promoters were spatially clus-
tered, although did not necessarily occur recurrently at the
same base-positions in multiple samples––indicating that
their signature could not be detected using base-pair-level
recurrence as the primary selection criterion. For instance,
the BCL2 promoter contained mutations at 64 locations of
which only 4 occurred in multiple samples. This signature
was observed in the MYC promoter as well, which con-
tained mutations at 51 positions 48 of which were unique.
We note that translocations involving cancer genes (e.g.
MYC, BCL2) are common in lymphoma samples; but no
sample had SASE and translocation breakpoints in the
same gene promoter (or even within 50 kb region), except a
single case involving MYC.

In the melanoma cohort (18) SASE-hunter identified four
significant gene promoters (MEAF6, RNF223, RBM5 and
CCS; FDR-corrected P-value ≤ 0.05; present in ≥3 sam-
ples; Figure 1E and Supplementary Table S2). Of them,
RBM5, which had SASE in 7 of the 25 samples, is a known
tumor suppressor gene that inhibits cell growth and induces
apoptosis in multiple cancer types (35,36). MEAF6 is a nu-
clear protein involved in transcriptional activation and a
component of the HBO1 acetyl-transferase complex, which
is involved in regulation of cell proliferation (37). Once
again, majority of the promoter mutations in these cases

were spatially clustered, but did not show base-pair-level
recurrence. In the lung cancer cohort, we detected several
additional cases (FDR-corrected P-value ≤ 0.05; present
in ≥3 samples; Figure 1F and Supplementary Table S1) in-
cluding WWOX, which is a known tumor suppressor gene;
moreover, SASE in WWOX promoter was associated with
corresponding decrease in its expression (discussed below).
The number of gene promoters with SASE in other cohorts
was small. We found SASE in the promoter of CCDC168
in multiple samples in colon cancer (COAD) as well as en-
dometrial cancer (UCEC) cohorts (Supplementary Figure
S1).

We extended the analysis to investigate promoters for all
known transcripts of protein coding genes in all cancer co-
horts and recorded the most significant transcript (FDR-
corrected P-value ≤ 0.05; present in ≥3 samples; Supple-
mentary Table S5). Of them, MTA1, which had SASE in 3
of 25 samples, is an emerging target for gene therapy (38);
over-expression is associated with higher risk of metasta-
sis in melanoma (39). As a subunit of the condesin II com-
plex, NCAPD3 plays a role in mitotic chromosome assem-
bly and segregation (40). Expression of the gene has also
been used as a marker for a prostate cancer subtype (41).
Once again, several of these genes were known to be associ-
ated with cancer-related pathways (e.g. CIITA).

For validation purposes, we used data from a second lym-
phoma study that performed whole genome sequencing of
40 de novo lymphoma samples (19). We identified samples
that had somatic mutations in the promoters of genes such
as BCL2 and TCL1A, but none in the corresponding flank-
ing regions (Supplementary Table S6). The small number
of somatic mutation calls within the promoter and flanking
regions precluded statistical test, but the results were consis-
tent even when we used 20 kb or 100 kb flanking windows
for this analysis. Furthermore, we detected statistical sig-
nificant SASE in the promoter of MTA1 (FDR-corrected
P-value ≤ 0.05; present in 6 samples), which was identified
in the melanoma cohort previously.

Taken together, SASE-hunter identifies signatures of ac-
celerated somatic evolution that were not apparent in con-
ventional approaches based on base-pair level recurrence.
In addition, the overlap between SASE clusters and previ-
ously identified hotspots of somatic hyper-mutation in lym-
phomas serves as an internal validation for our novel al-
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gorithm. Our key results remained consistent even when we
used alternative cut-offs for genomic neighborhood, filtered
the mutations at base-positions with low evolutionary con-
servation, or pooled the samples in the cohort (Supplemen-
tary Tables S2–S4), suggesting that the signature is robust
to analysis choices. Thus it is not surprising that, several
of these loci detected by SASE-hunter in multiple samples
have already been implicated in cancer, underscoring clin-
ical relevance of this previously unrecognized mutational
signature.

Mutational signatures

Overall, nucleotide substitution patterns in the promoters
differed considerably between tumor tissue types, perhaps
due to tissue-specific environmental exposures and muta-
genic processes. And yet, there were some tissue-invariant
trends. For instance, G:C>A:T substitution was more fre-
quent in the gene promoters, relative to that observed else-
where in the genome, and this trend was consistent across
cohorts. Only a subset of these mutations was associated
with CpG sites.

Nucleotide substitution patterns in the promoters with
significant SASE were diverse, but some common signa-
tures emerged. In the lymphoma samples, all significant
promoters had enrichment for C:G>G:C substitutions (rel-
ative to the substitution patterns observed for all other
promoters, and also compared to genome-wide substitu-
tion patterns; Figure 2A). Oxidative lesion products of gua-
nine and 8-oxoG (e.g. imidazolone, guanidinohydantoin
and spiroiminodihydantoin) are known to cause C:G>G:C
substitution (42,43), but we cannot rule out the effects of
other mutagenic processes and context dependent selection
during oncogenesis (we examine functional consequences
in the next sections). In contrast, some other substitutions
such as T:A>G:C were less common in these significant
promoters (perhaps due to low AT content of promoter
regions). Overall, C:G>T:A and C:G>G:C accounted for
50% or more of substitutions in the significant promot-
ers. Lung cancer samples had more variations in substitu-
tion patterns between the promoters carrying SASE, but
C:G>A:T substitutions, which are indicative of oxidative
DNA damage (e.g. due to smoking or environmental expo-
sure) were relatively more common compared to that in the
other cohorts (Supplementary Figure S3).

UV exposure-related increase in the burden of C:G>T:A
substitution is a hallmark of melanoma genomes (18); gene
promoters in this cohort also had high proportions of
C:G>T:A substitutions. However, the significant promot-
ers had proportionally less G:C>A:T substitutions, com-
pared to other promoters in this cohort (Figure 2B). On
the other hand, proportionally excess of C:G>G:C substi-
tutions were also observed in three of four significant pro-
moters in this cohort, which is similar to that observed in
the lymphoma cohort as well. An excess of C:G>G:C sub-
stitutions in the SASE in multiple cohorts indicated a role of
transcription-coupled or context-dependent mutagenic and
repair processes.

We then set out to investigate if the significant signa-
tures of accelerated promoter evolution were associated
with a specific pattern of localized hypermutation driven

by AID/APOBEC cytosine deaminase, known as kataegis.
We scanned the tumor genomes using the kataegis defini-
tion provided by Lawrence et al. (26) (stretches of at least
six mutations having inter-mutation distances at least two
standard deviations smaller than the sample median) and
marked the regions that show this pattern. In the lym-
phoma cohort, signatures of kataegis and SASE overlapped
on the MYC promoter in 2 of the 3 significant samples
(Figure 2C); none of these samples had MYC transloca-
tions. We also found additional kataegis patterns, includ-
ing one in chr14q32.33, close to a non-coding gene clus-
ter. This kataegis signature was present in a majority of the
lymphoma samples, and overlapped SASE in the promot-
ers of microRNAs and pseudogenes. Furthermore, these
instances had frequent C:G>T:A and C:G>G:C substi-
tutions, the footprints of kataegis. Evidence for a role of
kataegis in SASE is reported here for the first time, and
yet, it is not totally unexpected. Even other promoters that
had SASE, but did not satisfy the published definition of
kataegis (26), carried an excess of C:G>G:C substitutions,
raising the possibility that AID/APOBEC cytosine deami-
nase or similar enzymes might be involved in those cases as
well.

Some classes of non-B-DNA motifs are mutagenic, and
in both the lymphoma and melanoma samples ∼10% mu-
tations in the promoters overlapped with such motifs at the
base-pair resolution. Representative examples are shown in
Figure 2D. But SASE-associated promoters did not show
significant enrichment for overlap with such motifs. SASE-
associated mutations were three times more likely to be G4-
proximal (within ±200 bp) than others (FDR adjusted P-
value: >0.05), which is consistent with the reports that G4s
are mutagenic, and therefore G4-proximal regions have an
excess of mutations. In contrast, some other motifs such as
small tandem repeats were depleted (FDR adjusted P-value
< 0.05).

Overlap with regulatory elements in promoters and gene ex-
pression changes

Overlaying transcription factor binding site and DNase hy-
persensitivity data, we assessed whether somatic mutations
in these samples could potentially affect transcriptional reg-
ulation of gene expression. We focused on the known can-
cer genes for this analysis. Some of the SASE-associated
mutations overlapped DNase hypersensitive sites, and tran-
scription factor binding sites determined by ChIPseq and
position-weight matrix (Figure 2E). For instance, somatic
mutations in the MYC promoter in the samples (which
had SASE in MYC promoters) were spatially clustered,
mostly downstream of the transcription start site; several
of those clusters overlapped binding sites for several dif-
ferent transcription factors and also DNase hypersensitive
sites in multiple ENCODE cell lines. Position weight ma-
trix calculations indicate that the somatic mutations have
the potential to modulate transcription factor DNA inter-
actions at these sites. Clusters of somatic mutations in the
BCL2 promoter were primarily just upstream of the tran-
scription start site, and overlapped multiple transcription
factor binding sites as well as DNase hypersensitive sites in
multiple ENCODE cell lines. In most of the cases, the tran-
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Figure 2. Genomic context of SASE. Nucleotide substitution patterns in the gene promoters that had signatures of accelerated somatic evolution, con-
trasted against that observed in all gene promoters and also in the completely sequenced genomes for (A) Lymphoma and (B) Melanoma cohort. Examples
of somatic mutations overlapping with G4 motifs in representative lymphoma and melanoma samples. (C) Rain-drop plot showing kataegis in the selected
gene promoters in the lymphoma cohort. (D) Representative samples showing SASE-associated mutations in the stem regions of G4 motifs. (E) SASE-
associated mutations overlap functional elements within promoters such as DNase hypersensitive sites, ChIP-seq transcription factor binding sites and
transcription factor binding motifs. The overlapping mutations are highlighted.
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Figure 3. Regulatory significance of SASE. (A) Boxplot showing mRNA expression difference for BCL2 between the samples that have signatures of
accelerated somatic evolution in the promoters of BCL2 and other samples in the lymphoma cohort. P-value computed using Mann Whitney U test is
shown at the top right corner. (B) and (C) show the similar results for MYC and CD83 respectively in the lymphoma cohort. (D) Boxplot showing mRNA
expression difference for WWOX between the samples that have signatures of accelerated somatic evolution in the promoters of WWOX and other samples
in the lung adenocarcinoma cohort.

scription factor binding sites were partially overlapping and
somatic mutations occurred in the overlapping regions. In
addition, we found that several SASE-associated mutations
overlapped G4 motifs (e.g. lymphoma: IGLL5 promoter in
2 samples; melanoma: RBM5 promoter in 4 samples; Fig-
ure 2D); all these mutations were in the G4-stem and there-
fore predicted to disrupt the G4 structure. G4 structures
are known to have regulatory potential, and perturbation of
such structures can alter expression of the target gene (44).
Furthermore, a considerable proportion of the promoter
mutations were transversions, which can indirectly affect lo-
cal DNA accessibility and chromatin landscape by chang-
ing DNA bending preference, chromatin structure and tran-
scriptional accessibility.

Gene expression data were available for a subset of the
cohorts we analyzed for SASE, allowing us to investigate
whether promoter SASE were associated with consistent
changes in gene expression. Integrating expression data for
the lymphoma samples, we found that the samples with
SASE in the BCL2 promoter had significantly higher BCL2
expression (Mann Whitney test; P-value: 1.59E-02; Fig-
ure 3A, Supplementary Figure S2) compared to other sam-
ples. The potential functional implication of SASE in BCL2
promoter is apparent on further analysis: SASE overlapped
with multiple, predicted binding sites of transcription fac-

tors like p65 and insulator element CTCF (Supplementary
Figure S2). Inability of these factors to bind DNA and
properly regulate transcription of associated genes has been
experimentally linked to lymphomagenesis (45–47). In ad-
dition, the samples with SASE in MYC (P-value: 4.68E-
02; Figure 3B) and CD83 (P-value: 1.43E-02; Figure 3C)
promoters were also associated with an increase in expres-
sion of these genes, respectively. In the lung cancer cohort,
SASE in WWOX promoter was associated with a corre-
sponding decrease in its expression (P-value: 0.014; Fig-
ure 3D). Some other cohorts (e.g. melanoma) did not have
expression data. Nevertheless, over-expression of the target
oncogenes lymphoma and lung cancer cohorts was note-
worthy. Even though we refrain from inferring causality
from correlation, our findings raise a testable hypothesis
that these mutations facilitated oncogenic activation and
therefore were selected for. In any case, significant associ-
ation between SASE in promoters and expression changes
suggests that SASE-like patterns might be biologically and
clinically important.

Association with clinical outcomes

Next, we assessed whether SASE was associated with clini-
cal features. We focused on the known cancer genes for this
analysis. Some of the cancer types such as lymphoma typ-
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Figure 4. Clinical significance of SASE. (A) Age of the samples that have signatures of accelerated somatic evolution in the promoters of BCL2 are
significantly higher relative to other lymphoma samples in the cohort. (B) Age of the samples that have signatures of accelerated somatic evolution in
the promoters of MYC are significantly lower relative to other lymphoma samples in the cohort. (C) The samples with SASE in the promoters of BCL2,
TCL1A and BTG2 are more likely to have more incidence of partial remission or relapse, compared to other samples in the lymphoma cohort (P-value <

0.05 in each case). (D) SASE in RBM5 promoter was significantly associated with poor survival in the melanoma cohort.

ically have good prognoses, and a vast majority of the pa-
tients were alive at the time of data freeze; therefore sur-
vival analysis was not an option. The patients with muta-
tions in the region presenting with SASEs in the MYC pro-
moter were significantly younger (median 12 years) com-
pared to others (median 51 years, Mann–Whitney P-value:
3.6E-02; Figure 4A). In contrast, those with SASEs in the
BCL2 promoter were significantly older (median 54 years
versus 17.5 years, Mann Whitney P-value: 7.0E-04; Fig-
ure 4B). Interestingly, SASE in the promoters of BCL2,
TCL1A, or BTG2 was associated with poorer clinical out-
come (relapse or partial remission as opposed to complete
remission; FDR adjusted P-value < 0.05 in each case; Fig-
ure 4C). In the lung adenocarcinoma cohort all the patients
with SASE in the WWOX promoter were current reformed
smokers, but survival data were too sparse for statistical
analysis. In the melanoma cohort, the samples with SASE
in RBM5 promoter had significantly shorter survival com-
pared to others (P-value: 3.3E-02; Figure 4D), which is con-
sistent with its tumor suppressor function. Furthermore,
these affected patients had higher incidence of distant or
lymph node metastasis compared to other samples in the
cohort (6/7 compared to 10/15), indicating that SASE in
RBM5 promoter typically indicated aggressive disease.

DISCUSSION

Taken together, our pan-cancer survey of 906 tumor
genomes from 12 tumor types detected signatures of accel-
erated somatic evolution in the promoters of several cancer
genes, including BCL2, and MYC whose abnormal expres-
sion promotes cancer phenotypes. We further demonstrate
that, indeed, SASE in the promoters were associated with
significant increases in expression for these genes, as well
as age of onset of cancer and the aggressiveness of the dis-
ease (e.g. in lymphoma) and survival (e.g. melanoma). Im-
portantly, very few of the mutations contributing to SASE
were recurrent at the same position in multiple samples,
and therefore the signature could not be detected using
conventional approaches. Moreover, associated expression
changes and clinical attributes underscore that our analysis
detects previously under-appreciated patterns of genomic
alteration in cancer genomes, and highlights the need to ex-
tend such analysis to coding and other non-coding regions.

We note three additional important aspects of our anal-
ysis approaches and SASE-hunter. First, by performing a
sample-by-sample analysis we account for heterogeneity be-
tween patients within a cancer cohort. This is a key consid-
eration because, cancer is a heterogeneous disease compris-
ing of many sub-types, and signatures arising from genetic
profiles of a subset of the patients may not always be appar-
ent when pooled across the entire cohort (especially when
a few outlier samples have higher mutation burden than
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others). Second, we implemented a local null model using
subsampling approach to account for potential confound-
ing factors such as chromosome-level variation in mutation
rate, genomic context and epigenetic make-up. Finally, in
the SASE-hunter software, we provide options for the user
to change the parameter settings if necessary for greater
flexibility and detection of other genomic signatures.

There are several caveats of our analysis. Inaccurate so-
matic mutation calls have potentials to bias our analysis, but
given the validation rate of the original studies, we antici-
pate that this is probably not a major concern. The sample
size for some of the cohorts was small, compromising the
power to detect all possible significant cases with signatures
of accelerated somatic evolution. This issue also restricted
us from extending the analysis to detect functional elements
under accelerated somatic evolution at a genome-wide scale.
Additionally, this led us to perform limited expression and
survival analyses. Furthermore, without allele frequency in-
formation, we could not determine whether the mutations
contributing to SASE were sub-clonal or present in all tu-
mor cells in the affected samples. Moreover, without fur-
ther supporting evidence for regulatory consequences, we
refrain from inferring causality from correlation alone, and
cautiously interpret the data.

We argue that the signature can be driven by context-
dependent mutagenesis and/or selection. In the former
case, we do not necessarily expect associated expression
changes or clinical characteristics. Examining the spe-
cific mutations in SASE, we found evidence for kataegis-
related localized hypermutation contributing to somatically
evolved promoters of cancer genes such as MYC. Given that
such signatures were associated with increases in expres-
sion for oncogenes such as MYC, BCL2, and decrease in
expression for tumor suppressor genes such as WWOX, as
well as clinical phenotypes, it is probable that the signature
was selected for, at least in selected cases. In contrast, the
lack of base-pair level recurrence of mutations suggested
that no single base-position within the promoter was un-
der equivalent selection in these samples nor drove the ob-
served patterns. Cancer genes such as MYC are known to
acquire an oncogenic super-enhancer via mutation (48). We
suspect that, in some cases (e.g. BCL2, MYC), SASE could
be yet another mechanism to acquire regulatory boosts to
drive over-expression of some of these genes. This finding
may shed some light on the pathogenesis of aggressive B and
T cell lymphomas, which are associated with MYC overex-
pression but lack MYC translocation (49), possibly due to
SASE-mediated MYC over-expression. It is also conceiv-
able that EBV infection in aggressive Burkitt’s lymphomas
lacking MYC translocation is associated with activation of
evolutionary conserved APOBEC-dependent mechanisms,
resulting in increased rate of SASE in the whole genome.
Such hypothesis is testable in the future. Alternately, SASE
could contribute to loss of function mutations in promot-
ers of tumor suppressor genes (e.g. WWOX), leading to de-
crease in expression. In other cases, SASE might lead to
change in local or higher order chromatin organization, or
long-range interactions indirectly affecting gene expression.
Ultimately, such deregulation of key oncogenes and tumor
suppressor genes could promote tumorigenesis and affect
clinical outcome. Indeed, our clinical analysis indicates that

SASE in the promoters of several cancer genes is associated
with poor clinical outcome. Taken together, our analysis un-
derscores the need for systematic assessment of non-coding
regions in cancer genomes for non-traditional mutational
signatures of clinical relevance.
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