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Abstract
Schistosomiasis affects millions of people in developing countries and is responsible for

more than 200,000 deaths annually. Because of toxicity and limited spectrum of activity of

alternatives, there is effectively only one drug, praziquantel, available for its treatment.

Recent data suggest that drug resistance could soon be a problem. There is therefore the

need to identify new drug targets and develop drugs for the treatment of schistosomiasis.

Analysis of the Schistosoma mansoni genome sequence for proteins involved in detoxifica-

tion processes found that it encodes a single cytochrome P450 (CYP450) gene. Here we

report that the 1452 bp open reading frame has a characteristic heme-binding region in its

catalytic domain with a conserved heme ligating cysteine, a hydrophobic leader sequence

present as the membrane interacting region, and overall structural conservation. The high-

est sequence identity to human CYP450s is 22%. Double stranded RNA (dsRNA) silencing

of S.mansoni (Sm)CYP450 in schistosomula results in worm death. Treating larval or adult

worms with antifungal azole CYP450 inhibitors results in worm death at low micromolar con-

centrations. In addition, combinations of SmCYP450-specific dsRNA and miconazole show

additive schistosomicidal effects supporting the hypothesis that SmCYP450 is the target of

miconazole. Treatment of developing S.mansoni eggs with miconazole results in a dose

dependent arrest in embryonic development. Our results indicate that SmCYP450 is essen-

tial for worm survival and egg development and validates it as a novel drug target. Prelimi-

nary structure-activity relationship suggests that the 1-(2,4-dichlorophenyl)-2-(1H-imidazol-

1-yl)ethan-1-ol moiety of miconazole is necessary for activity and that miconazole activity

and selectivity could be improved by rational drug design.
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Author Summary

Over 600 million people in endemic countries are at risk of contracting schistosomiasis,
which results in over 200,000 deaths each year and significant illness to most people that
are infected. There are concerns that the drug widely used for the treatment of schistoso-
miasis, praziquantel, may be losing efficacy due to evolution of drug resistant worms.
Since the disease mainly affects the poor in developing countries, pharmaceutical compa-
nies have little interest in developing new drugs and none are currently being tested. In
this paper we focus on a novel parasite protein, cytochrome P450, which we propose to be
a new drug target. Worms are unusual in having only one cytochrome P450 gene; humans
have 57 cytochrome P450 genes. By using reverse genetic and chemical approaches we
found that the schistosome cytochrome P450 is essential for worm survival and egg devel-
opment and, therefore, is an essential and druggable target. Drugs that target fungal cyto-
chrome P450s and are already in use for treating several human diseases were identified as
potential hits for further development for schistosomiasis treatment.

Introduction
Schistosomiasis is a helminthiasis caused by trematode worms of three main schistosome spe-
cies, Schistosoma mansoni, S. haematobium, and S. japonicum. The disease is responsible for
approximately 280,000 deaths annually and significant morbidity in more than 200 million
people [1,2]. Schistosomiasis belongs to a class of neglected tropical diseases whose control has
been given limited attention by the pharmaceutic industry because they affect poor people in
developing nations. Currently, praziquantel (PZQ) is the only treatment for schistosomiasis
[3]. However, studies indicate that PZQ-resistant laboratory strains can be isolated and clinical
isolates with increased PZQ resistance have been reported [4]. Therefore, it is a matter of time
before resistance fully evolves. In addition, PZQ is much less active against juvenile worms and
often results in incomplete cures [5–8] and its mechanism of action, including its biotransfor-
mation are not fully understood [3].

Biotransformation pathways play vital roles in providing essential molecules for cell survival
and to modify harmful molecules in order to facilitate their elimination. Xenobiotic biotrans-
formation occurs in three phases. Phase I metabolism involves the oxidative, reductive, or
hydrolytic transformations of xenobiotics, of which the most important are catalyzed by
CYP450 enzymes. In phase II transformation, metabolites undergo conjugation reactions with
endogenous compounds such as glutathione, glucuronic acid, amino acids, and sulfate in reac-
tions mainly catalyzed by glutathione S-transferases (GSTs), UDP-glucuronosyltransferases,
N-acetyltransferases, methyltransferases and sulfotransferases. Phase III transformations uti-
lize membrane-bound transport proteins, which carry modified molecules across membranes
for excretion [9]. There has been an extensive study of phase II metabolizing enzymes includ-
ing the glutathione S-transferase family in schistosomes. For example, the main GSTs identi-
fied in S.mansoni have been shown to bind to several commercially available anthelmintics
[10] and are currently important vaccine candidates [11]. Recently, a sulfotransferase was
implicated in the mechanism and selectivity of action of oxamniquine in schistosomes [12]. In
addition, Phase III biotransformation proteins, including the ATP-binding cassette (ABC)
transporters, have been identified and their role in praziquantel susceptibility, immunoregula-
tion within the host, parasite egg development and maturation, and translocation of important
signaling molecules such as glyco- and phospholipids is being studied [13]. However, very little
is known about phase I metabolizing CYP450 enzymes in schistosomes.
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CYP450s are heme-containing monooxygenases. In concert with NADPH CYP450 reduc-
tases, the heme group of CYP450s serves as a terminal oxidase, i.e., a source of electrons to split
molecular oxygen, with one oxygen atom added to the substrate and the other atom accepting
reducing equivalents from NADPH to form water [14]. Characterized CYP450 reductase pro-
teins are well conserved and occur as single copy genes in individual organisms. However, the
CYP450 proteins are quite diverse, with most organisms having multiple CYP450 genes
(Table 1) [9,15]. Analysis of the S.mansoni genome database has identified only one potential
CYP450 gene [16]. In a previous study, extracts of adult S.mansoni and S. haematobium were
shown to metabolize some typical CYP450 substrates and immunoblotting experiments with
an anti-rat CYP450 antibody had cross-reactivity with both S.mansoni and S. haematobium
homogenates with a specific band at ~50 kDa, well within typical CYP450 molecular weight
range [17].

In addition to biotransformation activities, CYP450 proteins are involved in the metabolism
of many essential endobiotic compounds. Synthesis of membrane sterols, cholesterol and
ergosterol depends on CYP450s as does synthesis and degradation of steroid hormones
[18,19]. Cellular levels of retinoic acid, the active metabolite of vitamin A, which is essential for
embryonic development, postnatal survival, and germ cell development, are regulated and
metabolized by several CYP450 proteins [18]. Other CYP450s are involved in the metabolism
of prostaglandins, prostacyclins, and leukotrienes [19], all derivatives of fatty acids and impor-
tant for cell signaling and immune response. In Caenorhabditis elegans CYP450 proteins are
thought to be involved in meiosis, egg polarization, and egg shell development [20].

In this study, we hypothesize that the single CYP450 gene present in schistosomes is essen-
tial for worm survival and that blocking its function would lead to worm death and/or interfer-
ence in parasite development. We used both genetic and pharmacological approaches to test
this hypothesis. Treating larval parasites with SmCYP450-specific double-stranded RNA led to
significant decreases in CYP450 mRNA and resulted in worm death. Screening a collection of
CYP450 inhibitors (Fig 1) we found that low micromolar concentrations of imidazole antifun-
gal CYP450 inhibitors had schistosomicidal activity against adult and larval worms and
blocked embryonic development in the egg. We conclude that SmCYP450 is essential for para-
site survival and egg development, and it is proposed as a novel target for antischistosomal
drug development, with miconazole analogs as starting points in drug discovery.

Materials and Methods

Ethics statement
In all of the experiments involving the use of animals, maintenance and use of these animals
were performed in accordance with protocols approved by the Institutional Animal Care and

Table 1. Comparison of the number of CYP450 and CYP450 reductase genes from different species
compiled from Nelson et al. [15]

Organism CYP450 CYP450 Reductase

Schistosoma mansoni 1 1

Schmidtea mediterranea 39 1

Human 57 1

Mus musculus 103 1

Gallus gallus 41 1

Danio rerio 81 1

Drosophila melanogaster 90 1

Caenorhabditis elegans 81 1

doi:10.1371/journal.pntd.0004279.t001
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Use Committee (IACUC) at Rush University Medical Center (IACUC number 14–080; DHHS
animal welfare assurance number A3120-01). Animals were euthanized with a lethal dose of
Nembutal.

Chemicals and reagents
CYP450 inhibitors (Fig 1) were purchased from Sigma Aldrich (miconazole, clotrimazole,
ketoconazole, posaconazole, triadimenol, sertaconazole, bifoconazole, econazole, butoconazole,
dafadine, fluconazole), Santa Cruz Biotechnology (piperonyl butoxide, tioconazole, fenticona-
zole, prochloraz, sulconazole, oxiconazole, anastrozole, letrozole, aminoglutethimide), and
Cayman Chemical Company (abiraterone acetate). Sulfaphenazole was synthesized according
to published procedures [21,22].

Experimental organisms
A Puerto Rican strain of S.mansonimaintained in Biomphalaria glabrata snails and the same
strain of S.mansonimaintained in NIH Swiss mice was supplied by the Biomedical Research
Institute (Rockville, Maryland, USA). All adult worms, schistosomula, and egg cultures were
incubated in Basch’s Media 169 [23]. Basal Medium Eagle was from Life Technologies; glucose
and fungizone were from Fisher Scientific; hypoxanthine, serotonin, insulin, hydrocortisone,
triiodothyronine were from Sigma Aldrich; MEM vitamins, Schneider’s Drosophila Medium,
and gentamicin were from Gibco; HEPES buffer fromMediatech, Inc.; penicillin/streptomycin
from Cellgro; and fetal bovine serum was from HyClone Laboratories, Inc.

Cercariae were shed from infected Biomphalaria glabrata snails and mechanically trans-
formed to schistosomula as described [24]. To collect liver-stage, juvenile parasites mice were

Fig 1. Chemical structures of CYP450 inhibitors used in this study.

doi:10.1371/journal.pntd.0004279.g001
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perfused 23 days post infection and to collect adult worms mice were perfused 6–7 weeks after
infection with Dulbecco’s modified Eagle’s medium (Gibco) using methods described previ-
ously [24]. Live worms were washed thoroughly with DMEM. Eggs were obtained from the liv-
ers of the mice 7 weeks post infection. Livers were placed in ice-cold PBS and stored at 4°C
overnight and processed the following day as described [24]. Parasite material was stored at
-80°C for later use in stage specific SmCYP450 mRNA quantitation.

Analysis of the SmCYP450 sequence and investigation of sequence
variation
The CYP450 open reading frame was amplified from adult mixed cDNA using P450_5' and
P450_3' (all primers listed in Table 2) and GoTaq Flexi DNA Polymerase (Promega). PCR
product was cloned into pCRII (Invitrogen) and plasmids were purified (Plasmid Mini Kit
(QIAGEN) and sequenced at the University of Illinois-Chicago Core Sequencing Center
(UIC). Alignment of the obtained open reading frame with the genome sequence was done
using the Needleman-Wunsch Global Sequence Alignment Tool (http://blast.ncbi.nlm.nih.
gov/Blast.cgi). Prediction of the molecular weight of the encoded protein was done at the Swiss
Institute of Bioinformatics Resource Portal (http://web.expasy.org/compute_pi/).

Internal Coordinate Mechanics (ICM) homology modeling tool (http://www.molsoft.com)
[25,26] was used to generate a CYP3050A1 model based on the CYP2C5 (PDB ID 1nr6) tem-
plate and the structure-superimposition-guided sequence alignments performed using the iter-
ative dynamic programming and superimposition steps implemented in the ICM Homology
Modeling module [27]. Alignments were further adjusted manually to preserve integrity of the
a-helices and b-sheets, patterns of positive (blue) and negative (red) charges, aromatic (purple)
and hydrophobic (green) functionalities, and finally, proline (ochre) and cysteine (yellow) side
chains. Global optimization was performed using the Biased Probability Monte Carlo (BPMC)

Table 2. List of primers used for PCR, RT-PCR and qRT-PCR.

Primer Sequence

T3 GCTCGAAATTAACCCTCACTAAAGGG

SK CGCTCTAGAACTAGTGGATC

SL AACCGTCACGGTTTTACTCTTGTGATTTGTTGCATG

P450_5' ATGGATACCTTTGAATTTTATG

P450_3' TTACTTCCATACATCGGTACG

CYP450-R1 CACCATAAGTTGCAACAACG

CYP450-R3 GTTGAGAAGCAGACACATCC

CYP450-revComF2 CTGACTATTGTGTACAGCATA

SmCYP450-For GTGGACAATTCTGTTGTCTA

SmCYP450-Rev CTCCAAACTGTACATCTCATC

T7-T3 TAATACGACTCACTATAGGGATTAACCCTCACTAAAGGGA

qPCR-p450-F TGCTGGTACTGACACCACGTCTTT

qPCR-p450-R GGAACTACACTAGCCCAACGATGA

qPCR-tubulin-F CACGAGCAGTTAAGCGTTGCAGAA

qPCR-tubulin-R TATTTGCCGTGACGAGGGTCACAT

CYP450-interF2 TATGCTGTACACAATAGTCAG

ORF_CYP450 Reverse TTAAATACTTGTTCTTCTATTTCC

GAPDH_S.mansoni FWD ATGTTCGTTGTTGGTGTGAATG

GAPDH_S.mansoni REV TTCCGTTTATGTCTGGAATGA

doi:10.1371/journal.pntd.0004279.t002
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conformational search combined with the electrostatic energy term [28]. Loop search and side
chain refinement was conducted for up to 100,000 iterations, which included full energy mini-
mization at each step, to result in a model with satisfactory local strain parameters [29].

To determine if a subset of CYP450 mRNAs was trans-spliced, the S.mansoni trans-spliced
leader sequence was used in PCR with either CYP450-R1 or CYP450-R3 specific internal prim-
ers (Table 2). A modified 5’ rapid amplification of cDNA ends (RACE) with Q5 DNA polymer-
ase (New England Biolabs) was done in a nested PCR using an adult cDNA library (kindly
provided by Dr. Philip LoVerde) as the template and vector primer T3 + gene-specific
CYP450-revComF2 in the first stage and the vector primer SK + gene-specific SmCYP450-Rev
(Table 2) for the second stage. The product of the second PCR was cloned into pCR4 (Invitro-
gen). To determine if the SmCYP450 mRNA is alternatively spliced, the complete ORF was
amplified using Q5 DNA polymerase from adult male, adult female, and egg cDNA (synthe-
sized as described below) with P450_5' and P450_3'. PCR products were cloned into pCR4.
Plasmid DNAs were isolated (GeneJET Plasmid Miniprep Kit, Thermo Scientific) and
sequenced at the UIC sequencing core.

RNA interference (RNAi)
Plasmid Construction. A 566 bp SmCYP450 sequence close to the N-terminal region of

the SmCYP450 gene was amplified using SmCYP450-For and SmCYP450-Rev and cloned into
a pCRII vector (Invitrogen) according to the manufacturer’s protocol. The sequence was veri-
fied through Sanger sequencing at the UIC sequencing core. A new primer (T7-T3) was
designed flanking the 566 bp sequence so that it included the full T7 promoter primer followed
by part of the T3 primer sequence. PCR was carried out using T7 and T7-T3 primers with Taq
DNA polymerase (Thermo Scientific) at 96°C 2 min, followed by 40 cycles at 94°C, 1 min;
48°C, 2 min; 72°C, 1.5 min; then 72°C, 7 min. The PCR product was run on a 1% agarose gel
containing ethidium bromide to verify the insert size. The PCR product was cut out from the
gel and cleaned with Gel Extraction kit (Qiagen) and the concentration determined.

CYP450 dsRNA Synthesis. Both a published method [30] using T7 RNA polymerase
(New England BioLabs) and the MEGAclear kit (Life Technologies) were used to synthesize
SmCYP450 dsRNA. In the first method, synthesis was carried out in a 100 μl reaction mix
using 100 μg/ml BSA (NEB), 500 μM each of rNTPs (NEB), 1 x RNA Pol reaction buffer (40
mM Tris-Cl, 6 mMMgCl2, 10 mM dithiothreitol), and 800 units/ml RNase inhibitor (NEB) at
40°C for 4.5 hours. The resultant product was treated with RNAase free DNase I (NEB) at 37°C
for 10 min and cleaned using Zymogen DNA-free RNA kit and eluted with DNase/RNase free
water, or the DNase I treated samples were precipitated in 75% DEPC treated ethanol and 4 M
LiCl and re-suspended in DEPC treated water. The concentration of the cleaned ssRNA was
determined using a Nanodrop spectrophotometer. Synthesis using the MEGAclear kit followed
manufacturer’s protocols with RNA products cleaned as described above. The RNAs were
annealed to form dsRNA by incubating at 75°C, 50°C, and 37°C for 3 min each, and the con-
centration was determined by Nanodrop spectrophotometry. A negative control dsRNA was
synthesized as described above from the ccdB and camR- bacterial gene insert of pJC53.2 plas-
mid obtained from Dr. James Collins (UIUC) [30].

RNAi Cultures. Freshly prepared schistosomula (300–400) were placed in each well con-
taining 1 ml Basch’s media in a 24-well plate and incubated overnight in a 37°C and 5% CO2.
The following day SmCYP450 dsRNA or control irrelevant dsRNA was added to each well to a
final concentration of 10 or 30 μg/ml. Treatments were done in duplicate. Over several days
worms were observed for dead (dark, granular appearance and non-motile) or alive (translu-
cent and motile) as described [31].

Schistosomamansoni CYP3050A1
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Inhibitor treatment
To determine the activity of CYP450 inhibitors, 10 worm pairs in 5 ml Basch’s media per well
in 6-well plates were cultured overnight at 37°C and 5% CO2 and the following day CYP450
inhibitors (Fig 1) were added to each well. The media were replenished every 48 hr with fresh
media and inhibitors. Dead worms were identified as those that showed no motility when
observed for several minutes. For larval worms, 300–400 freshly prepared schistosomula were
placed in each well in a 24-well plate containing 1 ml Basch’s Media and incubated overnight
at 37°C and 5% CO2. The following day compounds were added to each well and the parasites
observed for several days without changing the media or adding fresh compounds. Live and
dead parasites were classified as before.

To monitor the effects of miconazole on egg development we followed a recently published
method [32]. Freshly perfused adult worm pairs were incubated in Basch’s media overnight.
The following day worms were removed and miconazole (5 or 10 μM) or an equal volume of
DMSO was added to the eggs produced. Eggs were further incubated a total of 72 hr in the
presence of miconazole. Each group of treated eggs was then collected and centrifuged (500 x
g, 5 min) and the supernatant discarded. The egg pellets were each washed in excess PBS and
centrifuged. The eggs were then fixed in 100% methanol at room temperature for 10 min. After
removing the methanol the eggs were incubated in DAPI (4’6-diamidino-2-phenylindole)
Fluoromount-G (SouthernBiotech) overnight at 4°C for nuclear staining. Images were cap-
tured using Zeiss Axiovert Z1 imaging microscope and analyzed with AxioVision software LE
(release 4.8.2 SP3, 2013).

Combined inhibitor and RNA interference
To see if their activities had additive effects, schistosomula were treated with dsCYP450 RNA
at a concentration that alone did not kill schistosomula (10 μg/mL) and miconazole at concen-
trations that resulted in minimal killing (2.5 or 5 μM) or each alone. Schistosomula cultures
were set up as described above. A control experiment was set up with irrelevant dsRNA with
and without 5 μMmiconazole. Parasites were observed as described above.

Total RNA isolation and cDNA synthesis
Total RNA was isolated from frozen worm and egg samples using the TRIzol Reagent (Life
Technologies) per the manufacturer’s recommendation in a 2 ml Lysis Matrix Tubes (MP Bio-
medicals) containing 500 μl TRIzol reagent. Tubes were shaken three times for 20 seconds each
using a tissue homogenizer (FastPrep-24 5G Instrument, MP Biomedicals). The samples were
incubated on ice for 5 minutes in between each lysis process. After lysis, another 500 μl TRIzol
Reagent was added to each sample, mixed and incubated at room temperature for 5 min. The
resultant sample was spun at 13,000 x g for 1 min to pellet cellular debris. Following centrifuga-
tion, supernatants were transferred to a new 1.5 ml microfuge tube and extracted with chloro-
form/isopropanol according to the manufacturer’s instructions. The gelatinous, white RNA
precipitate obtained after the chloroform/isopropanol extraction was resuspended in DEPC
treated water in 75% ethanol and spun at 6500 x g for 5 min at 4°C. After centrifugation the
supernatant was removed and the RNA pellet briefly air-dried and re-suspended in DEPC-
treated water, heated briefly at 55°C quantified on a Nanodrop spectrophotometer. Total RNA
was used for cDNA synthesis (iScript, BIO-RAD) per the manufacturer’s recommendation.
The synthesized cDNA for each sample was quantified by Nanodrop spectrophotometry and
stored at -20°C.

Schistosomamansoni CYP3050A1
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Quantitative RT-PCR (qPCR) and semi-quantitative RT-PCR
Primers used for qPCR are shown in Table 2. α–tubulin (GenBank accession M80214) was
used to normalize the results. The reactions were each carried out in a 20 μl reaction using
ROX Passive Reference Dye (Bio-Rad) according to the manufacturer’s protocol. The amplifi-
cation was monitored in a 7900HT Fast Real-Time PCRMachine (Applied Biosystems) under
the following cycle conditions: (stage 1, 95°C 30 sec, stage 2, 95°C 5 sec, 60 C 30 sec) x 50, plus
a one cycle dissociation curve. Fold differences were calculated using the 2-ΔΔCT as described
[33] with α–tubulin transcript levels serving as the internal standard. Reactions were done in
triplicate. Semi-quantitative RT-PCR was used to assess the relative abundance of SmCYP450
mRNA after RNAi silencing using Platinum Taq DNA polymerase (Life Technologies. Glycer-
aldehyde 3-phosphate dehydrogenase (GenBank accession M92359) was used as a control gene
(primers GAPDH_S.mansoni FWD and GAPDH_S.mansoni REV) and SmCYP450 cDNA
was amplified with primers CYP450-interF2 and ORF_CYP450 Reverse.

Results

The SmCYP450 coding sequence is similar to CYP450 proteins in other
organisms
Cloning and sequence analysis shows that the SmCYP450 coding sequence is 1452 base pairs
encoding a protein of 483 amino acids with a predicted molecular weight of 55.28 kDa. The
family assignment as CYP3050A1 was made by Dr. David R. Nelson according to the CYP450
nomenclature [34,35]. The sequence was found to be longer than the sequence reported in
GeneBank (Smp_156400, 1245 base pairs,) due to a miscalled junction of the 5th intron/6th

exon during genome annotation. The sequence obtained was submitted to GenBank with the
accession number KT072747. The gene is composed of 7 exons and 6 introns spanning 15,378
base pairs (not including 5’ and 3’ noncoding sequences). Sequence analysis shows it to be
comparable to CYP450 proteins from other organisms. The signature heme-binding motif
[14,36], [FW]-[SGNH]-x-[GD]-{F}-[RKHPT]-{P}-C-[LIVMFAP]-[GAD], is present (the
bold, underlined residues are present in SmCYP450) (Fig 2). The ‘P450-signature’ sequence,
[AG]-G-X-[DE]-T-[TS], which forms a channel for electron transfer [36], is also present in the
SmCYP450 peptide. The protein has an N-terminal membrane spanning region followed by
the poly-proline domain, which is important for protein folding and structural integrity [37].
The turns by the poly-proline region provide a junction between the transmembrane region
and the main catalytic domain typical for most CYP450 proteins [37]. The organization of the
predicted secondary structure of the SmCYP450 protein sequence follows other CYP450 pro-
teins, beginning from helix A in the N-terminal region of the protein sequence and ending
with helix L, which contains the heme-binding sequence (Fig 2). Likewise, with the exception
of the absence of the J and J’ helices, the tertiary structure of SmCYP450 protein is predicted to
be similar to known CYP450 proteins (Fig 3).

There is a single CYP450 protein in S.mansoni
It is possible that a diversity of CYP450 proteins or alternative subcellular targeting of
SmCYP450 results from alternative splicing or post-transcriptional modifications of the
mRNA produced from the single S.mansoni CYP450 gene. This was addressed by analyzing
cDNAs from a variety of developmental stages and by using modified 5’RACE and PCR with
the schistosome spliced leader sequence to search for multiplicity of CYP450 mRNAs. We ana-
lyzed 33 clones from adult female worm cDNA, 23 clones from adult male worm cDNA, 11
clones from egg cDNA, and 28 clones generated by 5’ RACE and all sequences were identical.

Schistosomamansoni CYP3050A1
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Fig 2. Comparison of SchistosomamansoniCYP450 protein (Sman) with CYP450 proteins from other species.Multiple alignment of CYP450
proteins from S.mansoni (csm305A); rabbit CYP450 2C5 (1nr6_a); human CYP450 2C9 (1r9o_a); human CYP450 2C19 (4gqs_a); human CYP450 1A1
(4i8v_a); and human CYP450 2b6 (4rrt_a). The residues are shown in one letter code and colored by type: red- negatively charged, blue—positively
charged, yellow—Cys, green—hydrophobic, cyan—Gly, ochre—Pro, purple—aromatic. The residues are shown in brighter colors for conserved positions.
The ‘P450-signature’ sequence, which forms a channel for electron transfer, and the CYP450 consensus motif responsible for heme-binding and interaction
with molecular oxygen and the relevant substrates are boxed. Predicted helices in the secondary structure based on homology modelling of SmCYP450 are
indicated by the bold letters A-L based on rabbit CYP450 2C5 [38].

doi:10.1371/journal.pntd.0004279.g002
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Therefore, we found no evidence for alternative splicing or other sequence variations. PCR
with the spliced leader sequence and two different internal CYP450-specific primers resulted
in no PCR products; therefore, the SmCYP450 mRNA does not appear to be trans-spliced.
Therefore, it appears that the SmCYP450 gene encodes a single CYP450 protein.

S.mansoni CYP450 is differentially expressed during parasite
development in the mammalian host
Using qRT-PCR we found that SmCYP450 mRNA was present at all developmental stages
investigated and that it is differentially present during development (Fig 4). Eggs, the larval
stages of development (cercariae and schistosomula) and adult female worms had higher
mRNA levels than adult male worms. Liver stage parasites had the lowest SmCYP450 mRNA
expression levels, about 50% that of adult males.

Fig 3. Structural modeling of S.mansoniCYP450 (CYP3050A1) and comparison to the structure
determined for rabbit CYP450 2C5 (1nr6_a) [38]. The heme is shown is each model as a space-filling
projection. The J and J’ helices in rabbit CYP450 2C5, which are absent in S.mansoni CYP450, are
highlighted in yellow.

doi:10.1371/journal.pntd.0004279.g003

Fig 4. CYP450messenger RNA abundance during the lifecycle of Schistosomamansoni.Whole RNA
was extracted from different stages of S.mansoni (cercariae, 1-day old schistosomula; juvenile liver worms
(23 days post infection), adult males (49 days post infection), adult females (49 days post infection) and eggs)
using TRIzol reagent and chloroform/ethanol extraction protocol. cDNA was synthesized from whole RNA
and used for qRT-PCR, with reactions done in triplicate. Adult males (= 1) were used as calibrator stage and
mRNA abundance was normalized to α-tubulin. Error bars indicate standard error of the mean with n� 3
biological replicates. Numbers indicate fold change relative to adult males and all values are significantly
different from adult males; p < 0.05; student t-test. The results indicate that S.mansoniCYP450 is expressed
in all stages investigated and that its expression is developmentally regulated.

doi:10.1371/journal.pntd.0004279.g004
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S.mansoni CYP450 dsRNA treatment leads to schistosomula death
To determine if SmCYP450 is essential for schistosomula survival we used RNAi to silence
SmCYP450 expression. Treating worms with 10 μg/mL or 30 μg/mL SmCYP450 specific
dsRNA for two or three days resulted in a dose-dependent reduction in SmCYP450 message
(Fig 5A). No change was seen in SmCYP450 mRNA after treatment with 30 μg/mL irrelevant
dsRNA or in GAPDHmRNA abundance after treatment with either dsRNA (Fig 5A). Treat-
ment with 30 μg/mL SmCYP450 specific dsRNA resulted in 80% schistosomula survival by day
3, 40% survival by day 5, and 15% survival by day 7. In contrast, 95% and 94.5% of schistoso-
mula were alive on day 7 after treatment with 30 μg/mL irrelevant dsRNA or 10 μg/mL
SmCYP450 specific dsRNA, respectively (Fig 5B).

The imidazole subgroup of azole antifungal CYP450 inhibitors is active
against S.mansoni
CYP450 enzymes are inhibited by numerous anti-infective and anticancer agents. We next
asked if clinically relevant CYP450 inhibitors (Fig 1) affected parasite survival. Several antifun-
gal imidazoles (miconazole, clotrimazole, ketoconazole) but not closely related triazole antifun-
gals (fluconazole, posaconazole and triadimenol) were active against both larval and adult

Fig 5. Effect of silencing Schistosomamansoni CYP450 in cultured larval worms. Freshly prepared
schistosomula (300–400) were placed in each well containing 1 ml Basch’s Media in a 24-well plate and
overnight in a 37°C with 5% CO2. The following day schistosomula were treated with 10 or 30 μg/ml S.
mansoniCYP450 dsRNA or 30 μg/ml negative control dsRNA. Over several days worms were observed for
dead (dark, granular appearance) or alive (translucent). (A) mRNA expression patterns in schistosomula
treated with S.mansoniCYP450 specific dsRNA or negative control dsRNA control after 3 days of treatment
(Experiments 1 and 2) or 2 days treatment (Experiment 3). The control gene for cDNA input is S.mansoni
glyceraldehyde 3-phosphate dehydrogenase (GAPDH). C, schistosomula treated with 30 μg/mL irrelevant
dsRNA; 10, schistosomula treated with 10 μg/mL SmCYP450 dsRNA; 30, schistosomula treated with 30 μg/
mL SmCYP450 dsRNA. (B) Effect of S.mansoniCYP450 dsRNA on schistosomula survival in cultures with
30 μg/mL negative control dsRNA (black square), 10 μg/mL S.mansoniCYP450-specific ds RNA (open
triangle), and 30 μg/mL S.mansoniCYP450-specific ds RNA (black triangle). Treatments were done in
triplicate and repeated 3 times. Error bars indicate standard error of the mean; *, p < 0.05; student t-test.

doi:10.1371/journal.pntd.0004279.g005
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worms (Fig 6A and 6B and Table 3). Miconazole, clotrimazole, and ketoconazole had ED50

(Effective Dose producing 50% worm death) values of 10 μM, 20 μM, and 40 μM, after 5 day
treatments against adult worms and 12.5 μM, 27.5 μM, and 30 μM after 2 day treatments
against schistosomula, respectively. Other CYP450 inhibitors, such as prochloraz, sulfaphena-
zole, piperonyl butoxide, dafadine, letrozole, aminoglutethimide, abiraterone acetate, and ana-
strozole had no significant schistosomicidal activity against either larval or adult worms
(Table 3). Expansion of the anti-fungal imidazole series was done to generate preliminary
structure activity relationships of this compound series. Our studies revealed that imidazoles
that retained the 1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-ol moiety of miconazole
had significant schistosomicidal activity against both larval and adult worms, while those
which lacked this moiety had much reduced or no schistosomicidal activity (Table 3, Fig 6C).

Miconazole targets SmCYP450
Does the potent schistosomicidal activity of miconazole act through inhibition of worm
CYP450 or does it have other targets in the worm? To address this question we tested low
doses of miconazole against worms treated with 10 μg/mL dsRNA CYP450, which caused no
significant worm death itself. While 5 μMmiconazole alone resulted in 80% survival after 6
days, combinations of 5 μMmiconazole and 10 μg/mL SmCYP450-specific dsRNA resulted in
60% survival (p = 0.0042). Combining 2.5 μMmiconazole (90% survival alone) and 10 μg/mL

Fig 6. Activity of anti-fungal imidazole CYP450 inhibitors on larval and adult Schistosomamansoni
worms. Survival of schistosomula (A) after 2 d culture and adult worms (B) after 5 d culture for miconazole
(black diamond), clotrimazole (black square), and ketoconazole (black triangle). (C) In house SAR on known
miconazole analogs against adult worms. Numbers in the parenthesis are survival (%) of adult worms on day
7 in 10 μM of respective compound.

doi:10.1371/journal.pntd.0004279.g006
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Table 3. Results with selected cytochrome P450 inhibitors used in this study.

Entry Compound Survival at 7 days (%) Function and CYP450 class inhibited

Adult Schistosomula

5 μM 10 μM 5 μM 10 μM

1 Miconazole 57 10 72 22 antifungal CYP51

2 Sertaconazole 95 15 65 6

3 Sulconazole 100 50 90 56

4 Fenticonazole 75 50 92 79

5 Econazole 100 55 87 66

6 Oxiconazole 100 60 89 71

7 Tioconazole 100 85 86 82

8 Bifoconazole 100 100 80 79

9 Butoconazole 100 80 77 60

10 Clotrimazole n.d.1 100 97 90

11 Ketoconazole n.d. 100 98 97

12 Fluconazole 100 100 98 94

13 Posaconazole 100 100 94 88

14 Triadimenol 100 100 99 99

15 Prochloraz 100 100 94 82

16 Sulfaphenazole 100 100 99 93 antibacterial CYP2C9

17 Piperonyl butoxide 100 100 100 100 pesticide CYP6D1

18 Abiraterone acetate 100 100 100 100 prostate cancer CYP17A1

19 Anastrozole 100 100 100 100 breast cancer CYP19A1

20 Letrozole 100 100 100 100

21 Aminoglutethimide 100 100 100 100

22 Dafadine 100 100 100 100 CYP27A1

1n.d., not determined.

doi:10.1371/journal.pntd.0004279.t003

Fig 7. Combinations of miconazole and RNAi have increased killing activity, suggesting that they function through inhibition of the same target.
(A) Schistosomula cultured with 10 μg/ml S.mansoniCYP450 dsRNA (black diamond); 2.5 μMmiconazole (open circle); or 10 μg/ml S.mansoniCYP450
dsRNA and 2.5 μMmiconazole (black circle). (B) Schistosomula cultured with 10 μg/ml S.mansoni CYP450 dsRNA (black diamond); 5 μMmiconazole
(black square); 5 μMmiconazole plus 30 μg/ml irrelevant dsRNA and 5 μMmiconazole (open circle); or 5 μMmiconazole plus 10 μg/ml S.mansoniCYP450
dsRNA and 5 μMmiconazole (black circle). All experiments were done in triplicate. Error bars indicate standard error of mean; *, p < 0.05; student t-test).

doi:10.1371/journal.pntd.0004279.g007
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SmCYP450-specific dsRNA resulted in 75% survival (p = 0.007) (Fig 7A). Addition of 30 μg/
mL irrelevant dsRNA treatment had no effect on killing by 5 μMmiconazole (Fig 7B). These
results strongly suggest that miconazole schistosomicidal activity is specific for SmCYP450.

Miconazole treatment results in impaired schistosome egg development
To determine if miconazole interferes with egg development and maturation we treated eggs
deposited by freshly perfused adult worm pairs with miconazole and monitored embryo devel-
opment using a recently described method [32,39]. Egg development was scored based on the
number and arrangement of cell nuclei (Fig 8A). Our results indicate that there is a general
interference of egg development and accumulation of early embryonic stages (I, II and III) and
decrease in late stage embryos (IV and V) in the miconazole treatments compared to the
DMSO controls. Only 30% (18/62) of eggs treated with 5 μMmiconazole and 18% (10/56)
treated with 10 μMmiconazole reached the latter stages of egg development (stages IV and V)
compared to 64% (35/55) in DMSO control (Fig 8B). These results indicate that miconazole
affects embryonic development.

Fig 8. Effect of miconazole on egg development. (A) Example of egg development scoring scheme. Upper
panel shows fluorescent images of eggs representative of each developmental stage scored; the bottom
panel shows brightfield images of the same eggs. (B) Scoring of egg development in cultured eggs treated
with 0, 5, or 10 μMmiconazole. The percentage of eggs scored at developmental stages I-III (black bars) and
eggs scored at developmental stages IV-V (gray bars) are indicated. For 0 μMmiconazole, n = 55 eggs
scored; for 5 μMmiconazole, n = 56 eggs scored; for 10 μMmiconazole, n = 62 eggs scored.

doi:10.1371/journal.pntd.0004279.g008
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Discussion
Because schistosomiasis control relies on a single drug and there is field evidence for the evolu-
tion of drug resistance [3,4], there is an urgent need to identify new, druggable worm targets.
In this study we present the first detailed characterization of the CYP450 from S.mansoni and
provide strong evidence that it is an essential and druggable target in the worm.

The SmCYP450 exists as a single copy gene in the S.mansoni genome [16]. This is in stark
contrast to humans, which have 57 genes and alternative splicing and genetic variations that
can lead to the production of many more distinct protein species [40,41], and to the free-living
flatworm Schmidtea mediterranea, which has at least 39 CYP450 genes [15]. The loss of
CYP450 family members in parasitic helminths has been noted previously [42]. However, the
fact that parasitic flatworms have retained one CYP450 signifies that it plays an important and
perhaps essential function. We add here that in S.mansoni there appears to be no post-tran-
scriptional modifications (alternative or trans-splicing, RNA editing) to the mRNA. Therefore,
it is likely that a single protein product is produced from the SmCYP450 gene. Since there was
no evidence for alternative splicing to insert different leader sequences at the N-terminus, the
protein product is likely only targeted to the endoplasmic reticulum.

The predicted protein has generally low sequence identity with the other CYP450s; the high-
est identity to human CYP450 proteins is 22% to CYP2C9. Importantly, the CYP450 consensus
motif responsible for heme-binding and interaction with molecular oxygen and the relevant
substrates and the ‘P450-signature’ sequence are conserved in the SmCYP450 protein
sequence. Curiously, SmCYP450 lacks a number of motifs found in many characterized
CYP450. The majority of CYP450s contain an ‘EXXR motif’ in helix K. The glutamic acid and
arginine residues form a charge pair with a third amino acid more distant in the meander
region. This is frequently an arginine in the so-called ‘PERF motif’. Putative functions of the
EXXR motif and PERF motif may be to associate heme with the newly synthesized CYP450
polypeptide and/or to maintain the CYP450 tertiary architecture [43]. This is key to the struc-
tural fold of CYP450s and previous studies in which mutagenesis directed at the side-chains of
glutamic acid or arginine in the EXXR motif or at the invariant cysteine in the L-helix resulted
in completely inactive and misfolded proteins [44]. However, these motifs are not present in
CYP450s from parasitic Trematodes (e.g., Schistosoma, Clonorchis sinensis) and Cestodes (e.g.,
Echinococcus multilocularis) [42]. Their absence is not without precedent as the EXXR motif is
also absent in most members of a CYP157 subfamily in Streptomyces spp [45]. The Trematode
CYP450 proteins also lack the J and J’ helices, which occur to the N-terminal side of and
include the EXXR motif. How these differences affect protein structure and function remains
to be determined.

CYP450s function in an electron transport chain in which electrons are passed from
NADPH through a flavoenzyme either directly to the CYP450 heme or indirectly through cyto-
chrome b5 or ferredoxin. In the endoplasmic reticulum, the flavoenzyme is NADPH CPY450
reductase. Additional partners of CYP450s in the endoplasmic reticulum include cytochrome
b5 and cytochrome b5 reductase. In mammals, ferredoxin reductase and ferredoxins (also
known as adrenodoxin reductase and adrenodoxins) are found in the mitochondria and are
involved in steroid hormone synthesis mediated by CYP450s. The S.mansoni genome contains
one CYP450 reductase, two cytochrome b5s, two cytochrome b5 reductases, one ferredoxin
reductase, and two ferredoxins with potential to support SmCYP450 activity. Previous studies
in schistosomes have found that ferredoxin reductase is mitochondrial and likely functions
there in redox defenses [46,47]. Since we currently have no evidence for mitochondrial target-
ing of SmCYP450 protein, it is not likely that it functions in concert with ferredoxin reductase/
ferredoxins.
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Unlike the only previously characterized trematode CYP450, which showed highest expres-
sion in adult hermaphrodites [42], SmCYP450 is expressed at the highest levels in larval and
egg stages. It is important to note that the developmental cycles and tissue locations of these
organisms are significantly different. After active host localization and penetration, S.mansoni
has extensive interactions with host skin, lungs, liver, and vascular epithelia, while Opisthorchis
worms reside in the bilary ducts after excysting from metacercariae in the duodenum. As
sequence identity between S.mansoni and O. felineus CYP450 proteins is only 37% it is quite
possible that CYP450s have different functions in the worms.

The function of the SmCYP450 is not yet known. Different development stages may require
different CYP450 metabolites and/or experience different immunological stresses. For instance
larval parasites penetrate the skin of human host and begin migration through the skin and
other tissue and may encounter different stress and immunological responses than adult
worms in the mesenteric system. Larval schistosomes synthesize and secrete eicosanoids [48–
53], which are signaling molecules derived from arachidonic acid, some of which are produced
by CYP450s. The eicosanoids produced by schistosomes may down modulate host immune
function [54,55]. Eicosanoids produced by adult worms may control other functions such as
vasodilator activity, and/or vasoconstrictive action [55].

Other potential functions of SmCYP450 are in the metabolism of cholesterol and steroid
hormones. Adult worms have been shown to convert cholesterol into several metabolites
including pregnenolone, the first committed metabolite in steroid hormone biosynthesis
[56,57]. Male worms transfer cholesterol and uncharacterized cholesterol metabolites to female
worms [56] and synthetic steroids have been shown to affect worm egg production in vivo [56].
More recently, a catechol-estrogen conjugate (downstream products of CYP450 metabolism of
estradiol and estrone), which has anti-estrogen affects, was identified in schistosome worm
extracts and in the serum of infected humans [58]. Retinoic acid is essential for embryonic
development in all metazoan organisms investigated, including free-living flatworms [59]. Ret-
inoic acid activity is controlled through its tightly regulated synthesis from vitamin A (all-trans
retinol) in a 2-step process by retinol dehydrogenases to all-trans retinal and by retinaldehyde
dehydrogenases to all-trans-retinoic acid and is terminated via its breakdown by CYP450s
[18,60]. Although retinoic acid signaling or metabolism in schistosomes is largely unknown,
they have enzymes involved in retinoic acid metabolism (10 retinol dehydrogenases and 2 reti-
naldehyde dehydrogenases) and nuclear receptors related to retinoic acid receptors [61–64].
Ecdysteroids are hormones involved in insect molting and development and CYP450s are
involved in their synthesis and transformation from farnesyl diphosphate and cholesterol.
Ecdysteroids have been detected in schistosomes and their levels shown to vary during devel-
opment [65,66]. S.mansoni synthesizes ecdysone and 20-OH ecdysone, which were shown to
be potent stimulators of growth and vitellogenesis [67]. β-Ecdysterone was found to be effective
in stimulating host location activities in S.mansonimiracidia [68]. Worms have two nuclear
receptors related to insect ecdysone receptors, but their function in ecdysteroid signaling has
not been determined [69,70]. Identification of the function of SmCYP450 will be targeted in
future studies.

Our findings indicate S.mansoni has a single CYP450 protein, with highest sequence iden-
tity to human CYP450s CYP2C9 and CYP1A1. In order to compare the differences between S.
mansoni CYP450 and human CYP450s we tested several different classes of CYP450 inhibitors.
Although miconazole and structurally related imidazoles had schistosomicidal activity against
adult and larval worms, other CYP450 inhibitors did not. These observations gave rise to an
early exploration to investigate the structure-activity-relationships (SAR) of imidazole class of
compounds, especially miconazole analogs (Fig 6C). Miconazole analogs were obtained by
substituting the (2,4-dichlorophenyl)methanol moiety with different aryl groups.
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Sertaconazole, which results from substitution with a (7-chlorobenzo[b]thiophen-2-yl) metha-
nol group, was equipotent to miconazole against adult and larval worms. Replacement with
(4-chlorophenyl) methanol group results in econazole. Replacement of the oxygen by a sulfur
in the econazole led to sulconazole. Modification of the econazole by substitution of a phe-
nylthio group for the 4-chloro led to fenticonazole. Replacement with an oxime moiety into the
miconazole gave oxiconazole. Econazole, sulconazole, fenticonazole and oxiconazole were less
potent than miconazole. Substitution with (2-chlorothiophen-3-yl) methanol moiety results
tioconazole, which is much less active. Our results indicate that miconazole constitutes a prom-
ising scaffold for targeting schistosome worms. Evidence that schistosomicidal activity of
miconazole and analogs resides in the 1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-ol
moiety of miconazole suggests routes to improved activity by rational drug design in future
studies.

Miconazole had previously been included in a medium throughput phenotypic screen
against schistosomula in an effort to repurpose approved drugs [71]. In, this study, compounds
were screened at 1 μM against schistosomula and miconazole was found to be inactive, which
is consistent with our results. However, for our screening purposes we tested compounds at
higher concentrations and therefore, identified the schistosomicidal activity of this class of
compounds. Although the concentrations required for worm killing activity in vitromay not
be attained in vivo due to low biological availability, improved pharmacological properties can
be incorporated into miconazole analogs to overcome these limitations. Our results indicate
that the schistosomicidal activity of miconazole is due to inhibition of SmCYP450. Low con-
centrations of miconazole alone resulted in low schistosomicidal activity and partial reduction
of SmCYP450 mRNA alone resulted in no larval worm death. However, combination treat-
ments produced more than an additive response: 10% death in 2.5 μMmiconazole alone
increased to 20% with partial mRNA silencing and 20% death in 5 μMmiconazole alone
increased to 40% with partial mRNA silencing. The simplest explanation for this effect is that
partial mRNA silencing results in decreases in SmCYP450 protein, which although it is not
lethal to the worms itself, results in increased activity of miconazole due to a reduction in its
protein target abundance. This strongly suggests that both SmCYP450 dsRNA and miconazole
target the same pathway.

In schistosomes, egg development is a multi-stage process. Within the host mesentery and
vasculature, a mature female releases approximately 300 encapsulated embryos (pre-mature
eggs) per day [72,73]. Prior to that and within the mature female the early development of eggs
occurs in several pre-zygotic and post zygotic stages [74]. Using methods recently developed to
facilitate monitoring egg development [32,38] we investigated the effect of miconazole on egg
development and maturation. Treatment with miconazole resulted in a dose-dependent
impairment of ex vivo egg development, with most miconazole-treated eggs remaining at the
early stages of embryonic development (Stages I-III) compared to control treatments, in which
most eggs reached later stages of embryonic development (stages IV and V). CYP450 proteins
are known to be involved in egg development in C. elegans, with CYP31A2 and CYP31A3
essential for the production of lipids required for egg shell development [20]. In addition, reti-
noic acid is essential for embryonic development in all metazoan organisms investigated,
including free-living flatworms, and as indicated above, retinoic acid metabolism is mediated
by CYP450 proteins. Inhibition of retinoic metabolism by miconazole could interfere with
embryogenesis and egg development. There has not been a direct identification of SmCYP450
protein in eggs [75]. The newly oviposited egg is not fully formed and undergoes embryonic
and subshell envelope development [76]. It is not known if SmCYP450 functions in embryonic
or subshell envelope development or both, but our work shows for the first time that micona-
zole can block egg development.
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Schistosomiasis remains a challenging disease to people living in endemic areas. In spite of
many years of praziquantel use, the prevalence of infection remains high. The specter of evolv-
ing resistance to praziquantel, the only drug available for disease treatment, calls for the identi-
fication of new protein targets, the discovery of lead compounds and the development of new
drugs for the treatment of the disease. The S.mansoni CYP450 exists as a single gene in the par-
asite genome. Our work shows that it is essential for parasite survival and could be an ideal
drug target. In addition, select anti-fungal azoles could be promising starting points for future
studies towards identifying new therapies for schistosomiasis.

Acknowledgments
We thank Dr. David R. Nelson, University of Tennessee Health Science Center, for helpful dis-
cussions and Dr. Ruben Abagyan, UCSD, for building the CYP3050A1 structure model. Schis-
tosome-infected mice and snails were provided by the NIAID Schistosomiasis Resource Center
at the Biomedical Research Institute (Rockville, MD) through NIH-NIAID Contract
HHSN272201000005I for distribution through BEI Resources.

Author Contributions
Conceived and designed the experiments: PDZ BK GRJT LMP DLW. Performed the experi-
ments: PDZ BK AHB EMSF DLW. Analyzed the data: PDZ BK AHB EMSF LMP DLW. Con-
tributed reagents/materials/analysis tools: BK GRJT LMP. Wrote the paper: PDZ BK GRJT
DLW.

References
1. van der Werf MJ, de Vlas SJ, Brooker S, Looman CW, Nagelkerke NJ, Habbema JD, et al. Quantifica-

tion of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Trop 2003
May; 86(2–3):125–139. PMID: 12745133

2. King CH. Health metrics for helminth infections. Acta Trop 2015 Jan; 141(Pt B):150–160. doi: 10.1016/
j.actatropica.2013.12.001 PMID: 24333545

3. Cioli D, Pica-Mattoccia L, Basso A, Guidi A. Schistosomiasis control: praziquantel forever? Mol Bio-
chem Parasitol 2014 Jun; 195(1):23–29. doi: 10.1016/j.molbiopara.2014.06.002 PMID: 24955523

4. WangW,Wang L, Liang YS. Susceptibility or resistance of praziquantel in human schistosomiasis: a
review. Parasitol Res 2012 Nov; 111(5):1871–1877. doi: 10.1007/s00436-012-3151-z PMID:
23052781

5. Aragon AD, Imani RA, Blackburn VR, Cupit PM, Melman SD, Goronga T, et al. Towards an understand-
ing of the mechanism of action of praziquantel. Mol Biochem Parasitol 2009 Mar; 164(1):57–65. doi: 10.
1016/j.molbiopara.2008.11.007 PMID: 19100294

6. Sabah AA, Fletcher C, Webbe G, Doenhoff MJ. Schistosomamansoni: chemotherapy of infections of
different ages. Exp Parasitol 1986 Jun; 61(3):294–303. PMID: 3086114

7. Xiao SH, Catto BA, Webster LT Jr. Effects of praziquantel on different developmental stages of Schisto-
soma mansoni in vitro and in vivo. J Infect Dis 1985 Jun; 151(6):1130–1137. PMID: 3998507

8. Pica-Mattoccia L, Cioli D. Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in
vitro praziquantel treatment. Int J Parasitol 2004 Mar 29; 34(4):527–533. PMID: 15013742

9. Cvilink V, Lamka J, Skalova L. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in
helminths. Drug Metab Rev 2009; 41(1):8–26. doi: 10.1080/03602530802602880 PMID: 19514969

10. Brophy PM, Barrett J. Glutathione transferase in helminths. Parasitology 1990 Apr; 100 Pt 2:345–349.
PMID: 2189115

11. Mo AX, Agosti JM, Walson JL, Hall BF, Gordon L. Schistosomiasis elimination strategies and potential
role of a vaccine in achieving global health goals. Am J Trop Med Hyg 2014 Jan; 90(1):54–60. doi: 10.
4269/ajtmh.13-0467 PMID: 24402703

12. Valentim CL, Cioli D, Chevalier FD, Cao X, Taylor AB, Holloway SP, et al. Genetic and molecular basis
of drug resistance and species-specific drug action in schistosome parasites. Science 2013 Dec 13;
342(6164):1385–1389. doi: 10.1126/science.1243106 PMID: 24263136

Schistosomamansoni CYP3050A1

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004279 December 29, 2015 18 / 21

http://www.ncbi.nlm.nih.gov/pubmed/12745133
http://dx.doi.org/10.1016/j.actatropica.2013.12.001
http://dx.doi.org/10.1016/j.actatropica.2013.12.001
http://www.ncbi.nlm.nih.gov/pubmed/24333545
http://dx.doi.org/10.1016/j.molbiopara.2014.06.002
http://www.ncbi.nlm.nih.gov/pubmed/24955523
http://dx.doi.org/10.1007/s00436-012-3151-z
http://www.ncbi.nlm.nih.gov/pubmed/23052781
http://dx.doi.org/10.1016/j.molbiopara.2008.11.007
http://dx.doi.org/10.1016/j.molbiopara.2008.11.007
http://www.ncbi.nlm.nih.gov/pubmed/19100294
http://www.ncbi.nlm.nih.gov/pubmed/3086114
http://www.ncbi.nlm.nih.gov/pubmed/3998507
http://www.ncbi.nlm.nih.gov/pubmed/15013742
http://dx.doi.org/10.1080/03602530802602880
http://www.ncbi.nlm.nih.gov/pubmed/19514969
http://www.ncbi.nlm.nih.gov/pubmed/2189115
http://dx.doi.org/10.4269/ajtmh.13-0467
http://dx.doi.org/10.4269/ajtmh.13-0467
http://www.ncbi.nlm.nih.gov/pubmed/24402703
http://dx.doi.org/10.1126/science.1243106
http://www.ncbi.nlm.nih.gov/pubmed/24263136


13. Greenberg RM. Schistosome ABCmultidrug transporters: From pharmacology to physiology. Int J
Parasitol Drugs Drug Resist 2014 Sep 26; 4(3):301–309. doi: 10.1016/j.ijpddr.2014.09.007 PMID:
25516841

14. Ortiz de Montellano PR editor. Cytochrome P450. 3rd ed. New York: Kluwer Academic/Plenum Pub-
lishers; 2005.

15. Nelson DR. The cytochrome p450 homepage. HumGenomics 2009 Oct; 4(1):59–65. PMID: 19951895

16. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. The genome of the
blood fluke Schistosomamansoni. Nature 2009 Jul 16; 460(7253):352–358. doi: 10.1038/nature08160
PMID: 19606141

17. Saeed HM, Mostafa MH, O'Connor PJ, Rafferty JA, Doenhoff MJ. Evidence for the presence of active
cytochrome P450 systems in Schistosomamansoni and Schistosoma haematobium adult worms.
FEBS Lett 2002 May 22; 519(1–3):205–209. PMID: 12023046

18. Ross AC, Zolfaghari R. Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annu
Rev Nutr 2011 Aug 21; 31:65–87. doi: 10.1146/annurev-nutr-072610-145127 PMID: 21529158

19. Tomaszewski P, Kubiak-Tomaszewska G, Pachecka J. Cytochrome P450 polymorphism—molecular,
metabolic, and pharmacogenetic aspects. II. Participation of CYP isoenzymes in the metabolism of
endogenous substances and drugs. Acta Pol Pharm 2008 May-Jun; 65(3):307–318. PMID: 18646550

20. Benenati G, Penkov S, Muller-Reichert T, Entchev EV, Kurzchalia TV. Two cytochrome P450s in Cae-
norhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the
polarization of embryo. Mech Dev 2009 May-Jun; 126(5–6):382–393. doi: 10.1016/j.mod.2009.02.001
PMID: 19368796

21. Ha-Duong NT, Dijols S, Marques-Soares C, Minoletti C, Dansette PM, Mansuy D. Synthesis of sulfa-
phenazole derivatives and their use as inhibitors and tools for comparing the active sites of human liver
cytochromes P450 of the 2C subfamily. J Med Chem 2001 Oct 25; 44(22):3622–3631. PMID:
11606127

22. Ha-Duong NT, Marques-Soares C, Dijols S, Sari MA, Dansette PM, Mansuy D. Interaction of new sulfa-
phenazole derivatives with human liver cytochrome p450 2Cs: structural determinants required for
selective recognition by CYP 2C9 and for inhibition of human CYP 2Cs. Arch Biochem Biophys 2001
Oct 15; 394(2):189–200. PMID: 11594733

23. Basch PF. Cultivation of Schistosomamansoni in vitro. I. Establishment of cultures from cercariae and
development until pairing. The Journal of Parasitology 1981; 67(2):179–85. PMID: 7241277

24. Lewis F. Schistosomiasis. Curr Protoc Immunol 2001 May;Chapter 19:Unit 19.1.

25. Abagyan R, Totrov M, Kuznetsov D. ICM: A newmethod for protein modeling and design: Applications
to docking and structure prediction from the distorted native conformation. Journal of Computational
Chemistry 1994; 15(5):488–506.

26. Abagyan R, Batalov S, Cardozo T, Totrov M, Webber J, Zhou Y. Homology modeling with internal coor-
dinate mechanics: deformation zone mapping and improvements of models via conformational search.
Proteins 1997;Suppl 1: :29–37. PMID: 9485492

27. Marsden B, Abagyan R. SAD—a normalized structural alignment database: improving sequence-struc-
ture alignments. Bioinformatics 2004 Oct 12; 20(15):2333–2344. PMID: 15087320

28. Abagyan R, Totrov M. Biased probability Monte Carlo conformational searches and electrostatic calcu-
lations for peptides and proteins. J Mol Biol 1994 Jan 21; 235(3):983–1002. PMID: 8289329

29. Maiorov V, Abagyan R. Energy strain in three-dimensional protein structures. Fold Des 1998; 3(4):259–
269. PMID: 9710569

30. Collins JJ 3rd, Hou X, Romanova EV, Lambrus BG, Miller CM, Saberi A, et al. Genome-wide analyses
reveal a role for peptide hormones in planarian germline development. PLoS Biol 2010 Oct 12; 8(10):
e1000509. doi: 10.1371/journal.pbio.1000509 PMID: 20967238

31. Stefanic S, Dvorak J, Horn M, Braschi S, Sojka D, Ruelas DS, et al. RNA interference in Schistosoma
mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl
Trop Dis 2010 Oct 19; 4(10):e850. doi: 10.1371/journal.pntd.0000850 PMID: 20976050

32. Toh S. Haem Biosynthesis and Uptake in Schistosomamansoni School of Veterinary Science, The
University of Queensland; 2014.

33. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR
data analysis: current concepts and the novel "gene expression's CT difference" formula. J Mol Med
(Berl). 2006; 84(11):901–10.

34. Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, et al. The P450
superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of
enzymes, and nomenclature. DNA Cell Biol 1993; 12(1):1–51. PMID: 7678494

Schistosomamansoni CYP3050A1

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004279 December 29, 2015 19 / 21

http://dx.doi.org/10.1016/j.ijpddr.2014.09.007
http://www.ncbi.nlm.nih.gov/pubmed/25516841
http://www.ncbi.nlm.nih.gov/pubmed/19951895
http://dx.doi.org/10.1038/nature08160
http://www.ncbi.nlm.nih.gov/pubmed/19606141
http://www.ncbi.nlm.nih.gov/pubmed/12023046
http://dx.doi.org/10.1146/annurev-nutr-072610-145127
http://www.ncbi.nlm.nih.gov/pubmed/21529158
http://www.ncbi.nlm.nih.gov/pubmed/18646550
http://dx.doi.org/10.1016/j.mod.2009.02.001
http://www.ncbi.nlm.nih.gov/pubmed/19368796
http://www.ncbi.nlm.nih.gov/pubmed/11606127
http://www.ncbi.nlm.nih.gov/pubmed/11594733
http://www.ncbi.nlm.nih.gov/pubmed/7241277
http://www.ncbi.nlm.nih.gov/pubmed/9485492
http://www.ncbi.nlm.nih.gov/pubmed/15087320
http://www.ncbi.nlm.nih.gov/pubmed/8289329
http://www.ncbi.nlm.nih.gov/pubmed/9710569
http://dx.doi.org/10.1371/journal.pbio.1000509
http://www.ncbi.nlm.nih.gov/pubmed/20967238
http://dx.doi.org/10.1371/journal.pntd.0000850
http://www.ncbi.nlm.nih.gov/pubmed/20976050
http://www.ncbi.nlm.nih.gov/pubmed/7678494


35. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, et al. P450 superfam-
ily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacoge-
netics 1996; 6(1):1–42. PMID: 8845856

36. Werck-Reichhart D, Feyereisen R. Cytochromes P450: a success story. Genome Biol 2000; 1(6):
REVIEWS3003. PMID: 11178272

37. Kemper B. Structural basis for the role in protein folding of conserved proline-rich regions in cyto-
chromes P450. Toxicol Appl Pharmacol 2004 Sep 15; 199(3):305–315. PMID: 15364546

38. Wester MR, Johnson EF, Marques-Soares C, Dijols S, Dansette PM, Mansuy D, et al. Structure of
mammalian cytochrome P450 2C5 complexed with diclofenac at 2.1 A resolution: evidence for an
induced fit model of substrate binding. Biochemistry 2003 Aug 12; 42(31):9335–9345. PMID: 12899620

39. You H, Gobert GN, Duke MG, ZhangW, Li Y, Jones MK, et al. The insulin receptor is a transmission
blocking veterinary vaccine target for zoonotic Schistosoma japonicum. Int J Parasitol 2012 Aug; 42
(9):801–807. doi: 10.1016/j.ijpara.2012.06.002 PMID: 22771861

40. Turman CM, Hatley JM, Ryder DJ, Ravindranath V, Strobel HW. Alternative splicing within the human
cytochrome P450 superfamily with an emphasis on the brain: The convolution continues. Expert Opin
Drug Metab Toxicol 2006 Jun; 2(3):399–418. PMID: 16863442

41. Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome
P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations
for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004 Jan; 14(1):1–18.
PMID: 15128046

42. Pakharukova MY, Ershov NI, Vorontsova EV, Katokhin AV, Merkulova TI, Mordvinov VA. Cytochrome
P450 in fluke Opisthorchis felineus: identification and characterization. Mol Biochem Parasitol 2012
Feb; 181(2):190–194. doi: 10.1016/j.molbiopara.2011.11.005 PMID: 22115821

43. Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J. Structure and function of
cytochromes P450: a comparative analysis of three crystal structures. Structure 1995 Jan 15; 3(1):41–
62. PMID: 7743131

44. Hatae T, Hara S, Yokoyama C, Yabuki T, Inoue H, Ullrich V, et al. Site-directed mutagenesis of human
prostacyclin synthase: Alteration of Cys441 of the Cys-pocket, and Glu347 and Arg350 of the EXXR
motif. FEBS Lett 1996 Jul 8; 389(3):268–272. PMID: 8766713

45. Rupasinghe S, Schuler MA, Kagawa N, Yuan H, Lei L, Zhao B, et al. The cytochrome P450 gene family
CYP157 does not contain EXXR in the K-helix reducing the absolute conserved P450 residues to a sin-
gle cysteine. FEBS Lett 2006 Nov 27; 580(27):6338–6342. PMID: 17092500

46. Girardini JE, Khayath N, Amirante A, Dissous C, Serra E. Schistosomamansoni: ferredoxin-NADP(H)
oxidoreductase and the metabolism of reactive oxygen species. Exp Parasitol 2005 Jun; 110(2):157–
161. PMID: 15888298

47. Girardini JE, Dissous C, Serra E. Schistosomamansoni ferredoxin NADP(H) oxidoreductase and its
role in detoxification. Mol Biochem Parasitol 2002 Sep-Oct; 124(1–2):37–45. PMID: 12387848

48. Abdel Baset H, O'Neill GP, Ford-Hutchinson AW. Characterization of arachidonic-acid-metabolizing
enzymes in adult Schistisomamansoni. Mol Biochem Parasitol 1995 Jul; 73(1–2):31–41. PMID:
8577345

49. Angeli V, Faveeuw C, Roye O, Fontaine J, Teissier E, Capron A, et al. Role of the parasite-derived
prostaglandin D2 in the inhibition of epidermal Langerhans cell migration during schistosomiasis infec-
tion. J Exp Med 2001 May 21; 193(10):1135–1147. PMID: 11369785

50. Fusco AC, Salafsky B, Kevin MB. Schistosoma mansoni: eicosanoid production by cercariae. Exp
Parasitol 1985 Feb; 59(1):44–50. PMID: 3917929

51. Nevhutalu PA, Salafsky B, HaasW, Conway T. Schistosoma mansoni and Trichobilharzia ocellata:
comparison of secreted cercarial eicosanoids. J Parasitol 1993 Feb; 79(1):130–133. PMID: 8437054

52. Nirde P, De Reggi ML, Capron A. Fundamental aspects and potential roles of ecdysteroids in schisto-
somes an update overview. J Chem Ecol 1986 Aug; 12(8):1863–1884. doi: 10.1007/BF01022389
PMID: 24305901

53. Salafsky B, Fusco AC. Schistosomamansoni: a comparison of secreted vs nonsecreted eicosanoids in
developing schistosomulae and adults. Exp Parasitol 1987 Dec; 64(3):361–367. PMID: 2824233

54. Mebius MM, van Genderen PJ, Urbanus RT, Tielens AG, de Groot PG, van Hellemond JJ. Interference
with the host haemostatic system by schistosomes. PLoS Pathog 2013; 9(12):e1003781. doi: 10.1371/
journal.ppat.1003781 PMID: 24385897

55. Da'dara A, Skelly PJ. Manipulation of vascular function by blood flukes? Blood Rev 2011 Jul; 25
(4):175–179. doi: :10.1016/j.blre.2011.04.002 PMID: 21543145

Schistosomamansoni CYP3050A1

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004279 December 29, 2015 20 / 21

http://www.ncbi.nlm.nih.gov/pubmed/8845856
http://www.ncbi.nlm.nih.gov/pubmed/11178272
http://www.ncbi.nlm.nih.gov/pubmed/15364546
http://www.ncbi.nlm.nih.gov/pubmed/12899620
http://dx.doi.org/10.1016/j.ijpara.2012.06.002
http://www.ncbi.nlm.nih.gov/pubmed/22771861
http://www.ncbi.nlm.nih.gov/pubmed/16863442
http://www.ncbi.nlm.nih.gov/pubmed/15128046
http://dx.doi.org/10.1016/j.molbiopara.2011.11.005
http://www.ncbi.nlm.nih.gov/pubmed/22115821
http://www.ncbi.nlm.nih.gov/pubmed/7743131
http://www.ncbi.nlm.nih.gov/pubmed/8766713
http://www.ncbi.nlm.nih.gov/pubmed/17092500
http://www.ncbi.nlm.nih.gov/pubmed/15888298
http://www.ncbi.nlm.nih.gov/pubmed/12387848
http://www.ncbi.nlm.nih.gov/pubmed/8577345
http://www.ncbi.nlm.nih.gov/pubmed/11369785
http://www.ncbi.nlm.nih.gov/pubmed/3917929
http://www.ncbi.nlm.nih.gov/pubmed/8437054
http://dx.doi.org/10.1007/BF01022389
http://www.ncbi.nlm.nih.gov/pubmed/24305901
http://www.ncbi.nlm.nih.gov/pubmed/2824233
http://dx.doi.org/10.1371/journal.ppat.1003781
http://dx.doi.org/10.1371/journal.ppat.1003781
http://www.ncbi.nlm.nih.gov/pubmed/24385897
http://dx.doi.org/:10.1016/j.blre.2011.04.002
http://www.ncbi.nlm.nih.gov/pubmed/21543145


56. Silveira AM, Friche AA, Rumjanek FD. Transfer of [14C] cholesterol and its metabolites between adult
male and female worms of Schistosoma mansoni. Comp Biochem Physiol B 1986; 85(4):851–857.
PMID: 3816158

57. Briggs MH. Metabolism of steroid hormones by schistosomes. Biochim Biophys Acta 1972 Nov 30; 280
(3):481–485. PMID: 4643348

58. Correia da Costa JM, Vale N, Gouveia MJ, Botelho MC, Sripa B, Santos LL, et al. Schistosome and
liver fluke derived catechol-estrogens and helminth associated cancers. Front Genet 2014 Dec 23;
5:444. doi: 10.3389/fgene.2014.00444 PMID: 25566326

59. Romero R, Bueno D. Disto-proximal regional determination and intercalary regeneration in planarians,
revealed by retinoic acid induced disruption of regeneration. Int J Dev Biol 2001 Jun; 45(4):669–673.
PMID: 11461003

60. Napoli JL. Retinoic acid biosynthesis and metabolism. FASEB J 1996 Jul; 10(9):993–1001. PMID:
8801182

61. FreebernWJ, Osman A, Niles EG, Christen L, LoVerde PT. Identification of a cDNA encoding a retinoid
X receptor homologue from Schistosomamansoni. Evidence for a role in female-specific gene expres-
sion. J Biol Chem 1999 Feb 19; 274(8):4577–4585. PMID: 9988692

62. de Mendonca RL, Escriva H, Bouton D, Zelus D, Vanacker JM, Bonnelye E, et al. Structural and func-
tional divergence of a nuclear receptor of the RXR family from the trematode parasite Schistosoma
mansoni. Eur J Biochem 2000 Jun; 267(11):3208–3219. PMID: 10824105

63. Fantappie MR, FreebernWJ, Osman A, LaDuca J, Niles EG, LoVerde PT. Evaluation of Schistosoma
mansoni retinoid X receptor (SmRXR1 and SmRXR2) activity and tissue distribution. Mol Biochem
Parasitol 2001 Jun; 115(1):87–99. PMID: 11377743

64. Qiu C, Fu Z, Shi Y, Hong Y, Liu S, Lin J. A retinoid X receptor (RXR1) homolog from Schistosoma japo-
nicum: its ligand-binding domain may bind to 9-cis-retinoic acid. Mol Biochem Parasitol 2013 Mar; 188
(1):40–50. doi: 10.1016/j.molbiopara.2013.02.002 PMID: 23485353

65. Torpier G, Hirn M, Nirde P, De Reggi M, Capron A. Detection of ecdysteroids in the human trematode,
Schistosomamansoni. Parasitology 1982 Feb; 84(1):123–130. PMID: 7063249

66. Foster JM, Mercer JG, Rees HH. Analysis of ecdysteroids in the trematodes, Schistosomamansoni
and Fasciola hepatica. Trop Med Parasitol 1992 Dec; 43(4):239–244. PMID: 1293728

67. Nirde P, Torpier G, De Reggi ML, Capron A. Ecdysone and 20 hydroxyecdysone: new hormones for
the human parasite schistosoma mansoni. FEBS Lett 1983 Jan 24; 151(2):223–227. PMID: 6832354

68. Shiff CJ, Dossaji SF. Ecdysteroids as regulators of host and parasite interactions: a study of interrela-
tionships between Schistosoma mansoni and the host snail, Biomphalaria glabrata. Trop Med Parasitol
1991 Mar; 42(1):11–16. PMID: 2052849

69. DeMendonca RL, Bouton D, Bertin B, Escriva H, Noel C, Vanacker JM, et al. A functionally conserved
member of the FTZ-F1 nuclear receptor family from Schistosoma mansoni. Eur J Biochem 2002 Nov;
269(22):5700–5711. PMID: 12423370

70. WuW, Tak EY, LoVerde PT. Schistosoma mansoni: SmE78, a nuclear receptor orthologue of Drosoph-
ila ecdysone-induced protein 78. Exp Parasitol 2008 Jun; 119(2):313–318. doi: 10.1016/j.exppara.
2008.03.001 PMID: 18430421

71. Abdulla MH, Ruelas DS, Wolff B, Snedecor J, Lim KC, Xu F, et al. Drug discovery for schistosomiasis:
hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic
screening. PLoS Negl Trop Dis 2009 Jul 14; 3(7):e478. doi: 10.1371/journal.pntd.0000478 PMID:
19597541

72. Moore DV, Sandground JH. The relative egg producing capacity of Schistosoma mansoni and Schisto-
soma japonicum. Am J Trop Med Hyg 1956 Sep; 5(5):831–840. PMID: 13362750

73. Pellegrino J, Coelho PM. Schistosoma mansoni: wandering capacity of a worm couple. J Parasitol
1978 Feb; 64(1):181–182. PMID: 627964

74. Jurberg AD, Goncalves T, Costa TA, de Mattos AC, Pascarelli BM, de Manso PP, et al. The embryonic
development of Schistosoma mansoni eggs: proposal for a new staging system. Dev Genes Evol 2009
May; 219(5):219–234. doi: 10.1007/s00427-009-0285-9 PMID: 19415326

75. MathiesonW, Wilson RA. A comparative proteomic study of the undeveloped and developed Schisto-
soma mansoni egg and its contents: the miracidium, hatch fluid and secretions. Int J Parasitol 2010
Apr; 40(5):617–628. doi: 10.1016/j.ijpara.2009.10.014 PMID: 19917288

76. Ashton PD, Harrop R, Shah B, Wilson RA. The schistosome egg: development and secretions. Parasi-
tology 2001 Mar; 122(Pt 3):329–338. PMID: 11289069

Schistosomamansoni CYP3050A1

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004279 December 29, 2015 21 / 21

http://www.ncbi.nlm.nih.gov/pubmed/3816158
http://www.ncbi.nlm.nih.gov/pubmed/4643348
http://dx.doi.org/10.3389/fgene.2014.00444
http://www.ncbi.nlm.nih.gov/pubmed/25566326
http://www.ncbi.nlm.nih.gov/pubmed/11461003
http://www.ncbi.nlm.nih.gov/pubmed/8801182
http://www.ncbi.nlm.nih.gov/pubmed/9988692
http://www.ncbi.nlm.nih.gov/pubmed/10824105
http://www.ncbi.nlm.nih.gov/pubmed/11377743
http://dx.doi.org/10.1016/j.molbiopara.2013.02.002
http://www.ncbi.nlm.nih.gov/pubmed/23485353
http://www.ncbi.nlm.nih.gov/pubmed/7063249
http://www.ncbi.nlm.nih.gov/pubmed/1293728
http://www.ncbi.nlm.nih.gov/pubmed/6832354
http://www.ncbi.nlm.nih.gov/pubmed/2052849
http://www.ncbi.nlm.nih.gov/pubmed/12423370
http://dx.doi.org/10.1016/j.exppara.2008.03.001
http://dx.doi.org/10.1016/j.exppara.2008.03.001
http://www.ncbi.nlm.nih.gov/pubmed/18430421
http://dx.doi.org/10.1371/journal.pntd.0000478
http://www.ncbi.nlm.nih.gov/pubmed/19597541
http://www.ncbi.nlm.nih.gov/pubmed/13362750
http://www.ncbi.nlm.nih.gov/pubmed/627964
http://dx.doi.org/10.1007/s00427-009-0285-9
http://www.ncbi.nlm.nih.gov/pubmed/19415326
http://dx.doi.org/10.1016/j.ijpara.2009.10.014
http://www.ncbi.nlm.nih.gov/pubmed/19917288
http://www.ncbi.nlm.nih.gov/pubmed/11289069

