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Abstract
Conventional methods for sample size calculation for population-based longitudinal studies

tend to overestimate the statistical power by overlooking important determinants of the

required sample size, such as the measurement errors and unmeasured etiological determi-

nants, etc. In contrast, a simulation-based sample size calculation, if designed properly,

allows these determinants to be taken into account and offers flexibility in accommodating

complex study design features. The Canadian Longitudinal Study on Aging (CLSA) is a

Canada-wide, 20-year follow-up study of 30,000 people between the ages of 45 and 85

years, with in-depth information collected every 3 years. A simulation study, based on an ill-

ness-death model, was conducted to: (1) investigate the statistical power profile of the

CLSA to detect the effect of environmental and genetic risk factors, and their interaction on

age-related chronic diseases; and (2) explore the design alternatives and implementation

strategies for increasing the statistical power of population-based longitudinal studies in

general. The results showed that the statistical power to identify the effect of environmental

and genetic risk exposures, and their interaction on a disease was boosted when: (1) the

prevalence of the risk exposures increased; (2) the disease of interest is relatively common

in the population; and (3) risk exposures were measured accurately. In addition, the fre-

quency of data collection every three years in the CLSA led to a slightly lower statistical

power compared to the design assuming that participants underwent health monitoring con-

tinuously. The CLSA had sufficient power to detect a small (1<hazard ratio (HR)�1.5) or

moderate effect (1.5< HR�2.0) of the environmental risk exposure, as long as the risk expo-

sure and the disease of interest were not rare. It had enough power to detect a moderate or

large (2.0<HR�3.0) effect of the genetic risk exposure when the prevalence of the risk

exposure was not very low (�0.1) and the disease of interest was not rare (such as diabetes

PLOSONE | DOI:10.1371/journal.pone.0149940 February 22, 2016 1 / 20

OPEN ACCESS

Citation: Ma J, Thabane L, Beyene J, Raina P
(2016) Power Analysis for Population-Based
Longitudinal Studies Investigating Gene-Environment
Interactions in Chronic Diseases: A Simulation Study.
PLoS ONE 11(2): e0149940. doi:10.1371/journal.
pone.0149940

Editor: Jake Olivier, University of New South Wales,
AUSTRALIA

Received: January 12, 2015

Accepted: February 8, 2016

Published: February 22, 2016

Copyright: © 2016 Ma et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This study was supported in part by funds
from the Canadian Longitudinal Study on Aging
(which is funded in part by the Canadian Institutes of
Health Research (CIHR)), Canadian Network and
Centre for Trials Internationally (CANNeCTIN)
program, and the Drug Safety and Effectiveness
Cross-Disciplinary Training (DSECT) Program in the
form of studentship and training awards for the first
author.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0149940&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


and dementia). The CLSA had enough power to detect a large effect of the gene-environ-

ment interaction only when both risk exposures had relatively high prevalence (0.2) and the

disease of interest was very common (such as diabetes). The minimum detectable hazard

ratios (MDHR) of the CLSA for the environmental and genetic risk exposures obtained from

this simulation study were larger than those calculated according to the conventional sam-

ple size calculation method. For example, the MDHR for the environmental risk exposure

was 1.15 according to the conventional method if the prevalence of the risk exposure was

0.1 and the disease of interest was dementia. In contrast, the MDHR was 1.61 if the same

exposure was measured every 3 years with a misclassification rate of 0.1 according to this

simulation study. With a given sample size, higher statistical power could be achieved by

increasing the measuring frequency in participants with high risk of declining health status

or changing risk exposures, and by increasing measurement accuracy of diseases and risk

exposures. A properly designed simulation-based sample size calculation is superior to

conventional methods when rigorous sample size calculation is necessary.

Introduction
Biological and technological advances over the past decade, such as human genome sequenc-
ing, have increased researchers’ ability to study aging in all its complexity. The importance of
studying gene-environment interactions in the context of aging related chronic diseases has
been emphasized since they typically occurred as a result of the interaction between an individ-
ual’s genetic makeup and detrimental environmental circumstances [1]. To detect the effect of
a genetic factor or a gene-environment interaction with a sufficient statistical power, the
required sample size of a case-control study is expected to be extraordinary large and up to sev-
eral hundred thousand [2]. Therefore, many genetic association studies were susceptible to
lack of sufficient statistical power [3]. To date, very few longitudinal studies on aging have col-
lected biomarker, genetic or epigenetic data to elucidate the process of aging and how biological
processes interact with the physical and psychosocial environment to produce deleterious
health outcomes.

Unlike early association studies in which individuals were not tracked over time and all
measurements on each participant were made at a given point in time, a longitudinal study,
which involves several observations of the same subjects over a period of time, enables
researchers to separate the changes over time within subjects (i.e. aging effects) from differ-
ences between subjects at baseline (i.e. cohort effects). It also allows researchers to create the
most comprehensive and insightful framework for understanding the mechanisms by which
genome function can be altered during the process of aging [4, 5]. Moreover, genotyping costs
have decreased dramatically over the last decade—making the use of the longitudinal design
feasible to investigate the gene-environment interactions in diseases. However, longitudinal
studies are time consuming, costly, and subject to high attrition rates. For longitudinal studies
of gene-environment interactions in diseases, the sample size remains limited by the cost of
proper phenotyping [6]. Therefore, rigorous sample size or statistical power estimation is cru-
cial to ensure that such a study is scientifically beneficial and cost-effective.

The present simulation study is motivated by the design of the Canadian Longitudinal
Study on Aging (CLSA), which is a national multi-disciplinary study investigating the com-
plexities of the aging process, and seeking to improve the understanding of the transitions and
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trajectories of healthy aging [7]. The CLSA consists of a national stratified random sample of
50,000 Canadian women and men between the ages of 45 and 85 years at the time of recruit-
ment (baseline). Participants will undergo repeated waves of data collection every three years
and will be followed for at least twenty years, or until death. All participants will be asked to
provide a common set of information on demographic, social, physical/clinical, psychological,
economic, and health service utilization aspects relevant to health and aging. Of the 50,000 par-
ticipants, 30,000 (the CLSA comprehensive cohort) will also be asked to provide additional in-
depth information through physical examinations and biological specimen collection. The
choice of data collection frequency, i.e. every three years, balances the need to have a short
enough interval to capture important changes and map trajectories with the practical consider-
ation of the time required to complete a wave of data collection. The inclusion of study partici-
pants as young as 45 years of age at baseline is motivated by the desire to capture mid-life
experiences prospectively, since important changes known to influence outcomes later in life
occur during this period. The lower age limit will also permit inclusion of individuals who are
part of the baby boom cohort (i.e. those born between 1946 and 1964), who were 47 to 65 years
of age in 2011. The upper limit includes individuals entering their senior years who are making
the transition into retirement, who are already retired, and who have already reached old age.
In the CLSA comprehensive cohort, self-reported diagnoses of chronic conditions are supple-
mented with a disease-specific questionnaire and physical exam.

Determinants of the required sample size for a longitudinal study include: (1) study objec-
tives (to provide reliable sample size calculation, an appropriate statistical test for the hypothe-
ses of interest, which should be established to reflect the study objectives, is necessarily derived
under the study design); (2) type of endpoints/outcomes (continuous, binary, categorical, or
survival); (3) variation of the study population; (4) type I error (probability of rejecting the null
hypothesis when it is true) and type II error (probability of not rejecting the null hypothesis
when it is false); (5) minimum clinically important effect size; (6) measurement errors in out-
comes and risk exposures; (7) length of follow-up; (8) time and frequency of repeated mea-
sures; (9) correlation between repeated measures on the same subject; (10) attrition due to
mortality and loss to follow-up; (11) sampling strategy; and (12) unmeasured etiological deter-
minants, etc. To estimate the required sample size or statistical power of a population-based
longitudinal study with time to a particular disease as the outcome, such as the CLSA, conven-
tional sample size calculation methods using formulae [8, 9, 10] or software packages (such as
STATA, SAS, and PASS) are available. However, these methods tend to overestimate the statis-
tical power by overlooking some of the above determinants of the required sample size, espe-
cially the measurement errors, unmeasured etiological determinants, and competing events
that can impede the occurrence of the event of interest. In contrast, a simulation-based sample
size calculation, if designed properly, allows the above determinants of the required sample size
to be taken into account simultaneously and offers flexibility in accommodating complex study
design features and incorporating complicated statistical model which matches the underlying
data.

The objectives of this simulation study are to: (1) investigate the statistical power profile of
the CLSA to detect the effect of environmental and genetic risk factor, and their interaction on
age-related chronic diseases, with the unmeasured etiological determinant, delayed entry into
the study, errors in measuring risk exposures, frequency and time of the repeated measures,
and the fact that the risk of developing an age-related chronic disease increases over time being
taken into account; and (2) explore the design alternatives and implementation strategies for
increasing the statistical power of population-based longitudinal studies in general; and (3)
provide a practical example on how to conduct sample size and statistical power calculation
using a simulation study.

Statistical Power of Population-Based Cohort Studies
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Materials and Methods
When participants of the CLSA enter into the study, they either sustain the age-related disease
of interest or are free of that disease. During the course of the study, participants may die before
ever developing that disease, develop the disease and then die, live with or without the disease
until the end of the study. Since most age-related chronic diseases are not curable, we assume
that participants will live with the disease until the end of their lives. To mimic the evolution of
the CLSA cohort overtime, an irreversible illness-death model [11] was adopted as both the
simulation and analytical models in this simulation study. Compared to other survival analysis
models focusing on the transition from healthy to diseased stage only, the illness-death model
allows the transition from healthy to dead stage be taken into account as the competing risk for
the transition from healthy to diseased stage. In this section, we presented in detail the illness-
death model, design of the simulation study, and how the increasing hazard of developing an
age-related disease over time and delayed entry into the study (i.e. participants entered into the
study at different ages) were incorporated into the simulation study.

Irreversible illness-death model
The irreversible illness-death model [11] is widely used in medical literature to describe the
progression of incurable diseases over time between three states: “healthy”, “diseased”, and
“dead” (absorbing state). In this paper, the research interest lies in the transition from “healthy”
to “diseased” while the transition from “healthy” to “dead” is considered as a competing risk.

Let 1, 2, and 3 denote “healthy”, “diseased”, and “dead” respectively, t denote the time since
entering into a state, and Z(t) denote the state at time t for a subject. The transition intensity
matrix is given by

QðtjXÞ ¼
�q12ðtjXÞ � q13ðtjXÞ q12ðtjXÞ q13ðtjXÞ

0 �q23ðtjXÞ q23ðtjXÞ
0 0 0

0
B@

1
CA; ð1Þ

where

qrsðtjXÞ ¼ lim
Dt!0

PðZðt þ DtÞ ¼ sjZðtÞ ¼ r;XÞ=Dt ð2Þ

is the intensity of a transition from state r to state s, for r, s 2 {1, 2, 3} and s 6¼ r, and X repre-
sents a set of individual-level explanatory variables. Given time interval (t1, t2], the transition
probability matrix is

Pðt1; t2jXÞ ¼
p11ðt1; t2jXÞ p12ðt1; t2jXÞ 1� p11ðt1; t2jXÞ � p12ðt1; t2jXÞ

0 p22ðt1; t2jXÞ 1� p22ðt1; t2jXÞ
0 0 1

0
B@

1
CA ð3Þ

where

prsðt1; t2jXÞ ¼ PrðZðt2Þ ¼ sjZðt1Þ ¼ r;XÞ ð4Þ
is the transition probability from state r to state s, and

p11ðt1; t2jXÞ ¼ expð�Q12ðt1; t2jXÞ � Q13ðt1; t2jXÞÞ ð5Þ

p22ðt1; t2jXÞ ¼ expð�Q23ðt1; t2jXÞÞ ð6Þ
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p12ðt1; t2jXÞ ¼
R t2
t1
p11ðt1; tjXÞq12ðtjXÞp22ðt; t2jXÞdt: ð7Þ

For 1�r�s�3, the cumulative hazard function for transition from state r to state s is given
by

Qrsðt1; t2jXÞ ¼
R t2
t1
qrsðtjXÞdt: ð8Þ

Weibull distribution with left truncation
The risk of developing an age-related chronic disease for a subject increases over time, which
should be captured in the statistical analysis especially when the follow-up time is long. There-
fore, the transition time between two given states is assumed to follow a Weibull distribution
with shape parameter larger than one in this simulation study. In addition, the time when a
subject initially comes under observation in a population-based cohort study usually does not
coincide with the time when the subject becomes at risk of a disease, which implies the actual
time a participant enters the study (baseline) may not be an appropriate time origin in survival
analysis. Alternatively, a specific age, such as the lower bound 45 years in the CLSA, may be a
reasonable choice of the time origin since the aging process, as conventionally believed, begins
approximately at 45 years old. In this case, the survival time for a subject is defined as the
elapsed time from 45 years old until the event of interest occurs or until the subject leaves the
study, whichever occurs first; while the delayed entry into the study (entering the study after 45
years old) is considered as left-truncation occurring at the age of entry into the study [12].

Suppose a random variableW~Weibull(λ, ρ), where λ and ρ are the scale and shape parame-
ters respectively. Its probability density function fW(�) and cumulative distribution function
FW(�) are given by

fWðwÞ ¼ r=lðw=lÞr�1expð�ðw=lÞrÞ; ð9Þ

FWðwÞ ¼ 1� expð�ðw=lÞrÞ: ð10Þ

Let T be a random variable obtained by left truncatingW at 0�l<1. Its probability density
function fT(�) and cumulative distribution function FT(�) are given by

fTðtÞ ¼
fWðtÞ=ð1� FWðlÞÞ if t � l

0 otherwise

(
ð11Þ

FTðtÞ ¼ ðFWðtÞ � FWðlÞÞ=ð1� FWðlÞÞ: ð12Þ

BothW and T have the same transition intensity:

qðw; l; rÞ ¼ qðt; l; r; lÞ ¼ r=lðw=lÞr�1
: ð13Þ

The survival time being left truncated at l can then be simulated from t ¼ F�1
T ðmÞ, where μ is

randomly sampled from a uniform(0,1) distribution.

Simulation and analytical models
In this paper, both the simulation and analytical models were based on an irreversible illness-
death model and implemented in the combination of SAS 9.2 (Cary, NC) and R 2.11 to achieve
high computational efficiency.

Statistical Power of Population-Based Cohort Studies
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Let lrsi and r
rs
i be the Weibull scale and shape parameter for the transition from state r to

state s for subject i with age of li + 45 at baseline, the transition time from “healthy” to “dis-
eased” was generated by:

t12i ¼ l12i ð�lnð1� mið1� FWðli; l12i ; r12ÞÞ þ FWðli; l12i ; r12ÞÞÞ1=r12 ; ð14Þ

where

l12i ¼ l12i ð0ÞexpðbE
12x

E
i þ bG

12x
G
i þ bG�E

12 xEi x
G
i þ fiÞ; ð15Þ

mi � Uniformð0; 1Þ; ð16Þ

fi � Normalð0; 0:5852Þ; ð17Þ

l12

i ð0Þ is the baseline scale parameter, which was carefully chosen to ensure the expected

value of l12i is equal to the Weibull scale parameter estimated according to the incidence of the
disease of interest for the Canadian population. xGi and x

E
i are genetic and environmental risk

factors respectively. bG
12, b

E
12 and b

G�E
12 are the natural logarithm of hazard ratios for genetic risk

factor, environmental risk factor and their interaction respectively. The transition time from
“healthy” to “dead” was generated by:

t13i ¼ l13i ð�lnð1� mið1� FWðli; l13i ; r13ÞÞ þ FWðli; l13i ; r13ÞÞÞ1=r13 ; ð18Þ

where μi~Uniform(0, 1), and l13i is the scale parameter estimated according to the mortality of
the Canadian population. The time from entering into the study to loss to follow-up tLTFUi for
subject i was generated from tLTFUi � Exponentialð0:005Þ.

When analyzing the simulated data, the scale parameter for transition from “healthy” to
“diseased” was assumed to be

l12i ¼ l12i ð0ÞexpðbE
12x

E
i þ bG

12x
G
i þ bG�E

12 xEi x
G
i Þ: ð19Þ

The frailty term fi, which was incorporated in Eq (14) for simulating data but omitted in Eq
(19) for analyzing data, represents the unmeasured etiological determinants. For subject i, if
disease is observed at ti, the contribution of this individual to the likelihood is

fTðtiÞ ¼ fWðtiÞ=ð1� FWðliÞÞ: ð20Þ

If death or loss to follow-up is detected at ti, the data of this subject is considered as right
censored (denoted by C) at ti. The contribution of this individual to the likelihood is

1� FTðtiÞ ¼ ðFWðtiÞ � FWðliÞÞ=ð1� FWðliÞÞ: ð21Þ

The likelihood to be maximized for all subjects is

L ¼
X30000

i¼1
logððfWðtiÞ=ð1� FWðliÞÞÞ1�CððFWðtiÞ � FWðliÞÞ=ð1� FWðliÞÞÞCÞ: ð22Þ

Choice of simulation parameters
Simulation parameters were carefully chosen to mimic the evolution of the CLSA comprehen-
sive cohort. An instantaneous loss to follow-up rate of 0.005 per year was assumed (according to
the information provided by Statistics Canada for the National Population Health Survey
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(NPHS) for the period 1994–1995 to 2000–2001). Consequently, 8% of participants will be lost
to follow-up by the end of the CLSA. To incorporate this in the simulation, we assumed the
time to loss to follow-up followed an exponential distribution with a rate parameter of 0.005.
Both environmental and genetic risk factors were assumed to be dichotomous, which led to a
more conservative statistical power in contrast to risk factors which were assumed to be
continuous.

Choices of the prevalence of both risk factors were 0.01, 0.1, and 0.2 to represent very rare,
common, and very common risk exposures respectively. To keep the simulation study simple
yet representative, the statistical power profile of the CLSA for detecting three diseases was
investigated. The diseases investigated were diabetes, dementia, and Parkinson’s disease, which
represented very common, relatively common, and vary rare diseases in the study population
respectively. These three diseases were considered in this simulation study as diseases with rela-
tively quick, relatively slow, and very slow progression from “healthy” to “diseased” respectively.
Therefore, 9 simulation scenarios were explored according to different combinations of the
prevalence of risk exposure and the speed of progression from “healthy” to “diseased” state. We
assumed the development of one disease as independent from the development of other diseases
for each subject. Choices of the prevalence of diseases were 0.02 for dementia and Parkinson’s
disease, and 0.14 for diabetes. Assuming 30,000 subjects were randomly sampled from the
Canadian population between the ages of 45 to 85 years, the expected number of prevalent cases
at baseline, and the expected number of deaths and incident cases at each year during the study
period could be estimated based on the prevalence, incidence, and mortality of these diseases
among Canadian adults. The Weibull scale and shape parameters for transitions between states
were estimated by fitting a Weibull regression without adding covariates (R code was provided
in S1 Text). For transition from “healthy” to “diseased”, the Weibull scale and shape parameters
were 65 and 2.0 for diabetes, 48 and 5.6 for dementia, 130 and 3.3 for Parkinson’s disease. For
transition from “healthy” to “dead”, the Weibull scale and shape parameters were fixed at 42
and 4.3. A log-normal frailty, modelled through a random effect with variance reflecting a
10-fold ratio in baseline risk between individuals on 97.5 and 2.5 population percentile, was
assumed when simulating the data to represent the unmeasured etiological determinants.

Misclassification or measurement error in risk factors is typically thought to be non-differ-
ential in cohort studies since the exposure assessment is independent of the disease diagnosis,
i.e. the probability of misclassification is the same among diseased and non-diseased subjects
[13]. In this simulation study, choices of non-differential misclassification rate for environmen-
tal and genetic risk factors were 0.1 and 0.01 respectively. Repeated measures were assumed to
be taken at baseline and every 3 years thereafter up to 21-year follow-up. When investigating
the power profile for detecting the main effect of one risk exposure, the hazard ratios for
another risk exposure and gene-environment interaction were set to 1. Similarly when investi-
gating the power profile for detecting gene-environment interaction, hazard ratios for the main
effects of both risk exposures were set to 1.5.

To achieve a reasonable degree of precision for estimating the statistical power, 1000 data-
sets for each scenario were simulated. Within each dataset, thirty thousand subjects were gen-
erated to represent the sample size of the CLSA comprehensive cohort. In this study, different
significance levels were used for testing the null hypothesis for the environmental risk expo-
sure, genetic risk exposure, and their interaction. For the environmental risk exposure, conven-
tional significance level of 0.05 was used. For the genetic risk exposure and gene-environment
interaction, both 10−4 and 5×10−8 were used, with 10−4 being considered as a threshold under
the circumstance where the genetic exposure is defined on the basis of a variant lying in a
vaguely defined candidate gene based on biological plausibility or linkage-based genomic posi-
tioning [14] and 5×10−8 being considered as an acceptable genome-wide significance threshold
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[15]. The statistical power was estimated as the proportion of simulated datasets in which the
null hypothesis of no exposure effect was rejected at the above significant levels. The minimum
detectable hazard ratio (MDHR) was defined as the smallest hazard ratio that could be detected
with a sample size of 30,000 and power of 80% at the above level of statistical significance. It
was categorized into four categories: small (1.0<MDHR�1.5); moderate (1.5<MDHR�2.0);
large (2.0<MDHR�3.0); and substantial (MDHR>3.0). The design of the simulation study
was illustrated in detail in S2 Text.

Results

The number of prevalent and incident cases
Among the 30,000 subjects, the estimated number of subjects with diabetes, dementia and Par-
kinson’s disease at baseline were approximately 4000, 600 and 500 respectively. The total num-
ber of incident cases from baseline increased substantially for both diabetes and dementia over
the follow-up period. After 21 years of follow-up, the total number of incident cases was
approximately 6100 for diabetes and 4400 for dementia. In contrast, the total number of inci-
dent cases for Parkinson’s disease increased slowly and the total number of incident cases was
approximately 420 after 21 years of follow-up. The estimated total number of incident cases
over the follow-up period for each disease was presented in Fig 1.

Statistical power profile of the CLSA
Statistical power profiles of the CLSA for assessing the association between environmental risk
exposures and diseases at the significance level of 0.05 were presented in Fig 2. Among the 9
simulation scenarios, the highest statistical power was achieved to identify the association
between a risk factor with prevalence of 0.2 and diabetes (A.3 in Fig 2). In this scenario, the
power reached above 99% to detect a hazard ratio of 1.3 even when the risk exposure was mea-
sured with a misclassification rate of 0.1. In contrast, the smallest statistical power was achieved
to identify the association between a risk factor with prevalence of 0.01 and the Parkinson’s dis-
ease (C.1 in Fig 2). In this scenario, the power was 50% to detect a hazard ratio of 3.0 even
when the risk exposure was measured precisely (i.e. misclassification rate = 0).

The statistical power profiles for assessing the association between genetic risk exposures
and diseases at the significance levels of 10−4 and 5×10−8 were presented in Figs 3 and 4 respec-
tively. Similarly, the highest statistical power was achieved to identify the association between a
risk factor with prevalence of 0.2 and diabetes (A.3 in Fig 3 and A.3 in Fig 4). In this scenario,
the power reached above 99% to detect hazard ratios of 1.4 and 2.1 at the significance levels of
10−4 and 5×10−8 respectively when the risk exposure was measured with a misclassification
rate of 0.01. The smallest statistical power was achieved to detect the association between a risk
factor with prevalence of 0.01 and Parkinson’s disease (C.1 in Fig 3 and C.1 in Fig 4). In this
scenario, the power was<20% to detect a hazard ratio of 3.0 at either significance level even
when the risk exposure was measured accurately.

The statistical power profiles of the CLSA for assessing the association between gene-envi-
ronment interactions and diseases at significance levels of 10−4 and 5×10−8 were presented in
Figs 5 and 6 respectively. If the environmental and genetic risk exposures were measured with
misclassification rates of 0.1 and 0.01 respectively, the statistical power was less than 80% to
detect a hazard ratio of 3.0 at significance levels of 10−4 and 5×10−8 even when both environ-
mental and genetic risk exposures had high prevalence (0.2) and the disease of interest was dia-
betes, a very common disease with fast progression from “healthy” to “diseased” state (A.3 in
Fig 5 and A.3 in Fig 6).

Statistical Power of Population-Based Cohort Studies
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The above power profiles also showed that the statistical power to identify the effect of envi-
ronmental and genetic risk exposures, and their interaction on a disease was boosted when: (1)
the prevalence of the risk exposures increased; (2) the disease of interest is common in the pop-
ulation, i.e. the progression from “healthy” to “diseased” was fast; (3) risk exposures were mea-
sured accurately (i.e. misclassification rate = 0). In addition, the frequency of data collection
every three years led to a slightly lower statistical power compared to the design with assuming
that participants underwent health monitoring continuously.

Fig 1. Total Number of Incident Cases in the Follow-up Period. Square, circle and triangle represent the total number of incident cases for Parkinson
disease, dementia, and diabetes respectively.

doi:10.1371/journal.pone.0149940.g001
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Fig 2. Power Profile at Significance Level of 0.05 for Environmental Risk Exposure. “A”, “B” and “C” represent diabetes, dementia and Parkinson’s
disease respectively. “1”, “2” and “3” represent rare (prevalence = 0.01), common (prevalence = 0.1), and very common (prevalence = 0.2) environmental risk
exposures respectively. The solid, dashed and dotted lines represent the statistical power profile of the study assuming subjects undergo health monitoring
continuously, subjects undergo repeated measures every three years, and subjects undergo repeated measures every three years and the environmental
risk exposure is measured with a misclassification rate of 0.1 respectively.

doi:10.1371/journal.pone.0149940.g002

Statistical Power of Population-Based Cohort Studies

PLOS ONE | DOI:10.1371/journal.pone.0149940 February 22, 2016 10 / 20



Fig 3. Power Profile at Significance Level of 0.0001 for Genetic Risk Exposure. “A”, “B” and “C” represent diabetes, dementia and Parkinson’s disease
respectively. “1”, “2” and “3” represent rare (prevalence = 0.01), common (prevalence = 0.1), and very common (prevalence = 0.2) genetic risk factors
respectively. The solid, dashed and dotted lines represent the statistical power profile of the study assuming subjects undergo health monitoring
continuously, subjects undergo repeated measures every three years, and subjects undergo repeated measures every three years and the genetic risk
exposure is measured with a misclassification rate of 0.1 respectively.

doi:10.1371/journal.pone.0149940.g003
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Fig 4. Power Profile at Significance Level of 5×10−8 for Genetic Risk Exposure. “A”, “B” and “C” represent diabetes, dementia and Parkinson’s disease
respectively. “1”, “2” and “3” represent rare (prevalence = 0.01), common (prevalence = 0.1), and very common (prevalence = 0.2) genetic risk factors
respectively. The solid, dashed and dotted lines represent the statistical power profile of the study assuming subjects undergo health monitoring
continuously, subjects undergo repeated measures every three years, and subjects undergo repeated measures every three years and the genetic risk
exposure is measured with a misclassification rate of 0.1 respectively.

doi:10.1371/journal.pone.0149940.g004
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Fig 5. Power Profile at Significance Level of 0.0001 for Gene-Environment Interaction. “A”, “B” and “C” represent diabetes, dementia and Parkinson’s
disease respectively. “1”, “2” and “3” represent that both environmental and genetic risk factors are rare (prevalence = 0.01), common (prevalence = 0.1), and
very common (prevalence = 0.2) respectively. The solid, dashed and dotted lines represent the statistical power profile of the study assuming subjects
undergo health monitoring continuously, subjects undergo repeated measures every three years, and subjects undergo repeated measures every three
years and the both environmental and genetic risk exposures are subject to measurement error (0.1 for environmental risk exposure and 0.01 for genetic risk
exposure) respectively.

doi:10.1371/journal.pone.0149940.g005

Statistical Power of Population-Based Cohort Studies

PLOS ONE | DOI:10.1371/journal.pone.0149940 February 22, 2016 13 / 20



Fig 6. Power Profile at Significance Level of 5×10−8 for Gene-Environment Interaction. “A”, “B” and “C” represent diabetes, dementia and Parkinson’s
disease respectively. “1”, “2” and “3” represent that both environmental and genetic risk factors are rare (prevalence = 0.01), common (prevalence = 0.1), and
very common (prevalence = 0.2) respectively. The solid, dashed and dotted lines represent the statistical power profile of the study assuming subjects
undergo health monitoring continuously, subjects undergo repeated measures every three years, and subjects undergo repeated measures every three
years and the both environmental and genetic risk exposures are subject to measurement error (0.1 for environmental risk exposure and 0.01 for genetic risk
exposure) respectively.

doi:10.1371/journal.pone.0149940.g006
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Minimum detectable hazard ratio
The MDHR for the environmental risk exposures were presented in Table 1. For environmen-
tal risk exposures with a high prevalence (0.2), the CLSA had sufficient power to detect small
hazard ratios (HR) (i.e. 1.0<MDHR�1.5) even when the risk exposure was measured with a
misclassification rate of 0.1 for any of the three diseases investigated in this simulation study,
no matter the disease was common or rare. For risk exposures with a prevalence of 0.1, the
CLSA had sufficient power to detect small, moderate HR (1.5<MDHR�2.0) and large HR
(2.0<MDHR�3.0) if the disease of interest was diabetes, dementia, and Parkinson’s disease
respectively when the risk exposure was measured with a misclassification rate of 0.1. For risk
exposures with a very low prevalence (0.01), the CLSA had no enough power to detect even a
large HR if the risk exposure was measured with a misclassification rate of 0.1.

The MDHR for genetic risk exposures were presented in Table 2. At the significance level of
10−4, the CLSA had sufficient power to detect small HR for diabetes and dementia but a large
HR for Parkinson’s disease if the prevalence of the risk exposure was 0.2, and to detect a mod-
erate HR for diabetes and dementia if prevalence of the risk exposure was 0.1, provided that the
risk exposure was subject to measurement error (misclassification rate = 0.01). When the prev-
alence of the risk exposure was 0.01, the CLSA had sufficient power to detect moderate HR for
diabetes only if the risk exposure was measured accurately. At the significance level of 5×10−8,
the CLSA had sufficient power to detect moderate and large HR for diabetes and dementia
only if the risk exposure was measured with a misclassification rate of 0.01. When the preva-
lence of the risk exposure was 0.1, the CLSA had sufficient power to detect moderate HR for
diabetes and large HR for dementia if the risk exposure was measured accurately. When the
prevalence of the risk exposure was 0.01, the CLSA did not have sufficient power to detect even
a large HR for any diseases.

Table 1. Minimum detectable hazard ratio for environmental risk exposure.

Characteristic of the risk exposure Frequency of outcome measurement Minimum detectable hazard ratio (α = 0.05)* Disease
of interest

Prevalence Misclassification rate Diabetes Dementia Parkinson’s disease

0.01 0 Continuous 1.57 2.12 >3.00

1.43& 1.53& 3.90&

0 Every 3 years 1.61 2.27 >3.00

0.1 Every 3 years >3.00 >3.00 >3.0

0.1 0 Continuous 1.21 1.27 1.72

1.13& 1.15& 1.57&

0 Every 3 years 1.22 1.29 1.74

0.1 Every 3 years 1.46 1.61 2.68

0.2 0 Continuous 1.13 1.21 1.53

1.08& 1.11& 1.41&

0 Every 3 years 1.14 1.23 1.56

0.1 Every 3 years 1.18 1.29 2.17

Note:

* Minimum detectable hazard ratio is defined as the smallest hazard ratio that can be detected with a statistical power of 80% at the significance level of

0.05.
& The minimum detectable hazard ratio is obtained from conventional method for sample size calculation based on the proportional-hazard model

proposed by Schoenfeld [Schoenfeld D. Sample-size formula for the proportional-hazards regression model. Biometrics 1983; 39: 499–503]

doi:10.1371/journal.pone.0149940.t001
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The MDHR for gene-environment interactions were presented in Table 3. At the signifi-
cance level of 10−4, the CLSA had sufficient power to detect moderate HR for diabetes, large
HR for dementia and Parkinson’s disease, only if both risk exposures had high prevalence (0.2)
and were measured accurately. At the significance level of 5×10−8, the CLSA had no sufficient
power to detect even a large HR, even when the prevalence of both risk exposures was 0.2 and
the disease of interest was very common, such as diabetes.

Comparison of Minimum Detectable Hazard Ratio from Simulation and
Conventional Method
The conventional method proposed by Schoenfeld [10] was commonly used in practice to cal-
culate the required sample size or statistical power of a longitudinal study with survival out-
come. However, this method assumed participants underwent health monitoring continuously
and ignored the frequency and time of repeated measures and the unmeasured etiological
determinants. The MDHR obtained using this method for the environmental and genetic risk
exposures were presented in Tables 1 and 2 respectively. The MDHR calculated according to
this method was smaller compared to that obtained from the simulation study under each sce-
nario investigated in the present study. For example, the MDHR for the environmental risk
exposure was 1.15 according to this conventional method when the prevalence of the environ-
mental risk exposure was 0.1 and the disease of interest was dementia. In contrast, the MDHR
for the same risk exposure and disease according to the present simulation study were 1.27
under the assumption that participants underwent health monitoring continuously, 1.29 under
the assumption that participants underwent repeated measures every three years, and 1.61
under the assumption that participants underwent repeated measures every three years and the
environmental risk exposure was subject to measurement error (misclassification rate = 0.1).

Table 2. Minimum detectable hazard ratio for genetic risk exposure.

Characteristic of the risk
exposure

Frequency of outcome
measurement

Minimum detectable hazard ratio (α =
10−4)* Disease of interest

Minimum detectable hazard ratio(α =
5×10−8)* Disease of interest

Prevalence Misclassification
rate

Diabetes Dementia Parkinson’s
disease

Diabetes Dementia Parkinson’s
disease

0.01 0 Continuous 1.95 >3.00 >3.00 >3.00 >3.00 >3.00

1.84& 2.05& 9.97& 2.24& 2.59& 21.76&

0 Every 3 years 2.00 >3.00 >3.00 >3.00 >3.00 >3.00

0.01 Every 3 years >3.00 >3.00 >3.00 >3.00 >3.00 >3.00

0.1 0 Continuous 1.46 1.55 2.31 1.58 1.98 >3.00

1.22& 1.27& 2.16& 1.31& 1.37& 2.77&

0 Every 3 years 1.50 1.61 2.39 1.75 2.10 >3.00

0.01 Every 3 years 1.62 1.71 >3.00 2.75 >3.0 >3.0

0.2 0 Continuous 1.24 1.39 2.08 1.34 1.69 2.59

1.16& 1.19& 1.79& 1.22& 1.27& 2.16&

0 Every 3 years 1.24 1.43 2.15 1.45 1.81 2.86

0.01 Every 3 years 1.25 1.48 2.34 1.73 2.28 >3.00

Note:

* Minimum detectable hazard ratio is defined as the smallest hazard ratio that can be detected with a statistical power of 80% at the significance levels of

10−4 and 5×10−8.
& The minimum detectable hazard ratio is obtained from conventional method for sample size calculation based on the proportional-hazard model

proposed by Schoenfeld [Schoenfeld D. Sample-size formula for the proportional-hazards regression model. Biometrics 1983; 39: 499–503]

doi:10.1371/journal.pone.0149940.t002
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Discussion
We found that the CLSA had enough power to detect the effect of any environmental risk fac-
tors and the effect of common genetic risk factors (prevalence�0.1) for all diseases of interest.
It was also capable of detecting the gene-environment interaction effect for diseases with fast or
relatively slow progression from “healthy” to “diseased” when prevalence of both risk factors
were high (�0.2). However, the CLSA did not have enough power to detect the effect of gene-
environment interaction for any disease of interest when the prevalence of the risk factors was
not high (�0.1).

We found the CLSA had sufficient power to detect a small or moderate effect of the environ-
mental risk exposure, as long as the risk exposure and the disease of interest were not rare. It
had enough power to detect a moderate or large effect of the genetic risk exposure when the
prevalence of the risk exposure was not very low (�0.1) and the disease of interest was not rare
(such as diabetes and dementia). The CLSA had enough power to detect a large effect of the
gene-environment interaction only when both risk exposures had relatively high prevalence
(0.2) and the disease of interest was very common (such as diabetes).

Our results also showed the design of the CLSA with repeated measures every three years
was a reasonable choice of frequency and time for data collection. This particular design allowed
for substantial cost reduction while maintaining similar MDHR and statistical power in com-
parison to the design with exact event time being observed. This is because the frequency of the
repeated measures, every three years, is considerably smaller than the mean sojourn in the
“healthy” and “diseased” states, which ensures the transition from “healthy” to “diseased” and
“diseased” to “dead” be observed with high probability. Enlightened by this finding, we believe,
though not demonstrated in this simulation study, that if risk factors are also time-dependent,
the frequency of repeated measures should be determined according to prior knowledge about
the trajectories of changes in both outcomes and risk factors to achieve a higher statistical power
with a fixed sample size. Additionally, recruiting a higher proportion of subjects who are
believed to be experiencing or going to experience major health changes, or measuring these

Table 3. Minimum detectable hazard ratio for gene-environment interaction.

Characteristic of risk exposures Frequency of outcome
measurement

Minimum detectable hazard ratio (α =
10−4)* Disease of interest

Minimum detectable hazard ratio(α =
5×10−8)* Disease of interest

Prevalence Misclassification
rate

Diabetes Dementia Parkinson’s
disease

Diabetes Dementia Parkinson’s
disease

0.01+ 0 Continuous >3.00 >3.00 >3.00 >3.00 >3.00 >3.00

0 Every 3 years >3.00 >3.00 >3.00 >3.00 >3.00 >3.00

0.1, 0.01# Every 3 years >3.00 >3.00 >3.00 >3.00 >3.00 >3.00

0.1+ 0 Continuous 1.85 >3.00 >3.00 >3.00 >3.00 >3.00

0 Every 3 years 2.00 >3.00 >3.00 >3.00 >3.00 >3.00

0.1, 0.01# Every 3 years >3.00 >3.00 >3.00 >3.00 >3.00 >3.00

0.2+ 0 Continuous 1.67 2.17 2.60 2.21 >3.00 >3.00

0 Every 3 years 1.68 2.19 2.62 2.79 >3.00 >3.00

0.1, 0.01# Every 3 years 3.00 >3.00 >3.00 >3.00 >3.00 >3.00

Note:

* Minimum detectable hazard ratio is defined as the smallest hazard ratio that can be detected with a statistical power of 80% at the significance levels of

10−4 and 5×10−8.
+ Both environmental and genetic risk factor have the same specified prevalence.
# Misclassification rate for environmental and genetic risk exposures are 0.1 and 0.01 respectively.

doi:10.1371/journal.pone.0149940.t003
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subjects more frequently may also be used as strategies for increasing the statistical power with
an overall fixed sample size. For example, if subjects within a given age range are believed to be
more likely to develop a disease of interest, including more subjects within that age range in the
study sample may help to increase the statistical power of the study.

We illustrated that the frequency and time of the CLSA may be a reasonable design choice,
however, it may not be optimal. Our results implied that slightly larger statistical power can be
achieved by increasing the frequency of the repeated measures. This is consistent with the find-
ings from the study by van den Hout et al [16], in which they illustrated that the length of fol-
low-up and sample size of a study were associated with the performance of the estimation of
life expectancies. Based on the simulation and analysis using a reversible illness-death model,
they concluded that it was not always necessary to have a long follow-up or a large sample size
and relatively short follow-up time could still be used if the time interval between measure-
ments was not too wide. For the reversible illness-death model, which is used to model the pro-
gression of reversible diseases, a large amount of events or transitions may be observed
through relatively small sample size but frequent measurement. This is due to the fact that a
subject may experience several transitions from “healthy” to “diseased” and “diseased” to
“healthy” during the follow-up period of the study. However, for the irreversible illness-death
model used in this simulation study, which is more appropriate to model the progression of
irreversible diseases, increasing the frequency of the measurements may only lead to a very
slight increase in the number of observed events and the statistical power. In fact, three factors
—the length of follow-up (i.e. the duration of the study), frequency of repeated measures, and
sample size, can be adjusted to an optimal level to achieve higher statistical power with lower
associated costs. Increasing frequency or duration may only increase power to an upper limit
that depends on the progression of diseases for the study population, whereas increasing sam-
ple size can raise power toward 1.0. In general, increasing the sample size leads to an increase
in the cost of recruitment; increasing the length of follow-up increases the risk of attrition and
the cost of tracking participants. When assessments are expensive, increasing the frequency of
repeated measures will, consequently, lead to increased expenses. Our further investigation will
involve optimal designs with costs being taken into account.

In this simulation study, we found that misclassification of the environmental and genetic
risk exposures substantially increased the MDHR and decreased the statistical power. This is
consistent with the finding from Garcia-Closas et al [17], that misclassification of environmen-
tal or genetic risk factors can substantially increase the sample size required to evaluate gene-
environment interaction in case-control studies. Therefore, improving the accuracy of mea-
surement for both genetic and environmental risk exposures is critical, especially for a valid
assessment of gene-environment interaction. Moreover, our results showed the effect of mis-
classification seemed not differential for diseases with slow or fast progression. This is because
we only considered the misclassification of risk factors while assuming an accurate diagnosis of
disease in this simulation study. Based on the results from this simulation study, we can reason-
ably infer that the misclassification in disease measurements will decrease the statistical power
and the impact of misclassification will be larger for diseases with slow progression from
“healthy” to “diseased” in comparison to those with fast progression.

We showed that the statistical power based on a proportional-hazards model substantially
overestimated the statistical power due to overlooking important determinants. This suggested
that a properly designed simulation-based sample size and statistical power estimation method
should be used when rigorous sample size calculation is necessary.

This simulation study was designed based on certain assumptions, such as constant loss to
follow-up rate over time, time-independent risk exposures, and accurate disease diagnosis.
However, enlightened by the design and results of this simulation study, researchers will have a
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good understanding of the trend of the statistical power when these assumptions do not hold.
To the best of our knowledge, this project is the first attempt to investigate the power profile of
a population-based longitudinal study through a simulation study. This research provided a
more realistic power profile by taking into account the measurement error, unmeasured etio-
logical determinants, and competing events that can impede the occurrence of the event of
interest, which are usually ignored by traditional sample size and statistical power calculation.

Conclusions
A properly designed simulation-based sample size calculation method should be adopted when
rigorous sample size calculation is necessary. Improving the design and implementation of a
longitudinal study can increase its statistical power for detecting the effect of environmental
and genetic risk exposures, and their interaction on chronic diseases. Moreover, the rationale
and design of this simulation can be used as a practical example for estimating the required
sample size for future longitudinal studies.
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