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Abstract

Local solid shape applies to the surface curvature of small surface patches—essentially regions of
approximately constant curvatures—of volumetric objects that are smooth volumetric regions in
Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference
is categorical. Although local solid shape has naturally been explored in haptics, results in vision are
not forthcoming. We describe a simple experiment in which observers judge shape quality and
magnitude of cinematographic presentations. Without prior training, observers readily use
continuous shape index and Casorati curvature scales with reasonable resolution.
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Introduction

We use solid shape to indicate volumetric shape (Koenderink, 1990), in contradistinction to
pictorial shape or pictorial relief (Hildebrand, 1893; Koenderink, van Doorn, & Kappers,
1992; Schlosberg, 1941). The key distinction is that pictorial relief has a distinguished
direction from which it is seen, referred to as depth (Koenderink, van Doorn, &
Wagemans, 2011), whereas solid shape can be seen from arbitrary directions. Relief is seen
in pictures, hence pictorial relief. The generic example in vision science is the circular disk
filled with a linear gradient of gray tone, which is often seen as a cup or cap (Metzger, 1975;
Wagemans, van Doorn, & Koenderink, 2010). Solid shape is experienced when one walks
around a sculpture or rotates a small object with the hands (Koenderink, 1990; Rogers,
1969). Solid shape is also experienced in cinematographic sequences.! In the latter case,
one does not actively change the viewing direction, but one is passively following the view
of the cinematographer. The result is the same to the extent that there is no singular depth
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direction. Because the cinematographer may restrict the available viewing directions, a
certain degree of—often intended—ambiguity remains.>

The Euclidean theory of local surface shape (see later) assumes that the three Cartesian
dimensions are mutually equivalent. This equivalence fails in pictorial space. As a
consequence, the theory of local space of pictorial relief is different from that in Euclidean
space. One consequence is that it makes little sense to use a continuous shape index scale for
pictorial relief. The obvious alternative is to use a categorical scale based on the signs of the
principal curvatures (in terms of the differential geometry of pictorial space!). Observers
casily use such a scale (Dovencioglu, Wijntjes, Ben-Shahar, & Doerschner, 2015;
Koenderink, van Doorn, & Wagemans, 2014). If one asks whether observers are able to
work with a continuous scale, one has to do experiments in Euclidean space. Here, we
report on such an attempt.

The formal theory of smooth shapes on a local scale is differential geometry (Hilbert &
Cohn-Vossen, 1932; Koenderink, 1990). “Local” means that one studies the lowest order
deviations from planarity, generically that is the second order, the so-called curvature of the
surface (Gauss, 1827). Thus, “local” is a technical, formal concept. It simply means that one
uses no derivatives of order higher than two in the differential geometry. For the case of
pictorial relief, the deviations are necessarily in the depth direction, whereas the structure of
the depth dimension differs qualitatively from those that span the picture plane. For the case
of solid shape, one naturally measures the deviation from the local tangent plane in the
direction of the local normal.® Here, all three dimensions are equivalent. This case has
been studied in haptics (Kappers, Koenderink, & Lichtenegger, 1994; Kappers,
Koenderink, & te Pas, 1994). The cases of pictorial relief and solid shape are categorically
distinct. In previous experiments, we have only regarded pictorial shape. In this experiment,
we regard solid shape in a controlled, cinematographic setting.

Formal Theory of Local Solid Shape

One can always establish a Cartesian coordinate system {x,y,z}, where the z-coordinate is in
the normal direction and the xy-coordinates are in the tangent plane, such that the normal
deviation from the tangent plane can be expressed as

1
26 ) =3 (kix* + koy?) + 0°[x, )]

such that k; > k,. The ky , are the so-called “principal curvatures’ of the surface at the origin
(Euler, 1767; Meusnier, 1776). The approximation ignores cubic and higher order terms. The
latter may actually become dominant at some distance from the origin, thus the description is
properly called ““local.” This is the meaning of “‘local” throughout this article.

For a sphere of radius R, one has ky ,=1/R. Thus, the curvatures are reciprocal radii and
are of dimension [length]~'. The ratio k,/k, measures the anisotropy of the curvature. When
one of the principal curvatures is zero, one has the case of a cylinder; when the curvatures are
in different senses (as indicated by sign?), one has a saddle surface. When both curvatures are
zero, one obtains the planar case, that is to say, the normal deviation is dominated by the
cubic terms. Of course, the planar case is singular, occurring with probability zero.” We will
ignore it in this study. Formally, the plane has no shape in this formalism, analogously to
white and black lacking a hue in the context of color.

Whereas the ratio of principal curvatures is a dimensionless number correlated with what
might be called the “quality” or “‘shape proper,” one also desires a measure of magnitude.
A convenient measure is the variance or standard deviation (properly defined) of the
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Figure 1. A symmetrical saddle at various Casorati curvatures. The leftmost instance has curvature zero,
thus is planar. For the planar case, the shape index is undefined; thus, this is not really a “saddle of zero
Casorati curvature,” it is a mere “flat”” One might as well say it to be a “cap of zero Casorati curvature!”
Thus, the planar case is not really a shape, just like “black” does not own a proper hue. In the real world
“nothing” is the same as “anything” if you allow infinite discriminatory power! In the same sense, flat also
means “no shape” as much as “any shape” (see also Koenderink et al., 2014).

normal deviation.® Both the quality and magnitude measures can be conveniently defined so
as to satisfy some a priori desirable constraints.

The magnitude should perhaps be defined such as to be 1/R for a sphere of radius R. The
standard deviation is indeed such a measure (Koenderink & van Doorn, 1992)

e AR
2

the so-called Casorati curvature (Casorati, 1970). It is a non-negative magnitude of
dimension [length]™" that equals 1/R for a sphere of radius R. See Figure 1. The definition
of the Casorati curvature as the standard deviation of the distances from the tangent plane is
novel and will not be found in textbooks of differential geometry. It seems a particularly apt
interpretation in the context of perception.

A quality measure is more involved. It should evidently be a dimensionless number.
However, the ratio has the drawback that it is invariant with respect to a simultaneous
sign change of both principal curvatures. Such an operation inverts the z-coordinate, thus
it transforms a form into its negative, related to the original like the mold to the cast. An
example is the inside and outside of an egg shell. Notice that the symmetrical saddle is
congruent to its own mold! Thus, it would be natural that it had measure zero (because
40 equals —0). Another useful observation is that the case of equal principal curvatures is
very special, and you cannot get any “rounder” than that. Thus, a quality measure should be
defined on a finite, symmetrical segment like [—a,+«] (with constant « > 0), where zero
corresponds to the symmetric saddle and the endpoints to the inside and outside of
spherical shells. An example of such a measure is (Koenderink & van Doorn, 1992)

§ = arctan ko + ke
- ky — ki

which denotes the shape index. It evidently varies on the segment [—n/2,4+1/2]. See Figure 2.
Now we can write

2, 2 S
z(x, y; C,S)=C<<x 42—y> sin s+ (x 2y) cos s)
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Figure 2. A cap, ridge, saddle, rut, and cup. The shape indices are, respectively, —n/2, —n/4, 0, +n/4, /2.
These have the same Casorati curvature. The colors are those of the hue scale used in this article. Notice
that complementary colors denote complementary—related as mold and cast—shapes. Thus, the cap fits the
cup, the ridge the rut, whereas the saddle fits itself. The scale is actually continuous, thus—for
example—there is a smooth range between cap and ridge. The symmetrical caps and cups are special,
technically known as “umbilical.” Likewise, the saddle shown here is special, the “symmetrical saddle” or
“minimal surface.” The ridge and ruts are mere transition points. However, when coarse graining, they also
subtend finite (though fuzzy) ranges.

which reveals the shape as a scaled mixture of a sphere with a symmetrical saddle. The
Casorati curvature yields the overall scaling factor, whereas the shape index determines the
mixing ratio.

The Basic Shape Categories

The categorically distinct shapes can be characterized as follows (Figure 2):

s> 4 m/4 concavities (“like the inside of egg shells™)
s=+4mn/4 concave cylinder (“‘like the inside of reeds’)
—n/4 < s <+ n/4 saddle shapes (“like a horse’s saddle”)
s=—m/4 convex cylinder (“like columns™)

s < —1/4 convexity (“like the outside of egg shells™)

Here, the quoted descriptions are from Alberti’s (1435/1972) taxonomy, except for the
saddles, which were not mentioned by Alberti.

The first taxonomy that includes saddles was due to Gauss (1827). For centuries neither
artists nor scientists noticed that Alberti’s taxonomy was incomplete. Yet, it is possible to
show that 57% of the points of a Gaussian random surface have a saddle shape (Koenderink
& van Doorn, 2003; Lillholm & Griffin, 2009). Alberti (1435) included the planar case (“‘like a
water surface”) in his taxonomy. Gauss was wise to ignore it as a singular case.

The Aim of the Current Research

The categorical scale is all one can use in cases where only the signs of the principal
curvatures are available. This frequently happens in vision, due to unknown
foreshortening effects. The full continuous scale is expected to become available only in
true cases of solid shape perception. We are interested to establish whether human
observers are able to use the shape index and Casorati curvature scales in the latter case
and whether the saddle region is in any way special. These questions have not been addressed
by previous research, as will be discussed next.
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Relations to Previous Work

An early study using the shape index scale is Van Damme and van de Grind (1993). These
authors used head movement induced motion parallax. Since the human visual system
appears to use only velocity, not acceleration (Koenderink & van Doorn, 1975), this
would yield an affine range scale (Koenderink & van Doorn, 1991). Observers were able to
use the categorical scale with moderate precision, responses being roughly independent of the
Casorati curvature.

Another early study is de Vries, Kappers, and Koenderink (1993). These authors used
binocular disparity to define reliefs. Observers used the categorical scale with moderate
precision. The precision increased with the Casorati curvature, but the means were
independent of it.

In a follow-up study (de Vries, Kappers, & Koenderink, 1994), it was shown that observers
readily tolerate different spatial attitudes (non-frontal presentation). There were strong
indications that thresholds and variances are high for saddle shapes. Cylindrical shapes
(either ruts or ridges) were detected most easily and precisely.

Phillips and Todd (1996) did local shape index estimates on various locations of random
Gaussian reliefs presented stercoscopically. They found evidence that precision increased
with larger field size. Please notice that the term /local as used by these authors is
categorically different from our use in this article! There was again evidence for highest
precision being obtained with cylindrical shapes. These authors presented computer
simulation results showing that cylindrical shapes are most abundant on random surfaces
(as proved formally by Koenderink & van Doorn, 2003).

Perotti, Todd, Lappin, and Phillips (1998) used motion parallax presentations. They
showed that observers readily used the shape index scale but did not seem to be able to
use the Casorati curvature scale. They used first-order flow perturbations, showing that
observers based their judgments on second-order spatial derivatives of flow patterns.

In a recent study, Dovencioglu et al. (2015) used the shape index to study shape from
specular flow. This work focused primarily on shape from specular flow, shape index being
used as a tool. Clearly, this study did not address the same issues about local solid shape as
our study does.

Notice that all these previous studies focused on other aspects of vision than shape index
or Casorati curvature per se and that most of them were not done in the context of isotropic
Euclidean space. It remains unclear whether observers are actually able to use a continuous
shape index scale instead of a categorical one and whether they are able to judge Casorati
curvature at all. This is of some conceptual interest, although, in practice, most settings in
vision will indicate the use of a categorical scale.

Methods
Observers

Participants were AD, female, aged 66; JK, male, aged 72; and JW, male, aged S51. The
observers were well aware of the general theory of local shape. This is indeed required
since otherwise shape index or Casorati curvature scales would make no sense to the
observer. The observers did not have practice using these scales, although they had
practice with the use of a categorical shape index scale in the setting of pictorial relief
(Koenderink et al., 2014).

Observers viewed from a distance of 78 cm. They used their preferred correction when
necessary. All participants had normal corrected acuity. They used a chin-rest and monocular
viewing.
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The stimuli were presented on a DELL U2410f monitor, a 1920 x 1200 pixels
(517 x 323 mm) liquid crystal display screen, in a darkened room. We used the standard
Apple settings for white point and gamma. The stimulus filled the width of the screen.

Stimulus and the Geometrical Framework

The stimuli were computer graphics renderings of local shapes (meaning: no cubic and higher
order terms) that were shown as rotating about the z-axis at uniform speed (Figure 3). Thus,
the shape—as defined by the two principal curvatures—is revealed over time. During a full
revolution, each principal curvature appears two times as the contour of the silhouette, thus
as a planar curve in the screen. Observers were encouraged to judge shape and curvature
magnitude on the basis of their (strong) three-dimensional solid shape impressions.

This setting differs from pure relief presentation by way of pictorial cues, motion parallax,
or binocular disparity, as in the previous studies reviewed earlier, in that there is more
information available. In principle, an algorithm would be able to yield perfect estimates
of both shape index and Casorati curvature, as is not possible in case of the aforementioned
presentations.

A0
\:ng\\g\s\“w
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Figure 3. A frame from the screen presentation. This image fills the full screen. At left the surface, its top-
side brownish, bottom-side bluish. At right the shape index scale, colored in the manner discussed in the text.
It is a segment centered at the origin (white), so the bottom (green) and top (red) are the limits of the scale.
The Casorati curvature scale is a ratio scale, the origin (planar patch) at the bottom. This scale is indicated as
open ended from above. Only the bottom part of the scale is actually used by the observers, the “veridical
settings” would all be lower or equal than one. Two animations of the rotating surface (stimulus) along with
the corresponding values of the shape index and the Casorati curvature are available as Supplementary
material.
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Experiment

Adjacent to the movie of the rotating shapes, the display shows two scales, one for the shape
index and one for the Casorati curvature (Figure 3). The observers have to drag cursors along
these scales to the locations of their judgements. The response time was in no way restricted.
When satisfied, they hit the spacebar of the keyboard, which then results in the next trial
being displayed. Solid shapes of a variety of shape indices and Casorati curvatures were
presented in randomized order.

A single session involved 121 trials, all combinations of 11 shape index values (—1.57,
—1.26, —0.943, —0.628, —0.314, 0.00, 0.314, 0.628, 0.943, 1.26, 1.57), and 11 Casorati
curvature values (0.083, 0.167, 0.250, 0.333, 0.417, 0.500, 0.583, 0.667, 0.750, 0.833, 0.917
times the reference curvature). Each observer completed three sessions with at least several
hours in-between sessions.

The surface shown in the movie had different colors at its upper and lower side. This fixes
the normal direction, which is necessary to be able to distinguish convexities from
concavities, yet shows both upper and lower sides, which helps in cases one of the sides
would become occluded.

The shape index scale is an absolute scale, but the Casorati curvature scale is a ratio scale
for which observers need a unit reference. The reference ““unit Casorati curvature” was shown
to them before the first trial. They could also review this reference at any time by holding a
certain key. The reference and the stimulus were never simultaneously visible though. As
reference, we used a convex spherical surface (shape index —mn/2).

The shape index scale was marked with a continuous color sequence. The colors were
chosen in such a way that shape differing by sign only were given complementary hues. Of
course, this implies that the symmetrical saddle was represented by the achromatic hue
(white). Specifically, we used

convexity (s=—m/2) red

ridge (s=—mn/4) yellow

symmetric saddle (s=0) white

rut (s=+4m/4) blue

concavity (s=+m/2) green,

and the intermediate colors being obtained by linear interpolation in RGB-space.

The Casorati curvature scale should—in principle—range from zero to infinity, which is a
practical impossibility. To avoid crowding effects at the top of the (displayed) scale, we made
sure that the scale was rather too long. Moreover, we gave the observer the option to indicate
judgements as outrunning the scale.

Analysis

Observers considered the task an intuitive one and consequently response times were short:
AD 8.0s (median, interquartile range 6.3—11.2s), JK 2.7s (2.3-3.1s), and JW 13.8s
(10.8-19.65). We did not find a dependence of response time upon the value of the shape
index, so apparently saddles and caps or cups take roughly equal effort.

Observers use the full shape index scale (Figure 4); there are no indications that they
employ a categorical scale and they seem to do about equally well in the saddle as
compared with the cup or cap ranges. The relation is a linear one, though we find that
adding a cubic term yields a just significantly better fit (p-values in the .01 range) for some
of the individual sessions for each subject. This can also be (but only just) detected by
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Shape index, observer AD., all sessions Shape index. observer JK, all sessions
n n
2 2
x = L T
4 4
y 3 -
= = |
g 0 i g 0 L
7 s z
= 2 |
/L
T4 "4
=
n n
2 2
x ] 0 ] T F i 0 . T
i "4 n 2 "2 "4 4 2
stimulus stimulus
Shape index. observer JW, all sessions
n
5
- e
" L
E = 4
L]
'i - A
=
£ 0
z
2
n
4
n
2
x F 0 T ]
"2 4 4 2
stimulus

Figure 4. Shape index settings pooled over all sessions of single observers. The whisker box graphics
indicates the range, the interquartile range, and the median. The blue line indicates the identity. The identity
yields a satisfactory fit, though a slight cubic modulation (“S-curve” tendency) is perhaps suggested.

inspection of the overall data. It may perhaps have to do with a certain reluctance to use the
very limits of the scale.

The resolution, defined as the shape index range divided by the semi-interquartile range, is
about 41 for AD, 34 for JK, and 43 for JW. Thus, observers discriminate at least ten times
better than the mere categorical scale. The functional dependence of resolution on the shape
index values fails to show a consistent pattern over observers (Figure 5). Perhaps one might
be able to find one by averaging over many observers, but such a result would be of little
interest, because essentially uninformative for any individual observer.

Observers were able to use the curvature scale too (Figure 6). This was more difficult
because they had to keep the unit reference example in mind at all times. In a
simultaneous comparison, it is likely that they would do much better. The results suggest a
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Figure 5. Interquartile ranges for the shape index settings pooled over all sessions of single observers.
Notice that the functional dependencies are idiosyncratic.

Weber fraction (Helmholtz, 1867) of about 10%, of course, with a considerable absolute
plateau. This is at most twofold the discrimination threshold for planar ellipses. In view of
the obviously large idiosyncratic spreads (Figure 7), there is little more that could be said.

Discussion and Conclusions

The major results appear clear-cut. None of the three observers had any problems to use the
shape index or the Casorati curvature scales. Indeed, they could do so without prior training,
although they evidently understood the nature of the scales. Doubtless, novel, naive observers
would certainly need some tuition on what the scales mean before starting on using them, as
is true for essentially any use of scales.

There are no indications that the observers really interpolate on a categorical scale and we
find no evidence that would serve to single out the saddle range as in any way special. The
shape index scale resolution is much better than the coarse categorical scale. On the detailed
level, the results show apparently idiosyncratic characteristics. These results allow us to draw
some conclusions of general relevance.

First of all, the parameterization of local shape in terms of a quality—the shape
index—and a magnitude—the Casorati curvature—is apparently a very natural one that
observers are able to apply without preliminary training, given that they understand what
the scales signify. Naive observers can be taught the scale by showing them examples, there
being no pressing need to teach them formal differential geometry. This was to be expected in
view of the fact that Alberti’s nominal scale cup, rut, ridge, and cap was generally accepted by
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Figure 6. Casorati curvature settings pooled over all sessions of single observers. The whisker box graphics
indicates the range, the interquartile range, and the median. To allow convenient comparison between
observers, we normalized the best linear fit to the identity in all cases. The blue line indicates this identity.

scientists and artists for several centuries. However, it is perhaps remarkable that no one ever
reported the saddle category as missing from this taxonomy.

The shape index seems to be the obvious “natural” parameterization of local shape as a
quality. Indeed, there appears to be no other contenders. Shape as a quality has to be
independent of both size and spatial attitude, so almost all that is left is the ratio of
naturally sorted principal curvatures.

From our data, the saddle category is nothing special in the perception of solid shape.
Observers use it naturally and precisely. This is not surprising in view of the ecological
abundance of saddle shapes. On a random Gaussian surface, 57% of the local shapes is of
the saddle category (Koenderink & van Doorn, 2003). It scores high in the Bayesian prior.
Then why did nobody notice? We have suggested earlier (Koenderink et al., 2014) that this
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Figure 7. Interquartile ranges for the Casorati curvature settings pooled over all sessions of single
observers. Notice that the functional dependencies are idiosyncratic, although one believes to spot a
tendency—doing considerable coarse graining by eye—of a monotonic increase.

may be due to the fact that the cap category is naturally associated with solid bodies, which
has again led to the general neglect of the remaining categories in the visual arts.

Observers discriminate much better—about an order of magnitude better—than
categorically, say the Albertian categories augmented with the symmetric saddle
(Koenderink et al., 2014). This has to be specific for the perception of solid shape as
compared with pictorial shape. In the latter case, foreshortening precludes the quantitative
comparison of curvatures in different directions, leaving one only with the coarse
differentiation on the basis of mere sign of curvature. This reflects the essential difference
between ‘“‘real 3D (or space) and 2+ 1D (visual field augmented with depth) pictorial space
(Koenderink, van Doorn, & Wagemans, 2011).
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Figure 8. The parabolic curves drawn on a copy bust of the Apollo Belvedere (property of the Mathematics
Institute of Gottingen).

Despite the good discrimination, it remains the case that one cannot name “in-between”
instances. These have to be described in terms of the “anchors.”” The cup, rut, saddle, ridge,
and cap certainly appear prototypical instances, or anchors, very similar to the primary
colors on the color circle.

Observers are also able to assess the Casorati curvature. This certainly appears to be a
“natural” measure, a bit like size or (generic) amount. As we defined it here, it is simply the
root mean square deviation from planarity, a concept that is easily grasped without being
aware of any differential geometry. But, differently from the shape index, in this case, there
are several contenders. Indeed, the Casorati curvature is hardly ever used in formal
differential geometry. According to the task at hand, the mathematician is much more
likely to opt for either the Gaussian (or intrinsic) curvature, or the “mean” (or extrinsic)
curvature.” Yet, neither of these has any intuitive appeal to the layman. For instance, the
Gaussian curvature is zero for ridges and ruts, whereas the mean curvature is zero for the
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symmetric saddle: all instances of obviously “‘curved” surfaces to the naive observer.
Moreover, both the Gaussian and the mean curvature are signed quantities, whereas
intuitively curvature is a positive magnitude, defined on a ratio scale. Here, the ways of
phenomenology and formal geometry evidently have to part.

From bitter experience, we know that it is very hard—in our moments of despair we
sometimes would even say “impossible”—to explain the concepts of intrinsic and extrinsic
curvature to naive subjects. In contradistinction, showing a few examples suffices to explain
Casorati curvature. An explanation of Casorati curvature as a measure of the normal
deviations from planarity satisfies the conceptual curiosity of most people that lack a
background in differential geometry. From the present data, we see that human observers
easily and reliably judge ratios of Casorati curvature. In our case, they did quite well in
judging the curvature of instances with respect to a remembered prototype.

Alberti conceived of the local shapes as qualities that were spread over surfaces like paint.
That is one reason why we developed the shape index color scale (Koenderink & van Doorn,
1992). One easily imagines a solid body to be painted in these shape index colors. Of course, it
remains a matter of experimental phenomenology to explore to what extent observers can
actually ““see” such distributions. So far, we have collected only scattered observations. Yet,
this topic has very attractive potential applications. Well-known is Felix Klein’s speculation
that the beauty of human faces is to be sought in the shape of the loci of cups and caps, the
yellow and blue isochromes, technically the parabolic curves. Felix Klein had a patient
student trace these curves on a copy bust of the Apollo Belvedere (of arcane classical
beauty!), an item that still survives at the Mathematics Institute of Gottingen (Figure 8). It
is not known how the student managed to do this, nor is there any indication that Klein’s
hypothesis was supposed to be verified or contradicted (Hilbert & Cohn-Vossen, 1932). Now,
more than a century later (!) we are still in no position to assess the value of this surprising
brain wave.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or
publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or
publication of this article: This work was supported by the program by the Flemish Government
(METH/08/02), awarded to Johan Wagemans.

Notes

1. In cinematographic images of sufficient length, the third dimension is indeed implicit in the stimulus
structure. In the minimum case of two successive views, one has the optical flow case (Gibson, 1950),
in which the depth dimension is of indefinite scale (Koenderink & van Doorn, 1975, 1991). This also
applies to binocular disparity. Thus, binocular disparity and optical flow are cases somewhere
between that of full cinematography—or free exploration in the real environment—and (single
image) pictorial depth. In neither case does Euclidean differential geometry apply. In this article,
the setup is squarely in the ballpark of cinematographic presentation.

2. A good example are the tricks played in the “The Lord of the Rings” productions (director Peter
Jackson, 2001/2003, distributed by New Line Cinema). Here, the cinematographic presentation uses
ambiguity to the (currently) fullest extent.
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3. A “normal direction” only makes sense in isotropic spaces. In pictorial space, one would not know
how to even start a definition. Formally, the depth direction itself is normal to anything in pictorial
space, but that nullifies its potential application in the differential geometry of pictorial relief (Sachs,
1990; Strubecker, 1962). The tangent plane yields a useful and more natural alternative to the notion
of “normal.”

4. Notice that a positive curvature indicates a concave shape and a negative curvature indicates a
convex shape. This is the formal convention because the conventional graph of the parabola
y(x)= + x? looks like a cup, whereas the graph of the parabola y(x) = —x* looks like a cap.

5. On a smooth surface, the principal curvatures vary smoothly with position. Thus, loci of zero
principal curvatures are curves. The planar case occurs at the intersection of such curves, thus
isolated points. Isolated points are of measure zero on a twofold extended surface.

6. “Properly defined” is necessary because the integrated square deviation is generically infinite. One
needs some device to limit the calculation to an environment of the origin, although the device
should not influence the result. This is an easy problem in elementary calculus. The Casorati
curvature as defined in the text is

2
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which is the square root of the standard definition of the variance as the average of the square minus
the square of the average: var x = x2 — x*. The Gaussian weight exp(—(x* 4 y%)/20?)/2n0” ensures
that we look at the local structure. Notice that the width parameter o falls out of this equation. It
does not matter because there are no higher order terms than the second.

7. The Gaussian curvature is best described as the spread of normal directions (a solid angle) for given
area (infinitesimal region of interest). Thus, it is a point property of dimension [length] 2. The mean
curvature is the mean of the normal curvatures over all surface orientations. Thus, it is a rotationally
invariant point property of dimension [length]™'. One may show that the former is the geometrical,
the latter the arithmetic mean of the principal curvatures.
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