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Gaps
CORONAVIRUS DISEASE 2019 (COVID-19), caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) infection, is a complex multisystem disorder primarily char-

acterized by pulmonary involvement.1 Although lung injury

leading to acute severe respiratory failure is the most feared

clinical presentation of COVID-19, cardiac complications in

patients without underlying heart disease also could be a fea-

ture of the syndrome and range from 20% to 30%.2-4 Right

ventricular (RV) dysfunction (RVD) seems to be particularly

common (20%-39%) in the COVID-19 patient group and often

remains undiagnosed.5,6 RVD is present when the functional

and structural variables to quantify RV function are less than

the lower value of the normal range: RV fractional area change

<35%, RV ejection fraction <45%, tricuspid annular plane

systolic excursion <17 mm, and pulsed-Doppler S wave <9.5

cm/s. RV fractional area change has been used to classify the

degree of RVD as mild (25%-35%), moderate (18%-25%),

and severe (<18%).7,8

Pathophysiology of RVD in COVID-19

COVID-19 Coagulopathy and the Right Ventricle

Like previous virulent zoonotic coronavirus outbreaks,

COVID-19 may predispose patients to hemostatic abnormali-

ties, including disseminated intravascular coagulation and

thrombotic events.9,10

The most characteristic finding of COVID-19 coagulopathy

seen in nonsurvivors with COVID-19 is diffuse alveolar dam-

age accompanied by extensive microvascular thrombosis in

the lungs and other extrapulmonary sites.11 The multisystem

involvement can be explained by binding of a surface glyco-

protein on SARS-CoV-2 (commonly referred to as the “spike

protein”) to angiotensin-converting enzyme 2 receptors,

expressed not only by vascular endothelial cells but also by

epithelial cells in the lungs, heart, kidney, and intestine.12

The entry of the virus contributes to inflammation and dam-

age of the endothelial cells, causing release of plasminogen

activator, which explains the high D-dimer concentration in
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severe cases, and prothrombotic mediators, primarily factor

VIIIc and von Willebrand factor multimers. The latter mediate

the consequent deposit of microvascular thrombi, especially in

affected pulmonary vessels.13-15

The simultaneous presence of vascular inflammation and

coagulopathy might explain the high incidence of thromboem-

bolic complications in patients with COVID-19. Similarly,

markers of coagulopathy, such as D-dimer, have been closely

associated with thrombotic complications and increased mor-

tality.13,16-18

Pulmonary hemodynamic alteration created by intravascular

microthrombosis and vasoconstriction secondary to hypoxia

may cause acute pulmonary hypertension, resulting in subopti-

mal RV-pulmonary arterial (PA) coupling (a determinant of

RV systolic pressure and RV stroke volume) and secondary

RVD in patients with COVID-19, even at the early stages of

the disease.19,20 In the critically ill patient with COVID-19,

adaptation of the right ventricle to increased loading condi-

tions may be limited because of systemic hypotension and

inflammation, and, as a result, RVD can progress to RV

failure.19,20
Myocardial Injury in COVID-19

Early reports from China identified the presence of elevated

cardiac biomarkers in a considerable proportion of patients

with COVID-19.3,21 Specifically, increased troponin and brain

natriuretic peptide levels were shown to be correlated with ele-

vation in D-dimer and were predictive of poor outcomes.22

Recent studies have reported cardiac complications, such as

acute coronary syndromes, cardiac arrhythmias, myocarditis,

pericarditis, and heart failure, in nearly 20% of patients with

COVID-19, which are associated with an increased risk of

death.21 However, it remains unclear whether RVD in the pres-

ence of myocardial complications without microvascular or

macrovascular pulmonary thrombosis is caused by RV ische-

mia, RV-PA uncoupling, or severe inflammation.23
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COVID-19 Sepsis and Effect on the Right Ventricle

Although severe COVID-19 infection shares many labora-

tory and clinical features of severe bacterial sepsis, up to 80%

of patients with COVID-19 may have no microbiologic evi-

dence of bacteremia or fungemia.24,25 However, added severe

intensive care unit�acquired infections potentially can com-

plicate the clinical course of COVID-19 critically ill patients,

leading to multiple organ dysfunction and death. Can viral sep-

sis explain RVD in COVID-19 “lung-injured” patients? In the-

ory, isolated RVD in patients with sepsis reflects endothelial

dysfunction, altered vasoreactivity, acute increase in pulmo-

nary vascular resistance despite systemic vasodilation, inabil-

ity of the right ventricle to adapt to physiologic stress, and it is

associated with long-term mortality.26-28 This mechanistic

link, however, is yet to be proven in prospective COVID-19

studies.

Impaired Gas Exchange and Injurious Invasive Ventilation

Hypoxemia and/or hypercapnia with or without acidemia in

COVID-19 patients with severe acute respiratory failure may

cause or exacerbate pulmonary vasoconstriction, resulting in

increased (even modest) RV afterload, RV-PA uncoupling,

and RVD, with potential for reduced cardiovascular

performance.23,29,30

“Injurious” invasive ventilation in COVID-19 patients with

refractory hypoxemia and/or hypercapnia with extremes of

tidal volume, high transpulmonary (alveolar plus pleural) pres-

sure and driving (plateau pressure � total positive end-expira-

tory pressure [PEEP]) pressures, and excessive PEEP causing

non-physiologic lung “stress” and “strain” and alveolar over-

distention may result in alveolar vessel collapse and an acute

increase in PVR, leading to RVD.31-33

In patients with acute respiratory distress syndrome

(ARDS), the following one clinical and three physiologic

parameters have been identified as statistically significant pre-

dictors of RVD: (1) lower respiratory tract infection as a cause

of pulmonary ARDS, (2) ratio of arterial oxygen partial pres-

sure to fractional inspired oxygen ratio <150 mmHg; (3) par-

tial pressure of carbon dioxide �48 mmHg, and (4) driving

pressure �18 cmH2O.
34 A RVD risk score > 2 is associated

with a 19% incidence of RVD (followed by 34% and 74% for

risk scores of 3 and 4, respectively). Although this scoring sys-

tem makes physiologicasense, it has not been validated in

COVID-19 patient populations.34 However, it highlights the

importance of “RV-protective” ventilation strategies in

patients with “injured” lungs and the need for early

echocardiography.

Echocardiography Features of RVD in COVID-19 and

Outcomes

Although the diagnostic approach to suspected RVD should

be multimodal, echocardiography remains the cornerstone

bedside tool to assess cardiac function and pathology. A large

prospective echocardiography study of COVID-19 patients
showed that even though RV dilation with or without dysfunc-

tion was the most common abnormality (39%), followed by

left ventricular (LV) diastolic dysfunction (16%), LV systolic

impairment was uncommon. Twenty percent of patients in that

cohort experienced a deterioration of the RV parameters, prob-

ably secondary to increased pulmonary vascular pressure con-

tributing to increased RV afterload.6 Similar results were

demonstrated in a more recent retrospective echocardiography

study that evaluated 110 patients.35 In that cohort, although

LV function and size were normal, RV dilation was present in

31% of patients. More than half (66%) of the latter group had

RV hypokinesia, and 21% had moderate or severe tricuspid

regurgitation.35 In another small retrospective study that

included invasively ventilated patients with COVID-19,

42.2% of whom received venovenous extracorporeal mem-

brane oxygenation (VV-ECMO), found radial RV impairment

with sparing of longitudinal function to be the dominant echo-

cardiographic phenotype.36

Two-dimensional speckle-tracking echocardiography also

has been used to evaluate RV function in COVID-19 patients,

and, interestingly, RV longitudinal strain was identified as a

powerful predictor of mortality.37 There is a clear need for

large-scale prospective echocardiography data in COVID-19

patients at risk of RVD in order to identify early markers of

dysfunction, characterize the natural history of RVD, and mon-

itor response to therapies.
Management of RVD in Invasively Ventilated COVID-19
Critically Ill Patients

The principles of RVD management in patients with

COVID-19 should follow standard general RVD management,

including optimization of RV preload, increase in RV contrac-

tility, and reductions in pulmonary vascular resistance and RV

afterload, leading to optimal RV-PA coupling.38 Importantly,

“RV-protective” strategies should be implemented early, and

rescue-specific therapies, such as extracorporeal membrane

oxygenation (ECMO), should be considered in refractory

selected cases in centers with expertise in the use of ECMO

for cardiorespiratory support.38
RV Protection and Prevention of Additional RV Injury

Invasive Mechanical Ventilation

The debate on how to ventilate patients with COVID-19 is

still ongoing. A number of inter-related editorials have sug-

gested that a subset of patients with COVID-19�induced

ARDS has an unusual physiologic phenotype (“L-type” pheno-

type), with low elastance, low lung weight, and low recruit-

ability. Based on these physiologic results, the authors

suggested that high levels of PEEP may be detrimental and

that prone positioning is unlikely to be beneficial.39

A recent study suggested that patients with early severe

COVID-19 pneumonitis did not differ in their response to high

PEEP and prone positioning from classic ARDS and,
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therefore, should be ventilated according to established ARDS

principles and regimens.40

Protective ventilation in ARDS reduces RVD and, specifi-

cally, a plateau pressure <26-to-28 cmH2O is associated with

lower incidence of RVD. Despite the possible presence of dis-

tinct phenotypes of COVID-19 patients with severe respiratory

failure, currently there is a lack of data relating to the best

“RV-protective” ventilatory strategies.41 It would stand to rea-

son that in patients with or at risk of RVD, an “RV-protective”

ventilatory strategy should comprise the following42-44: (1)

low “stress” ventilation (plateau pressure <27 cmH2O and

driving pressure <18 cmH2O); (2) partial pressure of carbon

dioxide <48 mmHg; (3) arterial oxygen partial pressure-to-

fractional inspired oxygen ratio >150 mmHg; (4) consider-

ation of driving pressure�guided PEEP titration (aiming for a

PEEP range associated with lowest driving pressure); and (5)

consideration of echocardiography use (transthoracic or transe-

sophageal) during PEEP titration to monitor RV loading condi-

tions.42-44

Prone Ventilation

Prone ventilation has the potential to recruit collapsed

alveoli and reduce tidal hyperinflation, alveolar cyclic recruit-

ment and de-recruitment, and ventilator-induced lung injury

known to exacerbate RVD.45-47 Correction of hypoxemia and

hypercapnia reduces pulmonary vasoconstriction, thus unload-

ing the right ventricle in ARDS.45-48

So far, no data are available on the effects of prone position-

ing on RVD (assessed with echocardiography) and pulmonary

circulation in COVID-19 patients.48 Given the “RV-

protective” effect of prone positioning, it could be hypothe-

sized that COVID-19-ventilated patients with RVD potentially

would benefit from early prone positioning, irrespective of the

degree of hypoxemia; however, this notion needs to be tested

in prospective studies.

Pulmonary Vasodilators

Although current evidence does not support the routine use

of pulmonary vasodilators and, in particular, inhaled nitric

oxide (iNO) in patients with ARDS, because it does not confer

survival benefit, its use as a rescue therapy has been recom-

mended by recently published guidelines on the management

of acutely ill COVID-19 patients with severe respiratory

failure.49

Pulmonary vasodilators theoretically could be beneficial in

selected patients through an improvement in ventilation-perfu-

sion matching through their vasodilatory effect and subsequent

reductions in pulmonary arterial pressure and RV afterload.50

In a recent case report, iNO was administered to a patient with

RVD and COVID-19 pneumonitis requiring VV-ECMO to

improve the recirculation fraction by reducing pulmonary

hypertension, RV afterload, and tricuspid regurgitation.49 In

that patient, iNO successfully offloaded a pressure-overloaded

right ventricle and reduced the severity of tricuspid regurgita-

tion and recirculation 12 hours after initiation of therapy.49
The role of other pulmonary vasodilators, such as inhaled

prostanoids and analogs (prostacyclin and iloprost, respec-

tively) and phosphodiesterase-5 inhibitors (sildenafil) in

COVID-19, is unknown and should be used with caution given

the lack of data and potential for worsening of hypoxemia and

shunt fraction.38,51

Future research should focus on the potential benefit of early

use of pulmonary vasodilators and inodilators (eg, phosphodi-

esterase-3 inhibitors) in critically ill COVID-19 patients with

RVD confirmed with echocardiography or right-sided heart

catheterization.

ECMO

VV-ECMO improves hypoxemia and reduces hypercapnia,

facilitating a “lung-rest” strategy, with tight control of driving

pressure, and, ultimately, can decrease pulmonary vasocon-

striction and RV afterload.52

Contrary to preliminary results from early studies that indi-

cated dismal outcomes in COVID-19 patients supported with

VV-ECMO, recent studies have demonstrated an estimated

<40% probability of 60-day mortality, similar to those treated

with ECMO in the ECMO to Rescue Severe Lung Injury in

Severe ARDS (EOLIA) trial.52,53

Because of the significant incidences of RV dilation and

dysfunction in severe COVID-19, traditional VV-ECMO may

not be effective, and a change in strategy to support the right

ventricle may be required. This may be achieved by either

venoarterial (VA), VV, veno-venous arterial (V-VA), or veno-

pulmonary arterial ECMO.53-55

The conventional VA-ECMO mode has obvious hemody-

namic advantages (RV unloading, peripheral oxygenation,

temperature control) but carries several disadvantages. For

example, patients may present with an increased LV afterload,

leading to insufficient unloading and requiring an additional

LV venting device, especially if there is coexisting LV

impairment. A recent observational cohort study of the Extra-

corporeal Life Support Organization database demonstrated

increased mortality associated with the use of VA-ECMO in

patients with COVID-19.53 Cardiac ECMO, however, was

used in a small proportion of patients only (3%), and this may

suggest that it was provided as a salvage therapy to patients at

the extreme end of disease severity.

V-VA-ECMO has the advantage of providing respiratory

support and biventricular cardiac support. The right ventricle

is decompressed, and the RV afterload is reduced because of

oxygenated and decarboxylated blood flowing through the pul-

monary circulation. Currently, there is a paucity of data to sug-

gest that this strategy is beneficial in COVID-19 patients with

RVD.

A direct PA cannulation approach accessed either surgically

or percutaneously to facilitate venopulmonary arterial ECMO

has been suggested to unload and support the failing right ven-

tricle while providing respiratory support.54 A recent study

documented the use of a single-access, dual-stage cannula in a

group of patients with COVID-19 requiring VV-ECMO sup-

port. This approach demonstrated multiple advantages,
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including direct pulmonary artery flow, negligible recircula-

tion, and early extubation and mobilization during ECMO sup-

port, with a survival rate of 73%.55 This might be the way

forward to support the right ventricle in COVID-19 patients

with RVD and refractory severe respiratory failure requiring

extracorporeal support and in whom pharmacologic and venti-

latory “RV-protective” measures fail. However, this was a sin-

gle-center study, and, therefore, larger, multicenter trials

would be required to demonstrate that these outcomes can be

replicated. In addition, strategies to simplify and improve

access to safe percutaneous PA cannulation would facilitate

more widespread use of this technique.

Conclusion

The right ventricle is intricately connected to the clinical

syndrome resulting from SARS-CoV-2 infection. In less-

severe states, the right ventricle is able to compensate to ensure

normal physiology; however, in decompensated states, this

leads to severe manifestations of the disease. As a result, RVD

is associated with worse outcomes in the context of COVID-

19.35,56 This remains very difficult to manage, and future

research should be directed at ways of protecting the right ven-

tricle before dysfunction develops, monitoring of RVD and

response to treatment, echocardiographic and hemodynamic

RVD phenotyping, and effective management of established

RV failure in patients with severe COVID-19.
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