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We propose a method (EXIA2) of catalytic residue prediction based on protein structure without needing homology information.
The method is based on the special side chain orientation of catalytic residues. We found that the side chain of catalytic residues
usually points to the center of the catalytic site.The special orientation is usually observed in catalytic residues but not in noncatalytic
residues, which usually have random side chain orientation. The method is shown to be the most accurate catalytic residue
prediction method currently when combined with PSI-Blast sequence conservation. It performs better than other competing
methods on several benchmark datasets that include over 1,200 enzyme structures. The areas under the ROC curve (AUC) on
these benchmark datasets are in the range from 0.934 to 0.968.

1. Introduction

Enzymes play important roles in various biological processes.
As the number of sequenced genomes rapidly grows, the
function of the majority of proteins can only be annotated
computationally. While a number of methods have been
reported to predict protein function from protein sequence
[1–3], protein structure [4, 5], protein-protein interaction
network [6, 7], and evolutionary relationships [8–10], the
complexity of protein function makes function prediction
challenging. In addition, prediction of protein function is
distinct from actual identification of functional regions or
residues. To identify the location of functional regions in
protein, a number of methods have been reported to predict
protein functional site, including ligand binding sites [11–
13], phosphorylation sites [14, 15], protein-protein interac-
tion sites [16–18], and ubiquitination site [19] from protein
sequence, structure, or high-throughput experimental data.
Here we focus on the prediction of protein catalytic residues.
Although only a small number of residues compose enzyme
catalytic site, they are the most crucial part for enzymes to
perform their function. Identifying these critical residues and

characterizing their features are crucial to understanding the
molecular basis of protein function.

Sequence or structure homology information is the pri-
mary feature used in catalytic residue prediction [20–26]
because catalytic residues are usually evolutionarily con-
served. One of the most successful sequence-based methods
is CRpred [27], which used several types of sequence-
based features including position-specific scoring matrix and
entropy of weighted observed percentages extracted from
multiple sequence alignment using PSI-BLAST [28]. Another
method, ConSurf, identifies functionally important regions
in proteins by estimating the degree of conservation of the
amino acid sites among their close sequence homologues
[29]. However, homology-based methods require reliable
evolutionary information, for example, multiple sequence
alignment constructed from enough number of protein
sequences. Recent studies show that the evolutionary origin
of one-third of genes is not clear in yeast genome [30]. For a
protein that lacks reliable homology information, it is impor-
tant to develop prediction method based on information
contained in the protein itself. Several methods have been
proposed to extract as much information as possible from
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protein structure. A method is based on the observation that
catalytic residues are usually moderately exposed residues
that are located closest to the protein centroid [31]. It was
shown that if a protein was converted to a network in which
the residues are vertices and their interactions are edges,
the central hubs are usually functionally important residues
or their neighboring residues [32]. It was also reported that
catalytic residues usually have higher force constant, that
is, the ease of moving a given residue with respect to the
other residues in the protein [33].The theoreticalmicroscopic
titration curves (THEMATICS) [34] method detects cat-
alytic residues by calculating theoretical residue electrostatic
properties from protein structure. THEMATICS was then
enhanced by structure geometric features [35] to detect cat-
alytic residues from protein structure using a monotonicity-
constrained maximum likelihood approach, called partial
order optimum likelihood (POOL). Amore recent study [36]
models the properties, such as physicochemical properties,
atomic density, flexibility, and presence of water molecules
or heteroatom, of spherical regions around target residues.
Suchmethods are helpful for proteins that donot have reliable
homology information. However, current methods that do
not rely on homology information perform worse than other
homology-based methods.

Here we propose a method (EXIA2) of catalytic residue
prediction based on protein structure without needing
homology information. The method is an improved version
of our previous work [37], which is based on the special
side chain orientation of catalytic residues. We found that
the side chain of catalytic residues usually points to the
center of the catalytic site. The special orientation is usually
observed in catalytic residues but not in noncatalytic residues,
which usually have random side chain orientation. The
feature is effective in the identification of catalytic residues
from enzyme structure. In this work, we further add a new
property, the amino acid combination feature, which is a
general composition of amino acids in enzyme catalytic site.
We implement the web server and optimize its computation
efficiency for practical use. The prediction performance of
EXIA2 web server is better than those of other state-of-
the-art prediction methods. In addition to better prediction
performance, it is more efficient than other structure-based
prediction methods.

2. Description of Web Server

2.1. Input. The input for the web server is a 3D protein
structure in Protein Data Bank (PDB) [38] format. Users can
upload their own protein structure file or input a PDB id.
Each submission allows a structure of up to 5000 residues.
The results are displayed instantly for small and medium
size proteins. For proteins of larger size (more than 3000
residues), the processing time is normally from several
seconds to a minute.

2.2. Output. The web server first predicts possible cat-
alytic residues based on information extracted from the
input structure. Users can optionally choose to combine

the structure-based results with evolutionary information
fromPSI-Blast position-specific substitutionmatrix.Theweb
server provides a one-click link for users to submit a PSI-Blast
search and the evolutionary information is automatically
combined with the structure-based prediction results when
PSI-Blast search is finished. The computation results include
possible catalytic residues ranked by their scores, which are
calculated based on various sequence and structure features.
The detailed scoring of each feature is also provided for users
to judge and interpret the prediction results. In addition to
raw computation data, the web server visualizes structures
around the predicted catalytic residues for users to easily
inspect the regions in which they are interested. Figure 1
shows a brief overview of the web server.

3. Methods

The method uses the following features to predict catalytic
residues: residue side chain orientation, theoretical structural
flexibility, and amino acid combination. The success of the
method is to scan one small region of the structure at a
time, instead of just considering the properties of each single
residue. For each region that is probable to be catalytic site,
we calculate the side chain orientation of residues in the
region. A region ismore probable to be catalytic site if the side
chain of residues in the region tends to point to the center
of the region. In addition to side chain orientation, we also
calculate the structure flexibility and amino acid combination
for each region. The following sections explain the detailed
calculations.

3.1. Side Chain Orientation. A vector 𝑠𝑘 is defined as the side
chain direction of residue 𝑘:

𝑠𝑘 = Χ
𝐹

𝑘
− Χ

CA
𝑘
, (1)

whereX𝐹
𝑘
andXCA

𝑘
are the crystallographic position of the side

chain vector atom and C𝛼 atom of residue 𝑘. The side chain
vector atom is carefully chosen for each amino acid type. It is
either the most frequent functional atom defined in catalytic
site atlas (CSA) [39] or the atom located near the centroid of
multiple possible functional atoms. Here, side chain vector
atoms are only defined for residues whose functional atom is
usually on its side chain: Arg: CZ, Asn: CG, Asp: CG, Cys:
SG, Gln: CD, Glu: CD, His: NE, Lys: NZ, Ser: OG, Thr: OG,
Trp: CZ, and Tyr: OH. Only amino acid types defined here
are included in the calculations of side chain orientations.

3.2. Prediction Procedure. All nonprotein ligands are
removed from the input structure. The structure is then
embedded in a three-dimensional 30 × 30 × 30 grid of
points. The reason of using fixed grid spacing is that we
want to make sure the server finishes the calculations in
reasonable time even for larger proteins. The grid size is the
optimal balance between computation time and prediction
performance. The grid spacing is from 1.33 angstrom to
2.13 angstrom depending on the protein size and is small
enough to scan possible catalytic site even for large proteins.
Each grid point is a probable position of catalytic site. For
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Figure 1: Overview of the EXIA2 web server. The input of the EXIA2 web server is a protein structure. EXIA2 first scans all possible catalytic
sites in the structure and then computes the side chain orientation of residues in each candidate site. A residue receives higher score when
it and its neighboring residues have their side chains pointing to their center position. The structure flexibility of residues is also included in
scoring. After the structure-based calculation is finished, users may optionally add the sequence conservation from PSI-Blast, which usually
takes longer calculation time. The final results are the possible catalytic residues ranked by their scores and all the detailed scores (side chain
orientation score, structure flexibility score, and sequence conservation score) calculated in the prediction process.

each grid point 𝑖, the surrounding residues of point 𝑖 are the
residues whose distance between its C𝛼 atom and point 𝑖 is
less than 10Å. Grid points with less than three surrounding
residues are removed. For each point 𝑖 and any one of its
surrounding residues 𝑗, the vector between point 𝑖 and C𝛼
atom of residue 𝑗 is defined as

V𝑖𝑗 = Χ𝑖 − Χ𝑗, (2)

where Χ𝑖 and Χ𝑗 are the position of point 𝑖 and C𝛼 atom of
residue 𝑗. We compute the angle 𝜃𝑖𝑗 between V𝑖𝑗 and 𝑠𝑗, which
is the side chain vector of residue 𝑗:

𝜃𝑖𝑗 = acos
V𝑖𝑗 ⋅ 𝑠𝑗
󵄩
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. (3)

For a grid point within the area of the catalytic site, its
surrounding residues usually have smaller 𝜃 angles. Based on
this observation, we calculate the averaged angle 𝜃𝑖 among all
of the surrounding residues for point 𝑖, as in

𝜃𝑖 = ∑

𝜃𝑖𝑗

𝑁

, (4)

where 𝑁 is the number of surrounding residues of point
𝑖. We assume that points near catalytic site have smaller
averaged 𝜃 and remove the points that have averaged 𝜃 >
80
∘. The cut-off value is chosen based on a statistics of
𝜃 angles for all residues in the PW79 dataset (as shown
in Figure S1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2014/807839). About 80% of cat-
alytic residues have the angle 𝜃 ≤ 80 degrees. We tried
different cut-off values ranging from 30 to 100 degrees and
found that the prediction performance is the best when the
cut-off value is 80 degrees on the PW79 dataset. For every
remaining point (points with 𝜃 ≤ 80∘), we select three
residues at a time from its surrounding residues and give
each selected residue a score (referred to as feature score)
according to their features. For each point, the selection
process is repeated for all possible combinations of any three
surrounding residues (referred to as triplet). Each time a
residue is involved in a selected triplet, the residue receives
a feature score based on the features of selected triplets. A
residue is possible to be the surrounding residue of multiple
grid points and therefore involved in triplets that belong
to different grid points. An example of score calculation is
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available in supplementary Figure S2. Residues are finally
ranked by their sum of all feature scores (denoted by 𝑆)
received from all grid point that includes the residue. The
final result is a list of residues ranked by their 𝑆 score, that
is, the likelihood of being a catalytic residue according to our
prediction.

3.3. Feature Scores. The feature score is calculated based on
theoretical structural flexibility and amino acid combination
of residues. The weighted-contact number model (WCN)
[41, 42] is used to compute structural flexibility. Catalytic
residues usually have more rigid structures, that is, having
higher WCN [43–45]. B-factor is not directly used because,
in many cases, crystal structures of the same enzyme have
almost identical 3D structure but have quite different B-
factor profiles. In addition, B-factor is only available for
structures solved by X-ray crystallography but not available
for structures solved by NMR. WCN is more reliable than B-
factor to measure the structural flexibility. For a residue 𝑘 in
a structure, its WCN 𝑤𝑘 is defined as

𝑤𝑘 = ∑

𝑚 ̸=𝑘

1

𝑟
2

𝑘𝑚

, (5)

where 𝑚 is any other residues in the structure and 𝑟𝑘𝑚 is the
distance between theC𝛼 atoms of residues 𝑘 and𝑚.TheWCN
scores are normalized as in

𝑧
𝑤

𝑘
=

𝑤𝑘 − 𝑤

𝜎

, (6)

where 𝑧𝑤
𝑘
is the normalizedWCNof residue 𝑘 and𝑤 and𝜎 are

the mean and standard deviation of the WCN of all residues
in the protein. As described in the previous section, for every
remaining point with𝑁 surrounding residues, we select three
residues (triplet) from surrounding residues and give each
selected residue a feature score. The purpose is to give higher
score to residues involved in “better” combination, that is,
triplet that are more structurally rigid. For a selected triplet
(denoted by 𝑛, a subset of the 𝑁 surrounding residues), we
define an averaged WCN 𝑤𝑛, which is the average structure
flexibility of these three residues:

𝑤𝑛 = ∑

𝑗∈𝑛

𝑧
𝑤

𝑗

3

, (7)

where 𝑧𝑤
𝑗
is the normalized WCN, 𝑤𝑗, of residue 𝑗. Among

the three residues, each residue receives a feature score 𝑆:

𝑆 = 𝑤𝑛 + 𝑧
𝑤

𝑗
+ 𝑧
𝑎

𝑗
, (8)

where𝑤𝑛 is the averagedWCN, 𝑧𝑤
𝑗
is the normalizedWCNof

residue 𝑗, and 𝑧𝑎
𝑗
is the normalized amino acid combination

score of residue 𝑗. The amino acid combination score is
based on statistics of the amino acids of catalytic sites in the
PW79 dataset [37]. For each type of amino acid, a profile 𝑝𝑥
containing 20 elements is constructed:

𝑝𝑥 = (𝑝
ALA
𝑥
, 𝑝

CYS
𝑥
, 𝑝

GLY
𝑥
, . . . , 𝑝

VAL
𝑥
) , (9)

where 𝑝𝑥 denotes the profile of amino acid type 𝑥; each
element in the profile is the frequency of an amino acid type
appearing in the same catalytic site as amino acid type 𝑥.
Here residues are defined as in the same catalytic site if they
are all annotated as catalytic residue and located in the same
catalytic site defined by the CSA database.The 𝑧𝑎

𝑗
score in (8)

is calculated as in

𝑧
𝑎

𝑗
=

𝑎𝑗 − 𝑎

𝜎
𝑎
=

(𝑝
𝑦

𝑥
+ 𝑝
𝑧

𝑥
) − 𝑎

𝜎
𝑎
, (10)

where 𝑎𝑗 denotes the amino acid combination score of residue
𝑗 and 𝑎 and 𝜎𝑎 are the mean and standard deviation of the
amino acid combination score of all residues in the protein.
𝑎𝑗 is the sum of 𝑝𝑦

𝑥
and 𝑝𝑧

𝑥
, where 𝑥 is the amino acid type of

residue 𝑗 and 𝑦 and 𝑧 are the amino acid types of the other
two residues in the subset 𝑛, which has three selected residues
as described previously.

Most catalytic residues have their functional atom on the
side chain; there are about 5% of catalytic residues that have
functional atom on the backbone. These catalytic residues
are usually hydrophobic and nonpolar amino acids and are
not involved in the calculations of side chain orientations. In
the results of the web server, we provide users the structural
flexibility and amino acid combination scores for these
residues.

3.4. Evolutionary Information. The method becomes more
powerful by including evolutionary information. Users may
include evolutionary sequence conservation from PSI-Blast
[28] position-specific substitution matrix (PSSM) to the pre-
diction. EXIA2 web server provides users a one-click option
to submit PSI-Blast search on the web server. The sequence
conservation information is automatically combined with
structure-based features. PSI-Blast is set to search against
the nonredundant (nr) database for three iterations with an
𝐸-value threshold of 5 × 10−3. The nr database is a default
built-in protein sequence database in PSI-Blast.The sequence
conservation score 𝑐𝑗 of residue 𝑗 is directly taken from the
“information per position” column in PSSM. The sequence
conservation score 𝑐𝑗 is included in the final score 𝑆𝑗 of
residue 𝑗 as in

𝑆
󸀠

𝑗
= 𝑆𝑗 + 1.6 × 𝑧

𝑐

𝑗
, (11)

where 𝑆𝑗 is the final score of residue 𝑗 based on structure
information and 𝑧𝑐

𝑗
is the normalized 𝑐𝑗 of residue 𝑗 as in

𝑧
𝑐

𝑗
=

𝑐𝑗 − 𝑐

𝜎
𝑐
, (12)

where 𝑐𝑗 is the original sequence conservation score of residue
𝑗 and 𝑐 and 𝜎𝑐 are the mean and standard deviation of all the
sequence conservation scores in the protein. The parameter
in (11) was tuned based on the PW79 dataset. The prediction
performance (AUCROC) is optimal for the dataset when the
value is set to 1.6.
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Table 1: Comparison of prediction performance of EXIA2web server and competingmethod using both sequence and structure information.

Benchmark datasets
PW79 POOL160 EF fold EF superfamily EF family

Competing method1

Recall (R) 46.0 78.1 64.2 67.3 61.7
Precision (P) 28.0 19.0 17.1 16.9 18.5
AUCROC 0.963 0.948 — — —

EXIA2 + PSSM2

Recall at equal P 63.3 77.8 71.0 70.4 64.3
Precision at equal R 36.5 18.7 19.4 17.7 19.6
AUCROC 0.973 0.965 0.968 0.968 0.968

EXIA23

Recall at equal P 48.8 68.6 43.8 46.9 42.2
Precision at equal R 30.5 14.5 12.0 11.6 12.9
AUCROC 0.962 0.960 0.943 0.944 0.946

1Prediction results of Cilia and Passerini [36].
2Prediction results of EXIA2 combined with PSI-Blast PSSM.
3Prediction results of EXIA2 without evolutionary information.

3.5. Datasets. The PW79, POOL160, EF, and P100 datasets
are from [35, 40, 46, 47], respectively. The proteins in the
L55 dataset (Table S1) are selected from the PW79, POOL160,
and EF datasets. Among all proteins in these datasets, we
first picked the proteins without bounding ligand (78 proteins
selected).Then for each protein, a structure that has the most
similar sequence (most of them have completely the same
sequence) and has bounding ligand in the catalytic pocket
was selected from the PDB database. 23 proteins among the
78 structures that have no available structure with bounding
ligand in PDB are removed. There are totally 55 pairs of
enzyme structures selected as the L55 dataset. The EX79
dataset (Table S2) is built by combining all proteins in the
POOL160 and EF datasets and excluding all proteins that are
in the PW79 dataset. The definition of catalytic residues is
based on Catalytic Site Atlas version 2.2.12.

4. Performance

We compared the prediction performance of EXIA2 web
server with that of three state-of-the-art prediction methods
on six benchmark datasets [37], PW79, POOL160, EF fold,
EF superfamily, EF family, and P100 which include over 1,200
proteins and 861,404 residues (3,664 catalytic residues and
857,740 noncatalytic residues). Tables 1 and 2 summarize the
comparison of prediction performances, including recall (R),
precision (P), and area under ROC curve (AUCROC).True
positives are correctly predicted catalytic residues; false
positives are noncatalytic residues incorrectly predicted to
be catalytic residues; true negatives are correctly predicted
noncatalytic residues; false negatives are catalytic residues
incorrectly predicted to be noncatalytic residues. For each
protein, we calculate the prediction result under different cut-
off values (true positive rate from 0 to 1) and draw the ROC
curve and recall-precision curve.The overall prediction result
of a dataset is by averaging the per-protein ROC curves (or
recall-precision curves) in the dataset. When comparing the

prediction performance with other methods, the recall and
precision values are directly retrieved from the overall recall-
precision curve for a dataset.

4.1. Comparison with Other Methods. Table 1 compares the
prediction results of EXIA2 and the results of a prediction
method [36], which uses many sequence, structure, and evo-
lutionary features to model residue structural neighborhood.
The prediction performance of EXIA2 combined with PSI-
Blast evolutionary information (PSSM) is better than that of
the competing method. Among the six benchmark datasets,
the recall (or precision) is higher than that of the competing
method when the precision (or recall) is equal to theirs.
EXIA2 also has higher AUCROC than theirs in the PW79 and
POOL160 datasets (the AUCROC for the other three datasets
are not provided in the report of the competing method).

We also compare the prediction results of EXIA2 web
server without using PSSM information and those of two
other prediction methods: POOL that uses only structure
information and CRpred [27] that uses only sequence infor-
mation. We compared the precision when our recall is equal
to theirs and the recall when our precision is equal to theirs
(Table 2). The results show that EXIA2 performs better than
these two methods. It has higher recall (70.8) and higher
precision (20.2) when the precision and recall are equal
to those of POOL (18.1 and 61.7, resp.) for the POOL160
dataset. Most current prediction methods do not perform
well when only structure-based features are used. Evolution-
ary information is usually required for prediction methods
to have better prediction results. POOL [35], which calculates
theoretical residue electrostatic property and structure shape,
is one of the best structure-based predictionmethods. EXIA2
performs better than POOL for the POOL160 dataset. The
results indicate that EXIA2, which uses side chain orientation
and structure flexibility, is more effective than the structure
features used by POOL. In addition to prediction perfor-
mance, EXIA2 web server is more computationally efficient
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Table 2: Comparison of prediction performance of EXIA2 web server and CRpred, POOL, ConSurf, and ResBoost.

Competing method CRpred POOL1 POOL2 ConSurf3 ResBoost3

Benchmark datasets EF fold POOL160 POOL160 P100 P100
Recall (R) 48.2 61.7 64.7 55.0 55.0
Precision (P) 17.0 18.1 19.1 5.0 17.0
AUCROC4 — 0.907 0.925 — —
EXIA2 + PSSM5

Recall at equal P 72.7 80.0 77.8 96.0 74.3
Precision at equal R 27.3 24.3 23.3 25.3 25.3
AUCROC 0.968 0.965 0.965 0.966 0.966

EXIA26

Recall at equal P 45.1 70.8 68.6 90.6 58.0
Precision at equal R 16.2 22.2 20.8 18.3 18.3
AUCROC 0.943 0.960 0.960 0.952 0.952

1Prediction results of POOL.
2Prediction results of POOL combined with evolutionary information.
3Prediction results published in [40]. Complete comparison of ROC and recall-precision curves is available in supplementary Figure S4.
4Some AUC values are not available in the publications.
5Prediction results of EXIA2 combined with PSI-Blast PSSM.
6Prediction results of EXIA2 without evolutionary information.

than POOL web server [48]. The prediction results of EXIA2
web server are usually displayed instantly. POOL web server
usually needs several minutes to finish the calculations. We
compared the computation time used by EXIA2 and POOL
by submitting the 79 proteins in the PW79 dataset to the
two web servers. For the POOL web server, the submission
of three proteins (PDB ID: 1B57, 1DCO, and 1DQS) did not
finish correctly (server crash due to parameter errors during
calculation). These proteins are excluded in the comparison.
The average computation time of EXIA2 is 6.25 seconds
and that of POOL server is 868.14 seconds (the time for
generating PSI-Blast profile not included). For POOL web
server, the computation time of 46% of proteins in the
dataset is more than 600 seconds. For EXIA2 web server, the
maximum computation time is 25 seconds on a protein of
about 3000 residues. The results show that EXIA2 web server
is very efficient and stable. Figure 2 shows the distribution of
computation time for the EXIA2 and POOL web server for
the PW79 dataset.

CRpred is currently the best sequence-based catalytic
residue prediction method. In the prediction of protein
catalytic residue, prediction results using only sequence
information are usually much better than the results only
using structure information.The reasonmay be that sequence
information includes evolutionary conservation and catalytic
residues are usually highly evolutionarily conserved. Here,
the prediction results of EXIA2 without adding evolutionary
conservation are better than those of CRpred. EXIA2 has
higher recall (67.8) and higher precision (24.7) when the
precision and recall is equal to those of CRpred (17.5 and
53.7, resp.) for the PW79 dataset. It also performs better than
CRpred on the EF fold dataset. Although EXIA2 has slightly
smaller recall and precision values than those reported by
CRpred (Table 2), it still performs better than CRpred by
looking at their ROC curve (Figure S3), which is a much

more complete performance measure. The results show that
the structure features used by EXIA2 are very effective.

We also compare the performance of EXIA2 with that
of ConSurf [29], ResBoost [40], and a recent structure-
based prediction method [49] on two test datasets. ConSurf
and ResBoost are both based on evolutionary conservation,
various sequence, and structure features. ConSurf identifies
functionally important regions in proteins by estimating
the degree of conservation of the amino acid sites among
their close sequence homologues. ResBoost predicts catalytic
residues based on several features, including evolutionary
conservation, 3D clustering, residue solvent accessibility,
and hydrophobicity. EXIA2 server performs better than
both ConSurf and ResBoost even without using sequence
conservation information (Table 2) on the P100 dataset. The
comparisons of their ROC curves and recall-precision curves
are available in supplementary Figure S4. Another recent
structure-based prediction method [49] is based on various
centralitymeasures of nodes in graphs of interacting residues:
closeness, betweenness and page-rank centrality, general
center of mass of the structure, relative solvent accessibility,
and sequence conservation. EXIA2 also performs better than
the method on a test set of 29 proteins. EXIA2 has higher
precision (21.7 versus 17.1) when the sensitivity is equal to
theirs and has higher sensitivity (71.9 versus 63.1) when the
precision is equal to theirs. However, the prediction results of
the method without sequence conservation are not available
on the test dataset.

4.2. Performance for Enzyme Structure without Bounded
Ligand. We construct a dataset (L55, PDB IDs listed in Table
S1) that contains 55 enzymes and their structures crystallized
with substrates (denoted by L55-Bound) and without sub-
strates (L55-Unbound). Figure 3 shows the ROC curves for
the structures of L55-Bound and L55-Unbound. The perfor-
mances of EXIA2 on these two sets of structures are very
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Figure 2: Distribution of computation time for the PW79 dataset. The figure shows the computation time for (a) EXIA2 web server and (b)
POOL web server.

similar. The AUCROC for L55-Bound and L55-Unbound are
0.968 and 0.967, respectively, when both structure features
(side chain orientation and flexibility) and sequence conser-
vation are used. The AUCROC are 0.950 and 0.947 for L55-
Bound and L55-Unbound, respectively, when only structure
features are used to perform prediction. The results suggest
that the special side chain orientation of catalytic residue
exists not only in substrate-bounded structures but also in
structures without bounded ligands. In Figure 4, we further
analyze the angle between the side chain vector of catalytic
residue and the vector of the residue C𝛼 atom to the center of
the catalytic site (as the 𝜃 angle described in Figure 1 or (3)).
Residues whose side chain tends to point to the center of the
catalytic site have smaller angles. For catalytic residues of both
substrate-bounded (orange bar) and substrate-unbounded
(green bar) structure, their angles are smaller than those
of noncatalytic residues. For the angle calculation of non-
catalytic residues, we randomly pick noncatalytic residues
and include its structurally neighboring residues within 10
angstroms. For each random “noncatalytic site” selected, we
calculate the angle between the side chain vector of these
residues and the vector from theirC𝛼 atom to the center of the
site.The results indicate that the special side chain orientation
only exists in catalytic residues but not in noncatalytic
residues. More importantly, the results also suggest that
the side chain structures of catalytic residues are ready to
interact with substrates even before substrate binding. The
observation also explains the success of EXIA2 to identify the
catalytic residues for enzymes without bounded ligands.

4.3. Effect of Amino Acid Combination Feature. In the EXIA2
server, we add the amino acid combination feature, which is a
general composition of amino acid types in enzyme catalytic
sites. The scoring of the feature is calculated based on the
enzymes in the PW79 dataset. To evaluate the performance
of the feature, we construct a dataset (EX79 dataset, PDB
IDs listed in Table S2) that combines the POOL160, EF fold,
EF superfamily, and EF family datasets and excludes all of
the enzymes from the PW79 dataset. Figure 5 shows the
receiver operating characteristic (ROC) curve for the PW79,
POOL160, EF fold, and the EX79 dataset. The ROC curve
of EF family and EF superfamily is similar to that of EF
fold and not shown in the figure. The results show that the
performance (AUCROC = 0.964) of the EX79 dataset is
similar to that of the EF fold dataset (AUCROC = 0.968). It
suggests that the feature is still effective for enzymes that were
not used to calculate the amino acid combination feature.

To see the effect of amino acid combination feature
on the prediction performance, we compare the AUCROC
of prediction using structure feature only and using both
structure feature and amino acid combination.TheAUCROC
is improved from 0.938 to 0.944 on the EX79 dataset. Figure
S5 shows the ROC curve of prediction with and without
amino acid combination feature on the EX79 dataset. The
TPR values are improved especially when FPR is smaller
than 0.15. EXIA2 is primarily based on the intrinsic structure
features, side chain orientation, and structure flexibility, of
the input protein. In this work, the amino acid combination
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feature is added to the web server because of its practical
usage to identify possible catalytic site.

5. Prediction Examples

5.1. Human Ferrochelatase. The catalytic site of Human fer-
rochelatase (PDB ID: 1HRK) includes three catalytic residues,
H263, H341, and E343. Figures 6(a) and 6(b) show the struc-
tures of the catalytic site and demonstrate a good example
of the side chain orientations of catalytic residues. The side
chain of the three catalytic residues point to the center of the
catalytic site to interact with the ligand (ligand information is
not used in the prediction). Catalytic residues H341, H263,
and E343 are ranked 1st, 2nd, and 5th, respectively, in the
prediction using only structure information. The output
results are shown in Figure 7. Although the two noncatalytic
residues, D340 and E369, are ranked 3rd and 4th, they have
low WCN score (more flexible structure) and are less likely
to be catalytic residues. The prediction results are further
improved by adding evolutionary information (PSI-Blast
PSSM). Catalytic residues H263, H341, and E343 are ranked
1st, 3rd, and 4th, respectively (Figure 7). The noncatalytic
residueW310 is ranked 2nd because it is extremely evolution-
arily conserved (Figure 6(b)). However, it has very lowWCN
score and is less probable to be catalytic residue (Figure 6(a)).
The catalytic residues of the enzyme are correctly predicted
because they have stable structure and proper side chain
orientations.One of the successful designs of EXIA2 is thatwe
consider not only the properties of single residue but also the
properties of its neighboring residues. A residue receives high
score when the residue and its neighbors have their side chain
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Figure 6: Structures around the catalytic residues of two example enzymes colored by residue structure flexibility and sequence conservation.
The structures around the catalytic residues of Human ferrochelatase (PDB: 1HRK) and Oligo-1,6-glucosidase (PDB: 1UOK). The rainbow
coloring in (a) and (c) is from blue (low structure rigidity or high structure flexibility) to red (high structure rigidity or low structure
flexibility). (b) and (d) are colored from blue (low sequence conservation) to red (high sequence conservation). Structure flexibility and
sequence conservation are based on the WCN model and PSI-Blast PSSM as described in Section 3. The black arrows in the figure indicate
the direction of side chain vector for the catalytic residues.

pointing to their centroid position and their average structure
flexibility is low.

5.2. Oligo-1,6-glucosidase. The catalytic residues of oligo-1,6-
glucosidase (PDB ID: 1UOK) are D199, E255, and D329.
They are the top three ranked residues in the prediction
results using only structure information. Each of the three
catalytic residues has low structural flexibility (Figure 6(c)).
In addition, they also have high average WCN score, which
means that these residues and their neighboring residues
form very stable structures. The enzyme shows a good
example on the effect of calculating average WCN score.
There are several noncatalytic residues that have better WCN
score (the structure flexibility of the residue itself) than
the three catalytic residues, but these catalytic residues have
higher average WCN score (the average structure flexibility
of the residue and its neighboring residues) than all the
other residues in the enzyme. It suggests that considering the
structural flexibility of single residue is not enough in the
prediction of catalytic residues. The three catalytic residues
also have extremely high side chain orientation score; that
is, these residues and their neighboring residues have side
chains pointing to their centroid (Figure 6(c)).The side chain
orientation score of these catalytic residues is higher than
those of all the other residues in the enzyme. Side chain
orientation score helps to easily identify the most probable

catalytic residues in this example. It also suggests that the side
chain orientation feature is unique enough to be used in the
prediction of catalytic residues because noncatalytic residues
do not seem to have such property.

6. Conclusion

EXIA2 is an accurate and efficient catalytic residue prediction
method. In addition to accurate identification of catalytic
residues, the web server provides detailed scoring data,
including the side chain orientation, structural flexibility,
amino acid combination, and sequence conservation scores,
for users to inspect and analyze the enzyme structure.The
advantage of EXIA2 is that it does not rely on sequence or
structure homology information. The fundamental feature
used in EXIA2 is to detect the regions in which the residues’
side chain points to the center of the region. We found
that the special side chain orientation is usually observed
for catalytic residues but not for noncatalytic residues. The
prediction performance based on the phenomenon is better
than those of existing prediction methods and is tested on
various datasets, including a dataset of enzymes that do not
have any bounded ligand in their crystallographic structures.
The results suggest that the special side chain orientation
exists not only in ligand-bounded structure but also in the
apo form of enzymes.
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Figure 7: Server output results of protein Human ferrochelatase. The figure shows part of the output results of the EXIA2 web server for
Human ferrochelatase (PDB: 1HRK). The main results are possible catalytic residues predicted by the server ranked by their rank score. The
prediction results are improved when evolutionary information from PSI-Blast PSSM is included in the prediction. The WCN score of each
residue is also provided for users to further analyze the results. The detailed scores, including side chain orientation score, average structure
flexibility, and PSSM scores, used in the prediction are also provided (not shown here).

EXIA2 is different from other competing machine learn-
ing methods (except POOL, which is also a heuristic-based
approach). The performance of EXIA2 is mostly contributed
from the intrinsic properties of input structure, the side
chain orientation, and structure flexibility feature. There is
no training process required to calculate these structure
features. The prediction performance only based on these
structure features is more accurate than those of other
existing structure-based methods. Although there are few
parameters that need to be optimized,most of them are based
on statistics and observation of general enzyme properties.
We also used the EX79 dataset, which exclude the 79 proteins
used for parameter optimization, to test the performance of
EXIA2.The results show that performance on EX79 dataset is
similar to those of the EF fold, EF family, and EF superfamily
datasets.
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[30] D. Tautz and T. Domazet-Lošo, “The evolutionary origin of
orphan genes,”Nature Reviews Genetics, vol. 12, no. 10, pp. 692–
702, 2011.

[31] A. Ben-Shimon and M. Eisenstein, “Looking at enzymes from
the inside out: the proximity of catalytic residues to the
molecular centroid can be used for detection of active sites and
enzyme-ligand interfaces,” Journal ofMolecular Biology, vol. 351,
no. 2, pp. 309–326, 2005.

[32] G. Amitai, A. Shemesh, E. Sitbon et al., “Network analysis
of protein structures identifies functional residues,” Journal of
Molecular Biology, vol. 344, no. 4, pp. 1135–1146, 2004.
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