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Fluorescence planar imaging (FPI) is failure to capture high resolution images of deep fluorochromes due to photon diffusion.This
paper presents an image restoration method to deal with this kind of blurring. The scheme of this method is conceived based on a
reconstruction method in fluorescence molecular tomography (FMT) with diffusion model. A new unknown parameter is defined
through introducing the first mean value theorem for definite integrals. System matrix converting this unknown parameter to the
blurry image is constructed with the elements of depth conversion matrices related to a chosen plane named focal plane. Results
of phantom and mouse experiments show that the proposed method is capable of reducing the blurring of FPI image caused by
photon diffusion when the depth of focal plane is chosen within a proper interval around the true depth of fluorochrome. This
method will be helpful to the estimation of the size of deep fluorochrome.

1. Introduction

Fluorescence imaging techniques have become indispensable
tools for numerous biomedical applications attributing to the
everlasting development of fluorescent probes [1]. With the
help of various fluorescent probes and fluorescence reporter
techniques [2, 3], fluorescence imaging techniques are capa-
ble of tracing biomedical processes at cellular and subcellular
levels in vivo and noninvasively in wide applications such as
gene expression, protein function, and cell therapy [4–8].

Up to the present, a number of fluorescence imaging tech-
niques have been developed [9–15].Microscopic fluorescence
imaging techniques provide high spatial resolutions but suffer
from small fields of vision. On the contrary, macroscopic
fluorescence imaging techniques can capture whole-body
images for small animals but with a limited spatial resolution.
Fluorescence planar imaging (FPI) [16–20] is themost widely
used macroscopic fluorescence imaging technique, which
directly detects the fluorescence photons on the surface
of an imaged small animal using camera. According to the
locations of excitation light source and camera, FPI can be
formed in two different modes [1, 21]: epi-illumination mode

and transillumination mode. Epi-illumination mode places
excitation source and camera at the same side of the imaged
small animal, which collects fluorescent photons in the same
direction of the reflected excitation lights; thus it is also called
fluorescence reflectance imaging (FRI). The defect of this
mode is the difficulty of the excitation of deep fluorochromes.
As an alternative, transillumination mode places the imaged
small animal between excitation light source and camera.
This mode can easily excite the fluorochromes far away from
camera but the images are more heavily contaminated by
excitation lights than epi-illumination mode although the
excitation lights are attenuated by filters.

Whichever mode is applied, FPI is incapable of imaging
deep fluorochromes with high spatial resolution. It is well-
known that the penetration depth of near-infrared light in
tissues is several centimeters [22]. Nevertheless, due to the
elastic scattering, near-infrared photons are diffused after
several millimeters of propagation in tissues [23]. So the fluo-
rescent images acquired with camera are blurred. The deeper
the fluorochromes are, the more strongly the fluorescent
photons are diffused and themore blurry the images are.This
restricts the applications of FPI in many cases. For instance,
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when imaging deep tumors, it is difficult to estimate the
sizes of tumors through FPI images because they are strongly
blurred.

Image restoration techniques aim to eliminate or reduce
the impact of image degradation such as blurring. The
causations of blurring can be classified into three types
[24]: medium-induced, optical, andmechanical.The blurring
derived from photon diffusion belongs to the first and second
types due to the elastic scattering in medium. Blurring can
be described with linear or nonlinear models, which depends
on the specific problem. The general linear model can be
summarized as 𝑢0 = 𝐾𝑢 + 𝑛 [24–26], where 𝑛 denotes noise,𝐾 is the system matrix, and 𝑢0 and 𝑢 are the blurry and
expected images, respectively. The key of deblurring is the
construction of 𝐾, which is known as the point spread
function (PSF) in many applications. Because the linear
model is usually formed with a convolution like 𝐾𝑢 = 𝑘 ∗𝑢(𝑥) [24–26], deblurring is also called deconvolution. Dur-
ing the last two decades, the researches of deblurring in
fluorescence imaging focused on microscopic fluorescence
imaging techniques [26–33] which are known as techniques
with almost no photon diffusion. In these investigations,
researchers implemented deconvolution methods to deal
with the blurring derived from imaging system, that is, the
mechanical type of blurring through PSFs of imaging sys-
tem.

In this paper, we aim to build a method to reduce the
impact of the blurring derived from photon diffusion in FPI.
This will be helpful to the estimation of the size of deep
fluorochrome.The scheme of the proposed image restoration
method is conceived based on a reconstruction scheme in
fluorescencemolecular tomography (FMT) [34–37], inwhich
the diffusion model [38–40] is used to describe the photon
propagation in tissues, the Born approximation [41–43] is
applied to solve the diffusion equation, and the Kirchhoff
approximation [44, 45] is implemented to obtain Green’s
function. Different from the blurring in fluorescence micro-
scopic imaging, the blurring in FPI is not caused by imaging
system. Consequently, the construction method of system
matrix in fluorescence microscopic imaging is not applicable
to the deblurring in FPI. The primary contribution of this
work is the construction of the system matrix for FPI.
Through introducing the first mean value theorem for def-
inite integrals, we define a new unknown parameter as the
restoration target rather than the fluorescent yield. The new
unknown parameter is a weighted average of the voxel values
of fluorescent yield along detection direction. To construct
the system matrix that converts this parameter to the blurry
image, depth conversion matrix is defined, which consists
of the weights of the voxels with different depths related
to the same pixel of the expected image. Subsequently, the
elements of depth conversion matrices related to a chosen
plane named focal plane are selected to construct the system
matrix according to a proportional relationship. Finally, the
Levenberg-Marquardt method [46, 47] is applied to solve the
system equation and acquire the restored image. Phantom
and mouse experiments are carried out to validate the
proposed method.

2. Methods

Thegeneration of fluorescence consists of two processes: exci-
tation and emission. In the excitation process, photons from
excitation source propagate to fluorochromes. Subsequently,
fluorescent photons emitted from fluorochromes propagate
to detectors in the emission process. Each process can be
modeled by the diffusion equationwithRobin-type boundary
condition as follows [35–39]:

−∇ ⋅ 𝐷 (𝑟) ∇Φ (𝑟) + 𝜇𝑎 (𝑟)Φ (𝑟) = 𝑄 (𝑟) 𝑟 ∈ Ω
2𝑞𝐷 (𝑟) 𝜕Φ (𝑟)

𝜕󳨀→𝑛 + Φ (𝑟) = 0 𝑟 ∈ 𝜕Ω, (1)

where 𝑟 denotes the position, Φ is the photon density, 𝑄
is the source term, and 𝜇𝑎 and 𝐷 are the absorption and
diffusion coefficients, respectively. The diffusion coefficient𝐷 is defined as 𝐷 = 1/[3(𝜇𝑎 + 𝜇󸀠𝑠)], where 𝜇󸀠𝑠 is the reduced
scattering coefficient.Ω is the domain of the object and 𝜕Ω is
the corresponding boundary. 󳨀→𝑛 denotes the outward normal
vector and 𝑞 is a coefficient related to the reflective index
mismatch at boundary [40]. For the excitation process, the
source term 𝑄 is determined by the location of excitation
source and commonly approximated as an isotropy point
source located one scattering length below the surface when
a collimated source is used [39, 40]. As for the emission
process, the source term 𝑄 is determined by the distribution
of the photon density for excitation as well as the fluorescent
yield of fluorochrome.

In this paper, the Born approximation [41–43] is used to
solve the diffusion equations as follows:

Φ(𝑟𝑑, 𝑟𝑠) = ∫
Ω
𝐺em (𝑟𝑑, 𝑟) 𝑓 (𝑟)Φex (𝑟, 𝑟𝑠) 𝑑𝑟, (2)

where𝐺 is Green’s function solution to the diffusion equation
and 𝑓 is the fluorescent yield of fluorochrome. 𝐺em(𝑟𝑑, 𝑟)
denotes the photon density for emission at the position
of detector 𝑟𝑑 when a point source is located at position𝑟. Φex(𝑟, 𝑟𝑠) denotes the photon density for excitation at
position 𝑟 when the source is located at 𝑟𝑠. If the excitation
source is a point source, Φex(𝑟, 𝑟𝑠) is also a Green’s function
solution to the diffusion equation; otherwise,Φex(𝑟, 𝑟𝑠) is the
convolution of Green’s function and the distribution function
of the source.Φ(𝑟𝑑, 𝑟𝑠) is the fluorescent photon density for a
pair of source and detector. The analytic formula of Green’s
function solution to the diffusion equation can be achieved
only for infinite space, semi-infinite space, and several simple
geometries. To obtain Green’s function in geometries with
arbitrary boundaries, the Kirchhoff approximation is imple-
mented [44, 45].

Let us consider an imaging situation with transillumina-
tion mode as shown in Figure 1(a). A collimated source is
used to excite fluorochrome and a planar detector is applied
to capture fluorescent images. The imaged object is assumed
to be a cube with a spherical fluorescent target located at the
center. An illustration of the image restoration problem is
shown in Figure 1(b).Thefluorescent image acquiredwith the
detector should be a blurry image due to the photon diffusion.
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Figure 1: Schematic of the transillumination FPI and illustration of the image restoration problem. (a) Schematic of the transillumination
FPI with a collimated source and planar detector. A sphere embedded in a cube is assumed to be the imaged fluorescent target. (b) Illustration
of the image restoration problem.

The imagewe expect to achieve through the image restoration
(hereinafter abbreviated as expected image) should be a
projection along the detection direction, that is, 𝑥-axis.

Equation (2) can be written in a three-dimensional Carte-
sian coordinate system as follows:

Φ(𝑟𝑑, 𝑟𝑠) = ∬
𝑦𝑧
𝑑𝑦𝑑𝑧

⋅ ∫
𝑥
𝑓 (𝑥, 𝑦, 𝑧) 𝐺em (𝑟𝑑, 𝑥, 𝑦, 𝑧)Φex (𝑥, 𝑦, 𝑧, 𝑟𝑠) 𝑑𝑥.

(3)

Then we introduce the first mean value theorem for defi-
nite integrals:

∫𝑏
𝑎
𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 = 𝑓 (𝜀) ∫𝑏

𝑎
𝑔 (𝑥) 𝑑𝑥, (4)

where 𝑓(𝑥) is a continuous function on [𝑎, 𝑏], 𝑔(𝑥) is an
integrable function that does not change sign on [𝑎, 𝑏], and 𝜀
is a value in (𝑎, 𝑏).Through (3) and (4), the following equation
can be formed:

Φ(𝑟𝑑, 𝑟𝑠) = ∬
𝑦𝑧
𝑓 (𝜀, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧

⋅ ∫
𝑥
𝐺em (𝑟𝑑, 𝑥, 𝑦, 𝑧)Φex (𝑥, 𝑦, 𝑧, 𝑟𝑠) 𝑑𝑥.

(5)

In (5), a new parameter 𝑓(𝜀, 𝑦, 𝑧) independent of 𝑥-axis
displaces the fluorescent yield 𝑓(𝑥, 𝑦, 𝑧). Subsequently, we
discretize (5) with step lengths of Δ𝑥, Δ𝑦, and Δ𝑧 and obtain
the following equation:

𝐵𝑚 = Δ𝑉 𝑁∑
𝑛=1

𝑃(𝑚)𝑛 = Δ𝑉 𝑁∑
𝑛=1

𝐶(𝑚)𝑛 𝐹𝑛,

𝐶(𝑚)𝑛 = 𝑁𝑥∑
𝑖=1

𝐶(𝑚)𝑛,𝑖

= 𝑁𝑥∑
𝑖=1

𝐺em (𝑟𝑑𝑚, 𝑥𝑖, 𝑦𝑛, 𝑧𝑛)Φex (𝑥𝑖, 𝑦𝑛, 𝑧𝑛, 𝑟𝑠) ,
𝐹𝑛 = 𝑓 (𝜀, 𝑦𝑛, 𝑧𝑛) ,

(6)

where 𝐵𝑚 = Φ(𝑟𝑑𝑚, 𝑟𝑠) is the value of the 𝑚th pixel of the
blurry image, 𝑟𝑑𝑚 denotes the corresponding pixel location,
𝑃(𝑚)𝑛 is a component of 𝐵𝑚 corresponding to the 𝑛th pixel of
the expected image 𝐹𝑛, Δ𝑉 = Δ𝑥 × Δ𝑦 × Δ𝑧 is the volume of
voxel, and𝑁 = 𝑁𝑦 ×𝑁𝑧 is the number of pixels.𝑁𝑥,𝑁𝑦, and𝑁𝑧 are the numbers of voxels along 𝑥-axis, 𝑦-axis, and 𝑧-axis,
respectively.𝐶(𝑚)𝑛 is a weight that converts the expected image
to the blurry image and 𝐶(𝑚)𝑛,𝑖 is a component of 𝐶(𝑚)𝑛 after the
discretization of 𝑥-axis where 𝑖 is the index of 𝑥-coordinate.
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Figure 2: Illustration of the linear model described by (6) with an 8 × 8 image. The voxels in yellow correspond to the yellow elements in the
map of 𝐶 and the expected image.The map of 𝐶 and the expected image relate to a pixel of the blurry image assumed to be the 15th pixel and
colored in green.

An illustration of the linear model in (6) is shown in
Figure 2, inwhich the image size is 8× 8 and the pixel index of
the blurry image𝑚 is assumed to be 15. Equation (6) describes
the relationship between the expected image and the blurry
image.The pixel values of the expected image 𝐹𝑛 are weighted
averages of the voxel values of fluorescent yield along 𝑥-axis,
which can be described with

𝐹𝑛 = ∑𝑁𝑥𝑖=1 𝐶(𝑚)𝑛,𝑖 𝑓 (𝑥𝑖, 𝑦𝑛, 𝑧𝑛)
∑𝑁𝑥𝑖=1 𝐶(𝑚)𝑛,𝑖 . (7)

According to (6), the weight 𝐶(𝑚)𝑛,𝑖 varies with the pixel
location of the blurry image 𝑟𝑑𝑚. Consequently, based on (7)
the pixel value of the expected image 𝐹𝑛 is not the same for
different pixels of the blurry image; that is, the expected image𝐹 is not unique. Figure 3 illustrates the nonuniqueness of 𝐹.
Figures 3(b) and 3(c) show the maps of 𝐶 for two different
pixels (𝐵36 and 𝐵16) of the blurry image and Figure 3(d) gives
profiles of 𝐶28,𝑖 along 𝑥-axis for the two pixels. These figures
indicate the differences between theweights corresponding to
different pixels of the blurry image. Figures 3(e) and 3(f) are
the images of 𝐹 calculated with the weights 𝐶 assuming that
the fluorescent yield 𝑓(𝑥𝑖, 𝑦𝑛, 𝑧𝑛) is known, which show that
the images of 𝐹 are distinctly different for different pixels of

the blurry image. In addition, the computational error results
in the minute differences between the center four pixels. As a
result of the nonuniqueness of 𝐹, it is infeasible to construct
a system equation that converts the expected image 𝐹 to the
blurry image 𝐵 through a combination of (6) for all the pixels
of the blurry image.

In order to construct the system equation, firstly, we
express (7) for all the pixels of the blurry image with the
following matrix equation:

[[[[
[

𝐶(1)𝑛,1 ⋅ ⋅ ⋅ C(1)𝑛,𝑁
𝑥... d

...
𝐶(𝑁)𝑛,1 ⋅ ⋅ ⋅ 𝐶(𝑁)𝑛,𝑁

𝑥

]]]]
]

[[[[
[

𝑓 (𝑥1, 𝑦𝑛, 𝑧𝑛)
...

𝑓 (𝑥𝑁
𝑥

, 𝑦𝑛, 𝑧𝑛)
]]]]
]
= [[[[
[

𝑃(1)𝑛
...

𝑃(𝑁)𝑛

]]]]
]

= [[[[
[

𝐶(1)1 𝐹(1)𝑛...
𝐶(𝑁)𝑛 𝐹(𝑁)𝑛

]]]]
]
.

(8)

Because 𝐹 is not unique, we use a superscript on 𝐹𝑛 to
denote the differences caused by different pixels of the blurry
image in (8). The matrix on the left of (8) consists of the
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Figure 3: Illustration of the nonuniqueness of the expected image 𝐹. (a) An 8 × 8 blurry image. (b) and (c) Maps of weights 𝐶 related to two
different pixels (𝐵36 and 𝐵16) of the blurry image. (d) Weights 𝐶28,𝑖 for 𝐵16 and 𝐵36 as a function of index of 𝑥-coordinate. (e) and (f) Images
of 𝐹 calculated with 𝐶 related to (b) and (c).

weights corresponding to all the pixels of the blurry image
and a certain pixel of the expected image. The elements of
each row of this matrix are arranged according to the 𝑥-
coordinate, that is, the depth. Each element determines the
contribution of the fluorochrome at a certain depth to a
certain pixel of the blurry image. Thus, we name this matrix
depth conversion matrix.

To construct the system equation, we must build a set of
equations that describe the relationship between the pixels
of the blurry image and a stationary expected image. From
(6), we know that the pixel values of the blurry image 𝐵𝑚 are
the summations of 𝑃(𝑚)𝑛 . If we can displace the 𝐹(𝑚)𝑛 in (8)
with the same 𝐹𝑛, the relationship between the components
𝑃(𝑚)𝑛 and the pixel value of a stationary expected image 𝐹𝑛
will be formed; then the system equation can be constructed.
We achieve this purpose through a proportional relationship
derived from (8) as follows:

𝑃(𝑗)𝑛 = 𝐶(𝑗)𝑛 𝐹(𝑗)𝑛
𝐹(1)𝑛 𝐹(1)𝑛 = 𝐶(1)𝑛 ∑𝑁𝑥𝑖=1 𝐶(𝑗)𝑛,𝑖𝑓 (𝑥𝑖, 𝑦𝑛, 𝑧𝑛)

∑𝑁𝑥𝑖=1 𝐶(1)𝑛,𝑖𝑓 (𝑥𝑖, 𝑦𝑛, 𝑧𝑛)𝐹
(1)
𝑛 . (9)

In (9), the pixel value of the expected image is fixed as𝐹(1)𝑛
but the weight is changed. The fluorescent yield 𝑓(𝑥𝑖, 𝑦𝑛, 𝑧𝑛)
is not known in image restoration. To obtain the weights, we
manually choose a depth to approximate them as follows:

𝑃(𝑗)𝑛 = 𝐶(1)𝑛 𝐶(𝑗)
𝑛,𝑘

𝐶(1)
𝑛,𝑘

𝐹(1)𝑛 , (10)

where the subscript 𝑘 denotes the index of 𝑥-coordinate
according to the chosen depth. The fluorescent signals are

conceived to come from the plane at the chosen depth which
is named focal plane.

Based on (6) and (10), we can construct the system
equation as follows:

[[[[
[

𝑅11 ⋅ ⋅ ⋅ 𝑅1𝑁
... d

...
𝑅𝑁1 ⋅ ⋅ ⋅ 𝑅𝑁𝑁

]]]]
]

[[[[
[

𝐹(1)1...
𝐹(1)𝑁

]]]]
]
= [[[[
[

𝐵1
...

𝐵𝑁

]]]]
]
, (11)

𝑅𝑚𝑛 = 𝐶(1)𝑛 𝐶(𝑚)
𝑛,𝑘

𝐶(1)
𝑛,𝑘

, (12)

where𝑅 is the systemmatrix that converts the expected image𝐹 to the blurry image 𝐵. Figure 4 is an illustration of the
construction of system matrix, which shows the calculation
process of the element of system matrix in the 3rd row and
63rd column. Firstly, the depth conversion matrix of the 63rd
pixel of the expected image is calculated through (6); then
the elements at the 5th column are selected according to a
chosen depth shown as the red dotted line in the top center
subfigure and the elements of the 1st row are summed to
calculate 𝐶(1)63 ; finally, the elements 𝑅3,63 of the system matrix
are composed through (12). Although the system matrix is
a square matrix, the inversion of 𝑅 is an ill-posed problem
in practical application. The Levenberg-Marquardt method
[46, 47] is implemented to solve (11) as follows:

𝐹|𝑛+1 = 𝐹|𝑛 + (𝑅𝑇𝑅 + 𝜆𝛼𝐼)−1 𝑅𝑇 (𝐵 − 𝑅𝐹|𝑛) , (13)

where 𝐹|𝑛 denotes the vector of the expected image for the𝑛th iteration, 𝐵 is the vector of the blurry image, 𝜆 is the
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illustrated. Squares in blue and green denote the corresponding locations of the pixels of the expected image and the blurry image, respectively.
The focal plane is shown with a red dotted line.

regularization parameter, 𝛼 is the trace of 𝑅𝑇𝑅, and 𝐼 is the
identity matrix.

In general, the image restoration consists of three steps.
Firstly, the depth conversion matrices for all the pixels of
the expected image are calculated. Subsequently, the system
matrix is assembled with the depth conversionmatrices and a
chosen focal plane. Finally, the system equation is solved with
the Levenberg-Marquardt method to achieve the restored
image.

3. Experimental Setup

3.1. Phantom Experiments. Phantom experiments were car-
ried out to validate the proposed image restoration method.
The phantom was a 3 × 3 × 3.5 cm3 cuboid tank made of
perspex as shown in Figure 5(a). The cuboid tank was filled
with diluted Intralipid-20% with a volume concentration of
5% and the height of the Intralipid-20% in the tank was
3 cm. A transparent glass capillary tube with a diameter of
0.3 cm was immersed in the tank. Holes were drilled on the
wall of the tank with a thickness of 5mm for the fastening
of the tube. The depth of the tube was 2 cm. The distance
between the center of the tube and the boundary along 𝑦-
axis was 1 cm. The distance between the bottom of the tube
and the boundary along 𝑧-axis was 1.1 cm. 20 𝜇L Cy5.5 dye
with five different concentrations of 4, 6, 8, and 10 𝜇mol/L

was successively filled into the tube as the fluorescent target.
The fluorescent images of the phantom were acquired with
a transillumination FPI system as shown in Figure 5(b). The
phantomwas placed on a lift table and an electronmultiplying
charge-coupled device (EMCCD) camera (iXon3 888, Andor
Technologies, UK) coupled with a 50mm f/0.95 lens (DO-
5095, Navitar, USA)was placed above the phantom to capture
images. A 711 ± 25 nm bandpass filter (BrightLine, Semrock,
USA) in front of the camera was used to capture fluorescent
image. A 671 nm laser (CrystaLaser LC, Reno, USA) below
the lift table was used to excite the fluorescent target within
the phantom through a pinhole at the center of the lift table.
Two daylight lamps placed on both sides of the camera were
used to obtain white light images. The whole imaging system
was covered with a black box to block environmental lights.

3.2. Mouse Experiment. For the further validation of the
proposed image restoration method, mouse experiment was
implemented, which was conducted under the protocol
approved by the Fourth Military Medical University Animal
Care and Use Committee. The imaged object was a nude
mouse. Before the experiment, the mouse was anesthetized
with 10% sodium pentobarbital through intraperitoneal
injection. A transparent glass capillary tube with a diameter
of 0.3 cm filled with 20 𝜇L Cy5.5 dye with a concentration
of 1 𝜇mol/L was planted into the abdomen of the mouse.
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Figure 5: Phantom and imaging system. (a) Geometry of the phantom. (b) Schematic of the transillumination FPI.

Subsequently, the mouse with a supine position was fastened
on a cardboard with black tapes. A slot is located at the center
of the cardboard to let excitation light get through. The used
FPI system was the same with the phantom experiments.
After the acquisition of fluorescent images, X-ray computed
tomography (X-CT) scan of the mouse was carried out and
the filtered back-projection (FBP) method [48] was applied
to accomplish the reconstruction of X-CT. Then the surface
of a section of themouse torso, which is required in the image
restoration, was extracted through the segmentations of the
X-CT images. The X-CT reconstruction results of the mouse
and the extracted surface are shown in Figure 6.

4. Results

4.1. Phantom Experiments. The results of phantom experi-
ments are shown in Figure 7. For all the image restoration
results, the depth of focal plane (DFP) was set as 2 cm, the
voxel size was set as 0.05 cm, and the optical coefficients 𝜇𝑎
and 𝜇󸀠𝑠 were set as 0.02 cm−1 and 10 cm−1, respectively. The
regularization parameter 𝜆 was empirically chosen as 10−4
and 200 iterationswere executed. Figure 7(a) is an illustration
of the location of target, focal plane, and detected plane in 𝑥𝑦-
plane. Figures 7(b)–7(e) are the original fluorescent images
for concentrations of 4, 6, 8, and 10 𝜇mol/L normalized with
the maximum of (e) while Figures 7(f)–7(i) are the corre-
sponding restored images normalized with the maximum of
(i). The magenta square in Figures 7(f)–7(i) shows the true
location of target. Figure 7(j) provides profiles along thewhite
dotted line in (e)–(i) as well as the true profile. Because the
tube is a cylinder, the true profile is a curve with a formula of
𝑔(ℎ) = √𝑟2 − ℎ2, where 𝑟 is the radius of the tube and ℎ is the
distance away from the center of the tube. Figure 7(k) shows
a linear fitting of the maximum of (f)–(i). The full widths at
half maximum (FWHMs) of the profiles of the original and
the restored images in Figure 7 are shown in Table 1.

The DFP, the optical coefficients, the voxel size, and the
regularization parameter affect the results. We tested the

Table 1: Full widths at half maximum of the profiles of the original
and restored images with different concentrations of Cy5.5.

Concentration (𝜇mol/L) 4 6 8 10
FWHM (cm)

Restored 0.21 0.21 0.22 0.22
Original 1.86 1.85 1.86 1.87

Table 2: Deviations of the centers of restored targets from the true
center with different DFPs.

DFP (cm) 3 2.5 2 1.5 1
Deviation (cm) 0.26 0.10 0.04 0.31 0.74

Table 3: Full widths at half maximum of the profiles of restored
images with different optical coefficients.

𝜇𝑎 (cm−1) 0.01 0.02 0.03 0.04 0.02 0.02 0.2 0.02
𝜇󸀠𝑠 (cm−1) 10 10 10 10 5 10 15 20
FWHM (cm) 0.21 0.22 0.22 0.21 0.22 0.22 0.22 0.21

effect of the four factors through restoring the fluorescent
image for the concentration of 8 𝜇mol/L. During the test of
each factor, the tested factor was changed while the other
three were set as above (i.e., DFP was 2 cm, 𝜇𝑎 = 0.02 cm−1,𝜇󸀠𝑠 = 10 cm−1, voxel size was 0.05 cm, and 𝜆 = 10−4). The
two optical coefficients were also tested separately through
changing one and fixing another. The results are shown
in Figures 8–11. Figure 8 provides the restored images and
profiles when the DFPs are 3 cm, 2.5 cm, 2 cm, 1.5 cm, and
1 cm and Table 2 shows the corresponding deviations of the
centers of restored targets from the true center. Figure 9
gives the restored images and profiles when the absorption
coefficients 𝜇𝑎 are set as 0.01, 0.02, 0.03, and 0.04 cm−1 and
the reduced scattering coefficients 𝜇󸀠𝑠 are set as 5, 10, 15, and
20 cm−1. Table 3 lists the FWHMs of the profiles of restored
images with different optical coefficients. Figure 10 shows the
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Figure 6: X-CT reconstruction results of the imaged mouse. (a)–(c) Three-dimensional volume rendering of the reconstruction results.
(d)–(f) Surface of a section of the mouse torso extracted from X-CT images fused with volume rendering. (g)–(i) Representative slices of the
reconstruction results. The first to third columns are the results for coronal, transversal, and sagittal positions, respectively.

restored images and profiles with voxel sizes of 0.05, 0.075,
0.1, and 0.15 cm and Table 4 provides the corresponding
FWHMs as well as the computational time. To show the voxel
size in the images, Figures 10(c)–10(f) are shown without
interpolation. Computational time as a function of voxel
size with a sampling interval of 0.01 cm is also provided as

Figure 10(f). Figure 11 shows the restored images and profiles
with regularization parameters of 10−2, 10−4, 10−6, and 10−8.
Table 5 lists the corresponding derivations and FWHMs.
For Figure 11(f), the lower right bulk is considered as the
restored target. All the images are normalized with the maxi-
mums.
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Figure 7: Results of phantom experiments. (a) Illustration of the location of target, focal plane, and detected plane in 𝑥𝑦-plane. (b)–(e)
Original fluorescent images for concentrations of 4, 6, 8, and 10𝜇mol/L, respectively. (f)–(i) Restored images of (b)–(e) in which the magenta
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Table 4: Full widths at half maximum of the profiles of restored
images and computational time with different voxel sizes.

Voxel size (cm) 0.05 0.075 0.1 0.15
FWHM (cm) 0.22 0.20 0.19 0.15
Computational time (s) 201.0 23.1 5.4 0.5

4.2. Mouse Experiment. The results of mouse experiment are
shown in Figure 12. A part of the torso of the mouse with a
size of about 1.8 × 2.9 × 2 cm3 was used to model the light
propagation. For fine images, a smaller voxel size, 0.03 cm,
than the values in the phantom experiments was chosen.The

Table 5: Deviations of the centers of restored targets from the true
center and FWHMs of the profiles of restored images with different
regularization parameters.

𝜆 10−2 10−4 10−6 10−8

Deviation (cm) 0.13 0.04 0.30 0.51
FWHM (cm) 0.39 0.22 0.16 0.10

optical coefficients𝜇𝑎 and𝜇󸀠𝑠 were set as 0.3 cm−1 and 10 cm−1,
respectively. The regularization parameter was empirically
chosen as 10−3 and the image restorations were terminated
after 200 iterations. The white light image, original fluores-
cent image, and a fused image of them are given in Figures
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12(a1)–12(a3). Five different DFPs (1.1 cm, 0.9 cm, 0.67 cm,
0.4 cm, and 0.2 cm)were tested and the corresponding results
are shown as Figures 12(b1)–12(f3).The results are shownwith
the restored image fused with the white light image as well
as a coronal X-CT projection image. Profiles along the white
dotted line in Figures 12(a3), (b2), (c2), (d2), (e2), and (f2) are
shown in Figure 12(g). All the images are normalizedwith the
maximums.

5. Discussion

Figure 7 and Table 1 show that the proposed method is
capable of restoring the blurry images caused by photon

diffusion when the DFP equals the depth of target. The
profiles in Figure 7(j) and Table 1 demonstrate that the
size of the restored fluorescent target in terms of FWHM
(∼0.22 cm) is close to the size of the true target (0.3 cm) while
the FWHMs of the original fluorescent images are around
1.86 cm. Figure 7(k) indicates the pixel values of the restored
images are approximately proportional to the concentration
of Cy5.5 dye. The quality of image restoration relies on the
choice of DFP as shown in Figure 8 and Table 2. When the
DFP is deeper than the depth of target, the target can also
be well restored but the restored location deviates from the
true location as shown in Figures 8(f) and 8(g) as well as
the deviations listed in Table 2. The deeper the DFP is, the
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Figure 9: Effect of optical coefficients. (a) Illustration of the location of target, focal plane, and detected plane in 𝑥𝑦-plane. (b) Original
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(l) Profiles along the white dotted line in (g)–(j). The fixed parameters are given in the yellow box.

farther the restored location deviates from the true location.
For example, the deviation for a DFP of 3 cm is 0.26 cm
but 0.10 cm for a DFP of 2.5 cm. On the other hand, when
the DFP is shallower than the depth of target, the restored
target tends to be spread around the image as shown in
Figures 8(i) and 8(j). As referred in the derivation of (10),
the fluorescent signals are conceived to come from the focal
plane. Consequently, if the focal plane is not located at
the true depth of target, the image restoration will result
in a virtual target in the focal plane and the location of
this virtual target varies with DFP. From (10) and (6), we
know that the restored image 𝐹(1) corresponds to the first

pixel of the blurry image and the weight of each voxel
𝐶(𝑚)𝑛,𝑖 = 𝐺em(𝑟𝑑𝑚, 𝑥𝑖, 𝑦𝑛, 𝑧𝑛)Φex(𝑥𝑖, 𝑦𝑛, 𝑧𝑛, 𝑟𝑠) is a function of
the location of the pixel of the blurry image 𝑟𝑑𝑚, the location
of source 𝑟𝑠, and the location of voxel (𝑥𝑖, 𝑦𝑛, 𝑧𝑛). If we ignore
the effect of boundary condition, Φex and 𝐺em are functions
of the distance between 𝑟𝑠 and (𝑥𝑖, 𝑦𝑛, 𝑧𝑛) and the distance
between 𝑟𝑑𝑚 and (𝑥𝑖, 𝑦𝑛, 𝑧𝑛) [45].Weuse Figure 13 to illustrate
the effect of DFP, where the fluorescent target is assumed
to be a point. In Figure 13, the problem is illustrated on 𝑥𝑧-
plane and 𝑥𝑦-plane separately. V and V󸀠 denote the locations
of the true target and the virtual target, respectively. Because
the restored image 𝐹(1) corresponds to the first pixel of the
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blurry image, we only consider the situation 𝑟𝑑𝑚 = 𝑟𝑑1. In
order to achieve the same pixel value 𝐵1, the weights of the
true target and the virtual target should be the same; that
is, the distance 𝑟𝑠V should equal 𝑟𝑠V󸀠 and 𝑟𝑑1V should equal
𝑟𝑑1V󸀠. Therefore, the virtual target should be located at the
intersection of the focal plane and the circles with 𝑟𝑠 and𝑟𝑑1 as their centers as shown in the left column in Figure 13.
However, the intersection does not exist for most situations
as shown in the right column in Figure 13. In these situations,
the voxel within the circle intersecting the focal plane and
with a weight closest to the weight at V could be considered
as the virtual target. The above analysis ignores the effect
of boundary condition and the target is a point. The actual
situation is much more complicated due to the boundary of
the imaged object as well as the volume of the fluorescent
target. We analyze the location of the virtual target through
finding an equivalent of the true target within the focal plane.
However, the virtual target may not be well restored because
the weight of the virtual targetmay be quite different from the
one of the true target. Figure 14 provides the error of system
matrix (‖𝑅 − 𝑅true‖22) as a function of DFP for the phantom
experiments, where the depth of target is 2 cm and the system
matrix with a DFP of 2 cm is assumed as the true system

Table 6: Full widths at half maximum of the profiles of restored
images in mouse experiment with different DPFs.

DFP (cm) 0.2 0.4 0.67 0.9 1.1 Original
FWHM (cm) 0.40 0.35 0.22 0.19 0.18 0.88

matrix. It can be observed in Figure 14 that the error of system
matrix with a shallower focal plane rises much faster than the
one with a deeper focal plane. This explains why the target
cannot be well restored when the DFP is shallower than the
depth of target in Figures 8(i) and 8(j). The results of mouse
experiment in Figure 12 and Table 6 are consistent with the
results of phantom experiments in Figure 8. Because of the
tiny size of themouse, the locations of the restored target vary
slightly when the DFP is deeper than the true depth of target
in Figure 12. In general, Figures 7, 8, and 12 as well as Tables 1,
2, and 6 indicate the proposed method is capable of restoring
the blurry images caused by photon diffusion when the DFP
is set properly. The target can be well revealed when the DFP
is within an interval around the true depth of target rather
than an exact value.

Generally, the proposed method is more appropriate for
the cases in which the depths of targets can be estimated
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Figure 11: Effect of regularization parameter. (a) Original fluorescent image. (b) Illustration of the location of target, focal plane, and detected
plane in 𝑥𝑦-plane. (c)–(f) Restored images when the regularization parameter 𝜆 is 10−2, 10−4, 10−6, and 10−8, respectively. (g) Profiles along
the white dotted line in (c)–(f). The fixed parameters are given in the top yellow box.

because the location of the restored target varies with DFP.
This restricts the applications of the proposedmethod.On the
contrary, we might take use of the effect of DFP to estimate
the depth of target. It is known that commonly the location of
the maximum of the blurry image should correspond to the
center of the fluorescent target. Therefore, we could restore
the blurry image with a set of DFPs ranging from 0 to the
thickness of the imaged object and compare the center of
the restored images with the center of the blurry image to
estimate the depth of the target.

The optical coefficients 𝜇𝑎 and 𝜇󸀠𝑠 are prerequisites for the
image restoration. In the phantom experiments, we used the
diluted Intralipid-20% with a volume concentration of 5% as
the diffusionmedium, the absorption coefficient and reduced
scattering coefficient of which are, respectively, around
0.02 cm−1 and 10 cm−1 when the wavelength is between
632.8 nm and 751 nm [49]. Therefore, we consider 0.02 cm−1
and 10 cm−1 as the true optical coefficients of the diffusion
medium and tested the effect of the optical coefficients
through setting them as 50%, 100%, 150%, and 200% of the
true values. The results in Figure 9 and Table 3 indicate that
the effect of optical coefficients is slight (FWHMs are around
0.22). Based on this conclusion, we used homogeneous

optical coefficients in the mouse experiment rather than a
heterogeneous model.

The results of the image restoration greatly depend on the
voxel size as shown in Figure 10 and Table 4. In general, a
small voxel size would result in a fine image but consumes
more time on computation and more memories on the
storage of system matrix and depth conversion matrices. For
example, when the imaged object is a 3 × 3 × 3 cm cube and
the voxel size is 0.05 cm, the image size will be 61 × 61 and
the number of voxels will be 61 × 61 × 61. It results in the
fact that the size of system matrix is 3,721 × 3,721 and the
size of each depth conversion matrix is 3,721 × 61. When the
data are saved with double precision, the system matrix and
each depth conversion matrix will occupy about 105.6 and 1.7
megabytes of memories, respectively. For the storage of all
the depth conversion matrices and the system matrix, about
6.4 gigabytes is required. To reduce the requirement of the
memories, we can save only the elements of depth conversion
matrices required during the calculation of system matrix.
Moreover, the calculations of system matrix focus on the
calculations of weights 𝐶(𝑚)𝑛,𝑖 , that is, the calculations of 𝐺em
andΦex. For the above case, it is required to calculate𝐺em andΦex 61× 61× 61 + 61× 61×(61×61−1) times, that is, 14,069,101
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Figure 12: Results of mouse experiment. (a1)–(a3) White light image, original fluorescent image, and a fused image of them, respectively.
(b1), (c1), (d1), (e1), and (f1) Illustrations of the locations of focal planes on a part of a sagittal X-CT projection image. (b2), (c2), (d2), (e2),
and (f2) Restored images fused with white light images when the DFPs are set as 1.1 cm, 0.9 cm, 0.67 cm, 0.4 cm, and 0.2 cm, respectively. (b3),
(c3), (d3), (e3), and (f3) Corresponding restored images fused with a coronal X-CT projection image. (g) Profiles along the white dotted line
in (a3), (b2), (c2), (d2), (e2), and (f2). All the scale bars denote 0.5 cm. The fixed parameters are shown in the yellow box.

times at least for a single DFP. In parallel, if the voxel size is
0.1 cm, the sizes of system matrix and each depth conversion
matrix will be 961 × 961 and 961 × 31, respectively, and 𝐺em
and Φex will be calculated 952,351 times for a single DFP.
Through Figure 10(f) and Table 4, it can be found that the

computational time exponentially increases with the decrease
of the voxel size. For example, the computational time is
only 0.5 seconds for a voxel size of 0.15 cm but 201 seconds
for a voxel size of 0.05 cm; that is to say, when the voxel
size reduces 3-fold, the computation time increases about
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Figure 14: Error of system matrix as a function of DFP for the
phantom experiments. The depth of target is 2 cm.

400-fold. This limits the choice of voxel size. In general,
the voxel size should be as small as possible when the
computational time and memories are not limited.

Figure 11 and Table 5 show the effect of regularization
parameter. The function of the regularization parameter is
controlling the effect of regularization. The regularization
aims to suppress the impact of ill-posedness and noise
through smoothing the solution vector. A large regularization
parameter will result in oversmoothness like Figure 11(c) with
a FWHM of 0.39 cm; on the contrary, a small one may lead
to image distortion because of noise like Figures 11(e) and
11(f) with deviations of 0.30 cm and 0.51 cm. The choice of
the regularization parameter depends on the noise level of
data. Due to the fact that noise level is unable to be achieved
in some applications, the regularization parameter is usually
determined empirically [50, 51].

A defect of the proposed method is the requirement of
the geometry of the imaged object, which is not necessary in
FPI. The geometry is a prerequisite for modeling the photon
propagation in the imaged object. Thus, an additional imag-
ing modality such as X-CT and magnetic resonance imaging
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(MRI) is indispensable. As an alternative, the imaged object
can be immersed into a tankwith regular geometry filledwith
matching fluids.

Although the proposed method in this paper is based on
a transillumination FPI system, it may be feasible for epi-
illumination mode in theory as long as the location of source
is available. If the source is still a point source, the methods
for the two modes have no difference except the locations of
source. When a planar source is implemented, the distribu-
tion of the photon density for excitation Φex is not a Green’s
function solution to the diffusion equation anymore but a
convolution of Green’s function and the distribution function
of the source. In general, transillumination mode is more
appropriate because the aim of the proposed method is the
imaging of deep fluorescent targets while transillumination
mode can easily excite deep fluorochromes.

The proposed method is conceived based on the recon-
struction scheme in FMT. It is well known that FMT recon-
structs a three-dimensional distribution of fluorescent yield
with multiple projection images from different angles, while
the proposedmethod can be considered as the reconstruction
of a two-dimensional image from a single blurry image. It is
infeasible for the reconstruction method in FMT to directly
reconstruct the distribution of fluorescent yield from a single
image because the mismatch between the quantities of data
and unknown parameters will result in great degradation of
reconstruction results [52]. Through the definition of a new
unknown parameter𝐹𝑛 in (6), the proposedmethod balances
the quantities of data and unknown parameters to make
the reconstruction possible. In addition, although FMT can
provide three-dimensional distribution of fluorescent yield,
it cannot displace FPI because of the stability, simplicity,
convenience, and fast data acquisition of FPI.Therefore, there
are still quantities of applications accomplished with FPI
especially those requiring high data acquisition speed such
as pharmacokinetics [16, 17].

The results of phantom and mouse experiments prove
that the proposed image restoration method is capable of
revealing fluorescent targets beneath diffusion medium. It is
well known that the near-infrared light is highly scattered
within the tissues of living bodies and it is difficult to capture
the shapes of deep fluorescent targets beneath tissues with
cameras.This limits the applications of FPI. For example, size
of tumor is an important indicator in oncology. Fluorescence
planar imaging is a usual imaging technique for the research
of tumor on animal model through fluorescent molecular
probes. However, the estimation of size of tumor through FPI
images is feasible for only subcutaneous tumor while the size
of in situ tumor is difficult to be estimated. The proposed
method provides the ability of the estimation of size of deep
fluorescent targets like in situ tumors.

6. Conclusion

In conclusion, an image restoration method is proposed to
deal with the blurring caused by photon diffusion in FPI.
Themethod is conceived based on the reconstruction scheme
in FMT. The primary contribution of this work is the
construction of system matrix, which is achieved through

the definition of a new unknown parameter and depth
conversion matrices with a chosen focal plane. The new
unknown parameter is defined through the first mean value
theorem for definite integrals and represents a weighted
average of the fluorescent yields along the detection direction.
Results of phantom and mouse experiments indicate that the
proposed image restoration method is capable of reducing
the blurring of fluorescent image caused by photon diffusion
when the depth of focal plane is chosen within a proper range
around the true depth of fluorochrome. The effect of optical
coefficients is slight. The quality of the restored image greatly
depends on the voxel size but it is limited by the computa-
tional time and memories. The regularization parameter also
influences the results that a large regularization parameter
would result in oversmoothness while a small one might
lead to image distortion. This method will be helpful to the
estimation of the size of deep fluorochrome.
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