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H I G H L I G H T S

• Deep learning and radiomics distinguish bone tumors on CT as metastases from breast cancer.
• Medical Image Segmentation via Self-distilling TransUNet (MISSU) model for bone tumors.
• Potential for early detection and intervention in metastatic breast cancer.
• Feasibility of integrating advanced imaging analysis into routine clinical workflows.
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A B S T R A C T

Purpose: The objective of this study is to develop a novel diagnostic tool using deep learning and radiomics to 
distinguish bone tumors on CT images as metastases from breast cancer. By providing a more accurate and 
reliable method for identifying metastatic bone tumors, this approach aims to significantly improve clinical 
decision-making and patient management in the context of breast cancer.
Methods: This study utilized CT images of bone tumors from 178 patients, including 78 cases of breast cancer 
bone metastases and 100 cases of non-breast cancer bone metastases. The dataset was processed using the 
Medical Image Segmentation via Self-distilling TransUNet (MISSU) model for automated segmentation. Radio-
mics features were extracted from the segmented tumor regions using the Pyradiomics library, capturing various 
aspects of tumor phenotype. Feature selection was conducted using LASSO regression to identify the most 
predictive features. The model’s performance was evaluated using ten-fold cross-validation, with metrics 
including accuracy, sensitivity, specificity, and the Dice similarity coefficient.
Results: The developed radiomics model using the SVM algorithm achieved high discriminatory power, with an 
AUC of 0.936 on the training set and 0.953 on the test set. The model’s performance metrics demonstrated strong 
accuracy, sensitivity, and specificity. Specifically, the accuracy was 0.864 for the training set and 0.853 for the 
test set. Sensitivity values were 0.838 and 0.789 for the training and test sets, respectively, while specificity 
values were 0.896 and 0.933 for the training and test sets, respectively. These results indicate that the SVM 
model effectively distinguishes between bone metastases originating from breast cancer and other origins. 
Additionally, the average Dice similarity coefficient for the automated segmentation was 0.915, demonstrating a 
high level of agreement with manual segmentations.
Conclusion: This study demonstrates the potential of combining CT-based radiomics and deep learning for the 
accurate detection of bone metastases from breast cancer. The high-performance metrics indicate that this 
approach can significantly enhance diagnostic accuracy, aiding in early detection and improving patient out-
comes. Future research should focus on validating these findings on larger datasets, integrating the model into 
clinical workflows, and exploring its use in personalized treatment planning.
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1. Introduction

Bone tumors, both benign and malignant, present a significant clin-
ical challenge due to their varied etiology and complex presentation 
[1,2]. Malignant bone tumors, in particular, pose a serious health threat, 
often leading to substantial morbidity and mortality. Primary malignant 
bone tumors, such as osteosarcoma, chondrosarcoma, and Ewing’s sar-
coma, originate in the bone itself and are relatively rare [3]. However, 
secondary bone tumors, or bone metastases, are more common and arise 
when cancer cells spread from other parts of the body to the bone. 
Among these, breast cancer is one of the most frequent primary sources 
of bone metastasis [4,5].

Breast cancer is the most diagnosed cancer and the leading cause of 
cancer death among women worldwide [6]. Despite advances in early 
detection and treatment, a significant proportion of breast cancer pa-
tients develop metastatic disease [7,8]. The skeleton is the most frequent 
site of metastasis, with up to 70 % of patients with advanced breast 
cancer experiencing bone metastases [9]. The presence of bone metas-
tases is associated with a substantial deterioration in quality of life and 
prognosis, often leading to complications such as pathological fractures, 
spinal cord compression, and severe pain [10,11].

Diagnosing bone metastases in breast cancer patients is critical for 
appropriate treatment planning and prognostication [12]. Conventional 
imaging modalities, including X-ray, computed tomography (CT), 
magnetic resonance imaging (MRI), and bone scintigraphy, are 
routinely used for the detection and evaluation of bone lesions [13]. 
Metastatic bone lesions can present subtle changes in bone density and 
structure, which are often difficult to distinguish from benign conditions 
or normal anatomical variations. This subtlety requires a high level of 
expertise and can lead to diagnostic errors, particularly in early-stage 
metastases. Differences in CT imaging protocols, such as variations in 
slice thickness, resolution, and contrast enhancement techniques, can 
lead to inconsistencies in image quality and interpretation. This vari-
ability complicates the comparison of images over time or between 
different patients, making standardized diagnosis challenging. CT im-
aging provides detailed anatomical information and is widely utilized in 
clinical practice [11,14]. Traditional CT imaging, while providing 
excellent anatomical detail, often lacks the sensitivity and specificity 
needed to accurately differentiate between benign and malignant bone 
lesions. This limitation can result in either overdiagnosis, leading to 
unnecessary interventions, or underdiagnosis, delaying critical treat-
ment. However, the interpretation of CT images can be challenging due 
to the complex and often subtle changes associated with metastatic le-
sions, necessitating the need for advanced diagnostic tools [15,16].

Radiomics, a field that extracts a large number of quantitative fea-
tures from medical images, has emerged as a powerful tool for 
enhancing diagnostic accuracy and prognostication in oncology [17]. By 
capturing the underlying tumor phenotype, radiomics can provide 
valuable insights into tumor heterogeneity and the microenvironment 
[18–20]. In recent years, the integration of radiomics with deep learning 
algorithms has shown promise in improving the detection and charac-
terization of various cancers, including metastatic bone disease [21]. 
Deep learning, a subset of artificial intelligence (AI) [22], involves the 
use of neural networks with many layers (hence “deep”) to model 
complex patterns in data. In medical imaging, deep learning algorithms, 
particularly convolutional neural networks (CNNs), have demonstrated 
remarkable capabilities in image recognition, classification, and seg-
mentation tasks [23]. These algorithms automatically learn hierarchical 
features from raw imaging data, eliminating the need for manual feature 
extraction [24]. This ability to learn and generalize from large datasets 
makes deep learning particularly suited for analyzing medical images, 
where subtle differences can be critical for accurate diagnosis [25,26]. 
Despite these advancements, the early and accurate detection of bone 
metastases from breast cancer remains a significant clinical challenge 
[27]. The heterogeneity of bone lesions, coupled with the limitations of 
conventional imaging techniques, underscores the need for more 

sophisticated and reliable diagnostic approaches [28]. Despite these 
advancements, the early and accurate detection of bone metastases from 
breast cancer remains a significant clinical challenge. The heterogeneity 
of bone lesions, coupled with the limitations of conventional imaging 
techniques, underscores the need for more sophisticated and reliable 
diagnostic approaches [29].

This study aims to develop a novel diagnostic tool using deep 
learning and radiomics to distinguish whether bone tumors seen on CT 
images are metastases from breast cancer. By providing a more accurate 
and reliable method for identifying metastatic bone tumors, this 
approach has the potential to significantly improve clinical decision- 
making and patient management in the context of breast cancer.

2. Methodology

The methodology section details the process of data collection, image 
preprocessing, and model development using the MISSU model. The 
justification for selecting the MISSU model and LASSO regression for 
feature selection is provided, highlighting their specific advantages. 
Radiomics features were extracted and selected, resulting in a robust 
model with high predictive power for distinguishing bone metastases 
from breast cancer.

2.1. Data collection

This study was conducted using a dataset comprising CT images of 
bone tumors from 178 patients, divided into two groups: 78 cases of 
bone metastases originating from breast cancer and 100 cases of bone 
metastases from non-breast cancer origins. The data collection process 
was approved by the institutional review board (IRB), and all patients 
provided informed consent for the use of their medical images for 
research purposes.

2.2. Image preprocessing

The collected CT images underwent a series of preprocessing steps to 
ensure the quality and consistency of the data. These steps included:

Normalization: Standardizing the pixel intensity values to a common 
scale. This step is crucial to reduce variability caused by differences in 
imaging protocols across different machines and centers, ensuring that 
the intensity values are comparable across all images.

Resampling: Adjusting the image resolution to a uniform voxel size. 
This step is necessary to facilitate the analysis and comparison of images 
by ensuring that the spatial dimensions are consistent. Resampling helps 
in standardizing the dataset, making it easier to apply uniform analytical 
methods and reducing the influence of varying resolutions.

Segmentation: Identifying and isolating the bone tumors from the 
surrounding tissues using semi-automated segmentation tools. Manual 
corrections were made by experienced radiologists to ensure accuracy. 
This step is essential to focus the analysis on the regions of interest 
(tumors), removing irrelevant background information and ensuring 
that the extracted features are specific to the tumor regions (Fig. 1).

2.3. Stratified sampling

To ensure that the training and validation sets were representative of 
the overall dataset, stratified sampling was employed. The data were 
divided into 10 subsets, with 7 subsets used for training and 3 subsets 
used for validation. This approach helped maintain the proportion of 
breast cancer and non-breast cancer bone metastasis cases in both the 
training and validation sets.

2.4. Deep learning model development

The Medical Image Segmentation via Self-distilling TransUNet 
(MISSU) model was chosen for this study due to its unique combination 
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of convolutional neural networks (CNNs) and transformer-based archi-
tectures, which offer several specific advantages over other potential 
models. The MISSU model leverages the strengths of both CNNs and 
transformers. CNNs are highly effective in capturing local spatial fea-
tures through convolutional operations, while transformers excel in 
modeling global dependencies by using self-attention mechanisms. This 
hybrid approach enables the MISSU model to capture both fine-grained 
local details and long-range contextual information, essential for accu-
rate segmentation of complex medical images. The self-distillation 
component of the MISSU model enhances learning efficiency and re-
duces computational costs. By distilling knowledge from the multi-scale 
fusion outputs to the local 3D features during training, the model im-
proves its ability to learn hierarchical features effectively. This mecha-
nism also helps in maintaining high performance while reducing the 
inference time, making it more suitable for clinical applications where 
quick and accurate results are needed. The architecture of the MISSU 
model allows it to be scaled and adapted for various medical imaging 
tasks beyond bone metastasis detection. Its ability to generalize well 
across different datasets and imaging conditions makes it a versatile tool 
in the field of medical image analysis. Compared to other segmentation 
models such as U-Net, V-Net, or traditional CNN-based models, the 

MISSU model has shown state-of-the-art performance in multiple 
benchmark studies. Its innovative design combining CNNs and trans-
formers addresses some of the limitations of purely convolutional or 
attention-based models, providing a more balanced and comprehensive 
approach to image segmentation [30].

The MISSU model was used for this study, leveraging a hybrid of 
convolutional neural networks (CNNs) and transformer-based architec-
tures for segmentation and prediction shown in Fig. 2.

• Encoder: The encoder used 3D CNNs to extract hierarchical features 
from the images, capturing fine-grained details necessary for accu-
rate segmentation.

• Transformer Module: The transformer module processed the feature 
maps to model global dependencies, enhancing the ability to capture 
long-range interactions within the images.

• Decoder: The decoder reconstructed the segmented output from the 
encoded feature maps using upsampling layers, combining high-level 
features from the transformer with detailed features from the 
encoder through skip connections.

• Self-Distillation: This mechanism improved the learning of local 
features by transferring knowledge from the multi-scale fusion 

Fig. 1. Examples of Bone Metastases and 3D Renderings. Panel A: Example of breast cancer spinal bone metastasis. The images show the metastatic lesion (indicated 
by red arrows) in different views, along with a 3D rendering of the segmented lesion. Panel B: Example of lung cancer bone metastasis. The images illustrate the 
metastatic lesion (indicated by red arrows) in various views, accompanied by a 3D rendering of the segmented lesion. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

Lsd

Fig. 2. Architecture of the Automatic Segmentation Algorithm.
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outputs to the local 3D features during training, reducing computa-
tional costs during inference.

2.5. Training and validation

The dataset was split into training (70 %) and validation (30 %) sets 
based on the stratified sampling method. The MISSU model was trained 
and validated using ten-fold cross-validation to ensure robust perfor-
mance evaluation.

The model was trained using a stochastic gradient descent (SGD) 
optimizer with an initial learning rate of 0.001. A cross-entropy loss 
function was employed to measure the discrepancy between the pre-
dicted and actual class labels. During training, hyperparameters such as 
learning rate, batch size, and the number of epochs were fine-tuned 
based on validation performance. Early stopping was implemented to 
halt training when the validation loss ceased to decrease, preventing 
overfitting.

The use of ten-fold cross-validation ensured that all cases in the 
dataset underwent automated segmentation and validation. This 
method divided the dataset into ten subsets, where nine subsets were 
used for training and one subset for validation in each iteration. This 
process was repeated ten times, with each subset serving as the valida-
tion set once [31].

After the cross-validation process, every case in the dataset had been 
segmented automatically by the model. The automated segmentations 
were then compared to the ground truth segmentations to calculate the 
average performance metrics. The key metric used to validate the ac-
curacy of the segmentation algorithm was the Dice similarity coefficient 
(DSC), which measured the overlap between the predicted segmenta-
tions and the ground truth. This provided a comprehensive assessment 
of the model’s segmentation accuracy.

2.6. Radiomics feature extraction

Radiomics features were extracted from the segmented tumor re-
gions using the Pyradiomics library. These features capture various as-
pects of the tumor phenotype, including:

Shape Features: Quantifying the geometric properties of the tumor, 
such as volume, surface area, and sphericity.

Intensity Features: Describing the distribution of pixel intensities 
within the tumor, including mean, median, and standard deviation.

Texture Features: Characterizing the spatial arrangement of pixel 
intensities, including gray level co-occurrence matrix (GLCM), gray level 
run length matrix (GLRLM), and gray level size zone matrix (GLSZM) 
features [32].

Least Absolute Shrinkage and Selection Operator (LASSO) regression 
was selected for feature selection in this study due to its several ad-
vantages and effectiveness in the context of radiomics.. Radiomics fea-
tures are typically high-dimensional, often comprising hundreds to 
thousands of features. LASSO regression is well-suited for high- 
dimensional datasets because it can perform both variable selection 
and regularization simultaneously, thus preventing overfitting and 
enhancing model generalizability. LASSO imposes an L1 penalty on the 
regression coefficients, which effectively shrinks some coefficients to 
zero. This results in a sparse model where only the most significant 
features are retained. This sparsity is particularly beneficial in radio-
mics, where many features may be redundant or irrelevant. By selecting 
only a subset of the most predictive features, LASSO regression improves 
the interpretability of the model. This is crucial in clinical settings where 
understanding the contribution of each feature to the prediction is 
important for validating the model’s applicability and reliability. The 
regularization aspect of LASSO helps achieve a good balance between 
bias and variance. By shrinking less important feature coefficients to-
wards zero, LASSO reduces model complexity without compromising 
predictive performance, thereby enhancing the model’s robustness 
against overfitting. In our study, LASSO regression identified 20 key 

radiomics features that were most predictive of distinguishing bone 
metastases originating from breast cancer from those arising from other 
sources. These selected features were then used to construct a robust 
radiomics model that demonstrated high discriminatory power and ac-
curacy [33].

To identify the most discriminative features and ensure the robust-
ness of the radiomics model, a comprehensive statistical analysis and 
feature selection process was conducted. Intraclass Correlation Coeffi-
cient (ICC) Analysis: To evaluate the reliability and reproducibility of 
the radiomics features extracted from automated and manual segmen-
tations, ICC analysis was performed. Features with an ICC greater than 
0.9 were retained, indicating excellent agreement and high reproduc-
ibility between the features extracted from automated and manual 
segmentations. Principal Component Analysis (PCA): PCA was used to 
reduce the dimensionality of the feature space while retaining the most 
important information, thereby simplifying the model and improving its 
generalization ability. Least Absolute Shrinkage and Selection Operator 
(LASSO) Regression: LASSO regression was employed to select the final 
set of features by imposing a penalty on the absolute size of the 
regression coefficients, effectively shrinking some coefficients to zero 
and thus selecting only the most predictive features. This process 
resulted in the retention of 20 key radiomics features for model 
development.

2.7. Performance evaluation

The 20 selected features were used to construct a radiomics model 
aimed at distinguishing bone metastases originating from breast cancer 
from those arising from other sources. The model development process 
involved training and validation using ten-fold cross-validation to 
ensure robust and unbiased performance evaluation. Multiple machine 
learning models, including Support Vector Machine (SVM), Logistic 
Regression (LR), K-Nearest Neighbors (KNN), Random Forest, Extra 
Trees, XGBoost, LightGBM, and Multi-Layer Perceptron (MLP), were 
employed to build the model. Each model was evaluated based on its 
accuracy, AUC, sensitivity, and specificity to identify the best- 
performing algorithm for this task.

The performance of the radiomics model was compared to tradi-
tional radiomics-based classifiers. The model’s ability to correctly 
identify breast cancer bone metastasis was evaluated through confusion 
matrices and performance metrics. Key evaluation metrics included:

Performance Metrics: Calculating accuracy, precision, recall, F1- 
score, area under the receiver operating characteristic curve (AUC- 
ROC), and the Dice similarity coefficient (DSC). The DSC was specif-
ically used to evaluate the automatic segmentation performance, 
measuring the overlap between the predicted segmentation and the 
ground truth. A higher DSC indicates better segmentation accuracy, 
reflecting the model’s ability to precisely delineate tumor boundaries.

The entire workflow, from data preprocessing to model evaluation, 
was implemented using Python, with libraries such as TensorFlow, 
Keras, and Pyradiomics. The results were statistically analyzed using the 
Scikit-learn library.

This methodology provides a comprehensive framework for devel-
oping and evaluating a CT-based deep learning and radiomics tool for 
the detection of bone tumors originating from breast cancer metastasis. 
By integrating advanced imaging analysis techniques with machine 
learning, this approach aims to enhance diagnostic accuracy and support 
clinical decision-making.

3. Results

3.1. Automatic segmentation validation

The training process of the MISSU model is illustrated by the loss and 
Dice coefficient curves shown above. Above as shown Fig. 3. The loss 
curve (left panel) demonstrates a typical exponential decay, indicating a 
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consistent reduction in the loss value as the number of training epochs 
increases. Initially, the loss value is relatively high, reflecting the 
model’s inaccuracy at the beginning of the training process. As training 
progresses, the loss value decreases rapidly, indicating that the model is 
learning effectively and improving its predictions. Towards the end of 
the training (around 1000 epochs), the loss curve approaches zero, 
suggesting that the model has achieved a high level of accuracy and the 
error has been minimized. The Dice coefficient curve (right panel) shows 
the improvement in the model’s segmentation accuracy over the 
training epochs. Initially, the Dice coefficient is low, reflecting poor 
overlap between the predicted and actual segmentations. As the number 
of epochs increases, the Dice coefficient rises sharply, indicating sig-
nificant improvement in segmentation accuracy. The curve gradually 
levels off and approaches a Dice coefficient of 0.915, suggesting that the 
model is achieving nearly optimal segmentation performance. This 
trend indicates that with sufficient training, the model can reliably 
predict segmentations that closely match the ground truth. In summary, 
these curves illustrate the effective learning and convergence of the 
MISSU model during the training process, with the loss decreasing to 
near zero and the Dice coefficient approaching an optimal value, thereby 
demonstrating the model’s capability to perform accurate and reliable 
segmentation tasks. Following ten-fold cross-validation, all cases un-
derwent fully automated segmentation validation using the MISSU 
model. The average Dice similarity coefficient (DSC) for the automated 
segmentation across all cases was 0.915, indicating a high level of 
agreement between the automated segmentations and the manual seg-
mentations performed by experienced radiologists. This high DSC 
demonstrates the efficacy of the MISSU model in accurately delineating 
bone tumors from CT images.

3.2. Feature extraction and selection

A comprehensive set of 1316 radiomics features was extracted from 
the automatically segmented regions of interest (ROIs). These features 
encompassed various aspects of the tumor phenotype, including shape, 
intensity, and texture features. The same feature extraction process was 
applied to the manually segmented ROIs to ensure a consistent basis for 
comparison.

To evaluate the reliability and reproducibility of the radiomics fea-
tures extracted from automated and manual segmentations, the intra-
class correlation coefficient (ICC) was calculated for each feature. 
Features with an ICC greater than 0.9 were retained, indicating excellent 

agreement and high reproducibility between the features extracted from 
automated and manual segmentations. This step ensured that only the 
most reliable features were considered for subsequent analysis.

After retaining the highly reproducible features (ICC > 0.9), a feature 
selection process was conducted using Least Absolute Shrinkage and 
Selection Operator (LASSO) regression. LASSO is a regularization tech-
nique that enhances model performance by selecting a subset of the most 
predictive features while minimizing overfitting. Through LASSO 
regression, 20 key radiomics features were identified and retained for 
model development shown in Fig. 4.

These 20 selected features were used to construct a radiomics model 
aimed at distinguishing bone metastases originating from breast cancer 
from those arising from other sources. The model development process 
involved training and validation using the stratified sampling method to 
ensure robust and unbiased performance evaluation.

3.3. Model performance

The performance of the developed radiomics model was evaluated 
using Receiver Operating Characteristic (ROC) curve analysis. The ROC 
curve is a graphical representation of the true positive rate (sensitivity) 
versus the false positive rate (1-specificity) across various threshold 
settings shown in Fig. 5. The area under the ROC curve (AUC) provides a 
single measure of overall model performance, with higher values indi-
cating better discriminatory ability.

The radiomics model was evaluated comprehensively, with multiple 
machine learning algorithms including Support Vector Machine (SVM), 
Logistic Regression (LR), K-Nearest Neighbors (KNN), Random Forest, 
Extra Trees, XGBoost, LightGBM, and Multi-Layer Perceptron (MLP). 
Each model’s performance was assessed based on its accuracy, AUC, 
sensitivity, and specificity. The box plot in Fig. 6 illustrates the 
comparative AUC values for different models, with the SVM model 
demonstrating the highest median AUC, thereby confirming its superior 
performance in distinguishing bone metastases from breast cancer 
compared to other models.

The SVM model demonstrated the highest performance among the 
evaluated algorithms. On the training set, the SVM model achieved an 
accuracy of 0.864 with a 95 % confidence interval (CI) ranging from 
0.909 to 0.962, and on the test set, the accuracy was 0.853 with a 95 % 
CI of 0.892 to 1.000. The sensitivity for the training set was 0.838 (95 % 
CI: 0.789–––0.896) and 0.789 (95 % CI: 0.733–––0.933) for the test set. 
The specificity was 0.896 for the training set (95 % CI: 0.789–––0.933) 

Fig. 3. Training Process of the MISSU Model. Left Panel: The loss curve shows the exponential decay of the loss value over 1000 training epochs. The rapid decrease 
in loss indicates effective learning, with the loss approaching zero, suggesting minimal error by the end of the training. Right Panel: The Dice coefficient curve 
illustrates the improvement in segmentation accuracy over the same period. Starting from a low value, the Dice coefficient increases sharply and approaches 0.915, 
demonstrating that the model achieves high accuracy and reliable segmentation performance as training progresses.

X. Zhao et al.                                                                                                                                                                                                                                    Journal of Bone Oncology 48 (2024) 100638 

5 



and 0.933 for the test set (95 % CI: 0.789–0.933).
The SVM model’s AUC was exceptionally high, with 0.936 on the 

training set and 0.953 on the test set, indicating its superior discrimi-
natory power. These results underscore the SVM model’s effectiveness in 
accurately distinguishing bone metastases originating from breast can-
cer from other sources.

Additionally, the average Dice similarity coefficient for the auto-
mated segmentation was 0.915, demonstrating a high level of agreement 
with manual segmentations, further validating the robustness and ac-
curacy of the segmentation process.

The detailed performance metrics for all models, including SVM, are 
summarized in Table 1, highlighting the SVM model’s superior perfor-
mance in distinguishing bone metastases from breast cancer.

These metrics indicate that the radiomics model not only has high 

discriminatory power (AUC) but also performs well in correctly identi-
fying both true positive and true negative cases, making it a valuable 
tool for clinical decision-making. The Support Vector Machine (SVM) 
model demonstrated superior performance among the evaluated algo-
rithms, with an AUC of 0.936 on the training set and 0.953 on the test 
set. The high accuracy, sensitivity, and specificity of the SVM model 
further emphasize its effectiveness in distinguishing bone metastases 
originating from breast cancer from other sources. The developed 
radiomics model, validated through robust statistical methods and 
comprehensive feature selection, demonstrates significant potential in 
enhancing the diagnostic accuracy of bone metastases identification in 
clinical settings. By integrating advanced automated segmentation with 
sophisticated radiomics analysis, this approach offers a promising 
pathway for improving patient outcomes in oncology. The high Dice 

Fig. 4. Radiomics Feature Selection and Model Development Process. Panel A: Cross-validated mean squared error (MSE) plotted against the log-transformed lambda 
values during the LASSO regression process. The dashed vertical line represents the optimal lambda value (λ = 0.0391) that minimizes the MSE, indicating the point 
at which the model achieves the best balance between bias and variance. Panel B: LASSO coefficient profiles of the 1316 radiomics features. The plot illustrates how 
the coefficients of each feature shrink towards zero as the penalty (lambda) increases. The optimal lambda (λ = 0.0391) is marked by the dashed vertical line, 
showing the selected features with non-zero coefficients. Panel C: Bar plot of the coefficients of the 20 selected radiomics features after LASSO regression. The length 
of the bars represents the magnitude of each feature’s contribution to the model, with positive and negative coefficients indicating the direction of their influence on 
the outcome prediction.
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Fig. 5. Receiver Operating Characteristic (ROC) curve of the developed radiomics model. The ROC curve illustrates the model’s performance in distinguishing 
between bone metastases from breast cancer and other origins. The training set SVM achieved an AUC of 0.936 (95 % CI: 0.909–0.962), and the test set SVM achieved 
an AUC of 0.953 (95 % CI: 0.892–1.000), indicating excellent discriminatory ability.

X. Zhao et al.                                                                                                                                                                                                                                    Journal of Bone Oncology 48 (2024) 100638 

7 



similarity coefficient of 0.915 for the automated segmentation un-
derscores the reliability and precision of the segmentation process, 
contributing to the overall effectiveness of the diagnostic tool.

4. Discussion

The study introduces a groundbreaking method for detecting bone 
metastases from breast cancer using CT-based radiomics combined with 
deep learning [34,35]. This approach has several critical clinical 
implications:

Diagnostic Precision and Patient Management: The radiomics 
model demonstrated high discriminatory power with AUC values of 
0.925 for the training set and 0.869 for the test set. This high level of 
accuracy underscores the model’s effectiveness in distinguishing bone 

metastases from breast cancer versus other origins, which can signifi-
cantly improve diagnostic precision. Enhanced diagnostic precision 
directly influences patient management by ensuring that appropriate 
and timely interventions are provided, reducing the likelihood of 
misdiagnosis and unnecessary treatments [36,37].

Segmentation Accuracy and Treatment Planning: The MISSU 
model’s segmentation capabilities, validated by a Dice similarity coef-
ficient of 0.915, highlight the model’s proficiency in accurately delin-
eating bone tumors. This high degree of accuracy in segmentation is 
crucial for precise treatment planning and monitoring. Accurate delin-
eation of tumors allows for better targeted therapies, potentially 
improving the efficacy of treatments such as radiation therapy, where 
precise targeting is essential to maximize the dose to the tumor while 
minimizing exposure to surrounding healthy tissue [38].

Fig. 6. Box Plot of AUC Values for Different Models. This figure presents a box plot comparing the Area Under the Curve (AUC) values for various machine learning 
models used to distinguish bone metastases originating from breast cancer from other sources. The models evaluated include Logistic Regression (LR), Support Vector 
Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, Extra Trees, XGBoost, LightGBM, and Multi-Layer Perceptron (MLP). Each box represents the inter-
quartile range (IQR) of AUC values, with the horizontal line inside each box indicating the median AUC value. Whiskers extend to the minimum and maximum AUC 
values within 1.5 times the IQR from the lower and upper quartiles, respectively. The SVM model, as highlighted in the results, demonstrated the highest median 
AUC, indicating its superior discriminatory power in the dataset.

Table 1 
Performance metrics of the radiomics model.

Model Name Accuracy AUC 95 % CI Sensitivity Specificity Task

SVM 0.864 0.936 0.909––0.962 0.838 0.896 train
0.853 0.953 0.892–1.000 0.789 0.933 test

LR 0.774 0.844 0.800–0.887 0.760 0.791 train
0.765 0.839 0.703–0.974 0.737 0.800 test

KNN 0.714 0.859 0.8200–0.897 0.515 0.963 train
0.824 0.926 0.846–1.000 0.789 0.867 test

RandomForest 0.781 0.862 0.822–0.902 0.683 0.903 train
0.706 0.775 0.608–0.943 0.684 0.733 test

ExtraTrees 0.751 0.828 0.783––0.873 0.814 0.672 train
0.824 0.814 0.646–––0.983 0.789 0.867 test

XGBoost 0.950 0.983 0.971––0.995 0.958 0.940 train
0.735 0.789 0.632–0.947 0.579 0.933 test

LightGBM 0.791 0.887 0.853–0.922 0.749 0.843 train
0.824 0.874 0.732–1.000 0.842 0.800 test

MLP 0.804 0.880 0.843–0.918 0.731 0.896 train
0.765 0.842 0.707–0.978 0.632 0.933 test
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Early Detection and Prognosis Improvement: By leveraging 
advanced imaging analysis techniques, this approach facilitates the 
early detection of metastatic bone disease. Early intervention is critical 
for initiating timely and effective treatment, which can significantly 
enhance the quality of life and prognosis for patients with metastatic 
breast cancer. Detecting metastases at an early stage can lead to more 
successful management of the disease, potentially prolonging survival 
and improving the overall health outcomes for patients [21].

Non-Invasive Diagnosis and Reduced Patient Burden: The use of 
CT imaging combined with radiomics and deep learning provides a non- 
invasive method for diagnosing bone metastases. This reduces the need 
for more invasive diagnostic procedures, thereby minimizing patient 
discomfort and risk. Non-invasive methods are particularly beneficial 
for patients who may be unable to undergo invasive procedures due to 
other health conditions or preferences, thereby broadening the appli-
cability of the diagnostic approach.

Personalized Treatment Plans: The detailed radiomic features 
extracted from CT images can also contribute to the development of 
personalized treatment plans. By understanding the specific character-
istics of the bone metastases, oncologists can tailor treatment strategies 
to the individual patient’s tumor profile, potentially improving treat-
ment outcomes. For example, certain radiomic features might correlate 
with responsiveness to specific chemotherapies or targeted therapies, 
allowing for more personalized and effective treatment regimens [31].

The results indicate that the developed radiomics model is robust and 
reliable. Specifically, the SVM model achieved an AUC of 0.936 on the 
training set and 0.953 on the test set, demonstrating its superior 
discriminatory ability. The accuracy of 0.864 on the training set and 
0.853 on the test set further confirms the model’s reliability in correctly 
identifying both true positive and true negative cases. The sensitivity 
values of 0.838 for the training set and 0.789 for the test set, along with 
specificity values of 0.896 for the training set and 0.933 for the test set, 
illustrate the model’s balanced performance in detecting true positives 
while minimizing false positives. These metrics collectively highlight 
the model’s potential utility in clinical decision-making. As shown in 
Fig. 6, the SVM model demonstrated the highest median AUC among the 
evaluated models, confirming its superior performance in distinguishing 
bone metastases from breast cancer [39].

Integration with Clinical Workflow: Future research should focus on 
integrating this radiomics model into clinical workflows. This involves 
developing user-friendly software tools that can be seamlessly incor-
porated into routine clinical practice, allowing radiologists and oncol-
ogists to utilize the model’s predictions in real-time. Although the model 
demonstrated excellent performance on the current dataset, further 
validation on larger and more diverse datasets is essential. This will 
ensure the model’s generalizability and robustness across different pa-
tient populations and imaging settings. Combining CT-based radiomics 
with other imaging modalities such as MRI and PET could enhance the 
diagnostic accuracy further. Multimodal imaging can provide comple-
mentary information about the tumor microenvironment, leading to 
more comprehensive and accurate assessments. Future studies could 
explore the incorporation of additional radiomics features and advanced 
feature selection techniques. This may uncover new biomarkers and 
improve the model’s predictive power. Beyond detection, radiomics and 
deep learning can be used to predict treatment response and outcomes. 
Developing models that can guide personalized treatment planning 
based on the radiomic profiles of bone metastases can significantly 
impact patient care. Conducting prospective clinical trials to evaluate 
the real-world performance of the model is crucial. These trials can 
provide evidence of the model’s efficacy and safety, facilitating its 
adoption in clinical practice.

While this study presents significant advancements, there are limi-
tations that need to be acknowledged [40]. The dataset size, though 
adequate for this study, could be expanded to include a broader range of 
cases to improve the model’s generalizability. Additionally, the study 
focused solely on CT imaging, and incorporating multimodal imaging 

could provide a more comprehensive diagnostic tool [41]. Future 
research should focus on integrating this radiomics model into clinical 
workflows. This involves developing user-friendly software tools that 
can be seamlessly incorporated into routine clinical practice, allowing 
radiologists and oncologists to utilize the model’s predictions in real- 
time. Further validation on larger and more diverse datasets is essen-
tial to ensure the model’s generalizability and robustness across 
different patient populations and imaging settings. Combining CT-based 
radiomics with other imaging modalities, such as MRI and PET, could 
enhance diagnostic accuracy further. Multimodal imaging can provide 
complementary information about the tumor microenvironment, lead-
ing to more comprehensive and accurate assessments [4].

5. Conclusion

This study demonstrates the potential of combining CT-based 
radiomics and deep learning for the accurate detection of bone metas-
tases from breast cancer. The high-performance metrics indicate that 
this approach can significantly enhance diagnostic accuracy, aiding in 
early detection and improving patient outcomes. Future research should 
aim to validate these findings on larger datasets, integrate the model 
into clinical workflows, and explore its use in personalized treatment 
planning.
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