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We describe a gridded daily meteorology dataset consisting of precipitation, minimum and maximum
temperature over Java Island, Indonesia at 0.125° × 0.125° (~14 km) resolution spanning 30 years from
1985–2014. Importantly, this data set represents a marked improvement from existing gridded data sets
over Java with higher spatial resolution, derived exclusively from ground-based observations unlike existing
satellite or reanalysis-based products. Gap-infilling and gridding were performed via the Inverse Distance
Weighting (IDW) interpolation method (radius, r, of 25 km and power of influence, α, of 3 as optimal
parameters) restricted to only those stations including at least 3,650 days (~10 years) of valid data. We
employed MSWEP and CHIRPS rainfall products in the cross-validation. It shows that the gridded rainfall
presented here produces the most reasonable performance. Visual inspection reveals an increasing
performance of gridded precipitation from grid, watershed to island scale. The data set, stored in a network
common data form (NetCDF), is intended to support watershed-scale and island-scale studies of short-term
and long-term climate, hydrology and ecology.

Design Type(s) data integration objective • observation design

Measurement Type(s) hydrological precipitation process • temperature of air

Technology Type(s) weather station

Factor Type(s) geographic location

Sample Characteristic(s)
Central Java Province • atmosphere • East Java Province • West Java
Province
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Background & Summary
Accurate modeling of hydrological, ecological, and climatic processes1–3, requires reliable spatial and
temporal estimates of meteorology2. Near-surface observation-based meteorological datasets are ideal
inputs for the aforementioned modeling applications4,5. However, meteorological observations are
irregularly spaced6 and often clustered around population centers, while models typically require
meteorological data on a quasi-continuous, regular grids, representing a practical challenge. Here, we
present gridded daily precipitation (P), minimum temperature (Tmin) and maximum temperature
(Tmax) data for the island of Java—the first of its kind, high-resolution, station-based gridded
meteorology product in Indonesia.

Precipitation over Java exhibits large seasonal variability in which the dry season, May-Oct, has greater
inter-annual variability than the wet season, Nov-Apr7. The southwestern part of the island receives more
annual rainfall than the northeastern region due to influences from the ocean-atmospheric circulation in
the Indian Ocean8. Mountains across the island (from west to east) create additional orographically-
driven precipitation variability8 and their relief form a series of small watersheds that drain to the south
and north.

Existing gridded meteorological data products for Java include satellite-only datasets, reanalysis
products, coarse resolution gauge datasets and products that combine these sources. The details of these
products are presented in Table 1.

Despite the availability of the products in Table 1, they each have unique shortcomings. Satellite
products tend to have large sensor errors due to their dependence on rainfall regime (character of the
seasonal distribution of rainfall–the more the rainfall regime tends toward deep convection, the more
accurate the satellite estimates are), short time record and lack of local data9. On the other hand,
reanalysis products tend to be coarser in resolution—0.5° × 0.5° or coarser10. The International
Precipitation Working Group (IPWG) found the satellite-based TRMM3B42 produced relatively accurate
high-resolution precipitation estimates for operational use9–although, it too suffers from a relatively short
record and coarse spatial resolution (0.25° × 0.25°) spanning the period 1998–2013. Conversely,
APHRODITE provides daily data (0.25° × 0.25°) for a longer period 1950–2007 (ref. 3). However, over
Java, APHRODITE was derived from only 20 stations3. The most recently updated rainfall products
available in the region are the Multi-Source Weighted-Ensemble Precipitation (MSWEP)11 and the
Climate Hazards group Infrared Precipitation with Stations (CHIRPS)12. While MSWEP mixes satellite
and reanalysis products, CHIRPS combines gauge, satellite and reanalysis precipitation11–13. MSWEP is
available on 0.25° × 0.25° grid—for the period 1979–2015 (ref. 11), while CHIRPS rainfall estimates
running from 1981 up to present on 0.25° × 0.25° grid12.

This dataset was developed at a 0.125° × 0.125° resolution, spanning 1985–2014. This temporal period
was selected to balance available data with a temporal period long enough to enable hydroclimate
research. The grid size was chosen to maximize station coverage while representing spatial variability of
watershed-scale natural processes in the predominantly small watersheds of Java, and was gridded from a
much larger number of precipitation gauges (765 stations) than other products, e.g., APHRODITE
~20 stations. A study by [8] recently applied these data to drive a land-surface model (LSM) over Java
which found that higher spatial resolution meteorological data produced better model performance and
hydrologic process representation than coarser meteorology. Below we describe the station data, the
gridding methodology, and present an evaluation of the gridded product using two existing products
(MSWEP and CHIRPS) as well as with a cross-validation procedure.

Source Product Spatial resolution Reference

Gauge datasets Climatic Research Unit Time Series (CRUTS) 0.5° × 0.5° 25

Global Precipitation Climatology Centre (GPCC) 0.5° × 0.5° 26

Asian Precipitation—Highly—Resolved Observational Data Integration Towards
Evaluation of Water Resources (APHRODITE)

0.25° × 0.25° 3

Satellite-only datasets CICS High-Resolution Optimally Interpolated Microwave Precipitation from
Satellites (CHOMPS)

0.25° × 0.25° 27

Precipitation Estimation from Remote Sensing Information using Artificial Neural
Network (PERSIANN)

0.25° × 0.25° 28

Tropical Rainfall Measuring Mission Product 3B42 (TRMM3B42) 0.25° × 0.25° 29

Reanalysis products Global Precipitation Climatology Project (GPCP) 1° × 1° 30

CPC Merged Analysis of Precipitation (CMAP) 2.5° × 2.5° 31

Modern Era Retrospective Analysis for Research and Applications (MERRA) 0.5° × 0.5° 32

Blended source datasets Multi-Source Weighted-Ensemble Precipitation (MSWEP) 0.25° × 0.25° 11

Climate Hazardss group Infrared Precipitation with Stations (CHIRPS) 0.25° × 0.25° 12

Table 1. Meteorological data products available for Java Island.
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Methods
Station data
Figure 1 shows the spatial and temporal availability of precipitation observations over Java for each
decade starting in 1985. The precipitation stations are irregularly distributed over the island. However,
the mean station density is approximately one station per 135 km2. As a compromise between including
both long-term and spatially diverse stations, we selected stations with more than 3,650 days of
non-missing data over the study period (Fig. 1a). East Java has the fewest non-missing data followed by
Central and West Java (Fig. 1b,c,d). The period around 2005 has the fewest missing data across the island
whereas missing data were markedly more widespread before 1990.

Gap-infilling and gridding procedure
Gap-infilling was conducted to create serially complete station records to minimize discontinuities in the
gridded product during periods of missing data. Several methods are typically applied to interpolate and
infill rainfall in time (i.e., gap-infilling) and space14–17. The Inverse Distance Weighting (IDW) and
geostatistical Kriging methods with all their respective variants are the two most widely employed and
evaluated methods in literature16–18. IDW is a straightforward method that requires relatively few input
data. On the other hand, Kriging can account for the spatial correlations between neighboring
observations, and can incorporate covariates into the gridding process17–19. All Kriging variants perform
better than IDW at a monthly time scale18. However, at a daily time step, both IDW and Kriging produce
comparably small errors17. In addition, for small watersheds, IDW was shown to perform better than
Kriging20. In tropical regions, IDW interpolation performed slightly better than Kriging19. Kriging
requires estimation of variogram to describe the degree of spatial dependence of a spatial random field or
stochastic process, which is notoriously difficult to fit with short data records and it can be problematic
fitting a variogram for daily fields like precipitation that can take on ‘zero’ values.

Given that the majority of watersheds in Java are small, IDW was chosen here for both gap-infilling
and the gridding process. The interpolated values were estimated as a weighted linear combination of
nearest observations, with the weights proportional to the inverse of the distance between neighboring
observations and interpolation location21, as presented below.

q̂ ¼
Pn

i¼1
1
rαi
qi

Pn
i¼1

1
rαi

ð1Þ

where q̂ is the interpolated (gridded) value, qi is the observed value in station i, ri is the euclidean distance
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Figure 1. Spatial and temporal distribution of precipitation data. (a) the percentage of missing data for each

station over the entire record period (the number of days with missing data divided by the total number of

days), while (b), (c) and (d) show the percentage of missing data for the first, second, and third decade,

respectively, and (e) the percentage of stations with missing daily data through time.
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between interpolated station and station i; α is the power of distance and n is the total number of stations
interpolated per grid.

The radius of influence (r) and the power of distance (α) are parameters which were adjusted to
obtain an optimal interpolated value. Interpolated root mean square errors are minimized when
r ranges from 10–30 km and α between 0–5 (ref. 22). To optimize, we considered r values of 10, 25 and
50 km to interpolate surrounding stations and α of 1, 2 and 3 to weigh local and regional influences.
Since missing data were numerous at times (especially before 1990) and the distances between stations
in some regions are relatively large (Fig. 1e), we added a constraint requiring a minimum number
of stations to be interpolated. Four stations with non-missing data were required to lie within the
radius (n= 4), otherwise the nearest next-closest stations with non-missing data were selected.
Figure 2a shows that the number of stations with non-missing data within r of 10 km was less than
four, which fails to meet the threshold, thus only r of 25 and 50 km were applied, with a smaller
radius (25 km) preferable to avoid smoothing of data from differing precipitation events and orographic
facets.

To identify an α value which optimally captures spatial and temporal precipitation variability,
we applied IDW to daily station precipitation as well as mean daily precipitation at 9 selected
test locations spread relatively uniformly about the domain (Fig. 2b) using r of 25 km and α of
1, 2 and 3. The variability of station elevation was incorporated by defining R as the three-dimensional
Euclidean distance—i.e., square root of sum of squared x, y and z. For each location, the spatial average
of interpolated and observed daily precipitation were calculated and the correlations were
computed. Figure 2c shows that in nearly all cases, α of 3 achieves the best performance. Using
α of 3, we assessed the sensitivity of r to the interpolated values. IDW was less sensitive to radius
of influence, as indicated by the similar spatial pattern of mean daily gridded precipitation between
r of 25 versus 50 km (Fig. 2d,e). This is a feature of IDW whereby the higher the value of α, the less
weight is apportioned to more distant stations. Accordingly, we ultimately elected to use α= 3 and
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Figure 2. Selection of interpolation method. (a) the number of stations with non-missing data within

radius of influence (r) of 10, 25 and 50 km for each grid where each grid was assigned an index/number, the

horizontal black line is a threshold of 4 stations for IDW interpolation; (b) selected locations to examine the

performance of interpolation, the grid size is equivalent to 0.25° × 0.25° to capture at least one observed station;

(c) model performance between the box-average gridded and observed precipitation computed as the square

of the Pearson correlation coefficient, R2; (d) and (e) are mean daily precipitation which gridded using r of

25 and 50 km respectively.
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r= 25 km—i.e., using more heavily weighting fewer stations, but retaining the ability to capture
information from more distant.

Code availability
The data were processed using a standard version of the R software, R.3.2.2. The code is publically
available alongside the dataset (Data Citation 1). Some R packages need to be installed before
implementing the code and full instructions are provided together with the code.

Data Records
The various data sources are presented in Table 2. The Center of Water Resources Development
and Management, Ministry of Public Works, Indonesia provided most of the daily precipitation
data. Additional daily precipitation, minimum temperature and maximum temperature were
obtained from the Bureau of Meteorology, Climatology and Geophysics of Indonesia. The availability
of precipitation data was ultimately used to determine the most appropriate temporal domain for the
dataset.

The final dataset contains gridded station data for precipitation, maximum and minimum temperature
at a daily time step running from 1 January 1985–31 December 2014 at 0.125° × 0.125° resolution. The
dataset is stored in network common data form (NetCDF), archived at Data Citation 1.

Technical Validation
We validated the gridding procedure at station, watershed and island scales over daily and monthly time
steps using station observations as validation. We experimented with blending the station rainfall with
the most updated existing rainfall products, MSWEP and CHIRPS, to explore the potential
improvements for using a smooth surface (from MSWEP and CHIRPS) as the background for
interpolation rather than exclusively gridding irregularly spaced stations. Further, the two products were
developed using different sources and interpolation techniques11,12, potentially offering useful
independent information. These are rainfall products notably overlap the entire period of data presented
here. We first cross-validated the IDW procedure by removing daily observed values at each station
and then interpolating neighboring stations—using the IDW method, i.e., cross-validation. The
interpolated value could then be evaluated against the withheld observation from that day, we refer this as
‘station-IDW’. We repeated the cross-validation at randomly selected stations (15% of total stations) and
included 2 additional rainfall combinations to explore the potential utility of including MSWEP and
CHIRPS, e.g.,(i) station-IDW and MSWEP; and (ii) station-IDW and CHIRPS. These combinations were
computed by averaging station-IDW with MSWEP and CHIRPS, respectively. Percent bias (PBIAS)—the

Data type Source Details

Precipitation Center for Water Resources Research
and Development, Ministry of Public Works, Indonesia

945 total stations with 746 stations satisfying the
minimum length constraint of 3,650 days

BMKG Indonesia 19 total stations and 16 stations satisfy minimum length of 3,650 days

Minimum temperature BMKG Indonesia 19 total stations and 16 stations satisfy minimum length of 3,650 days

Maximum temperature BMKG Indonesia 19 total stations and 16 stations satisfy minimum length of 3,650 days

Table 2. Summary of daily data sources used to develop the meteorological dataset.

Sample Mean of PBIAS Standard deviation of PBIAS

Station-IDW Station-IDW and MSWEP Station-IDW and CHIRPS Station-IDW Station-IDW and MSWEP Station-IDW and CHIRPS

1 3.04 13.26 13.41 16.60 21.08 21.34

2 2.06 9.95 9.90 21.92 25.79 25.12

3 8.78 17.87 17.92 40.16 43.60 43.56

4 2.25 11.02 11.25 26.71 25.57 25.79

5 3.24 11.98 11.85 23.70 29.22 29.24

6 3.38 12.83 13.01 26.10 31.39 31.96

7 10.55 20.88 20.65 56.30 69.46 67.63

8 2.96 10.25 10.58 25.28 29.92 29.85

9 3.55 10.71 10.60 33.72 36.56 36.39

10 4.35 10.71 11.62 24.43 25.08 25.38

Table 3. Error statistics of randomly 106 stations sampled for cross-validation.
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Figure 3. Spatial map of cross-validation PBIAS for three rainfall interpolation procedures. Station-IDW

(left column), station-IDW+MSWEP (middle column) and station-IDW+CHIRPS (right column). Each row

represents different random sampling of rainfall stations (15% of total stations).
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difference between observation and interpolated estimates divided by the observation and reported as a
percentage—was computed for daily precipitation to validate the goodness of fit of the interpolation
procedure and data sources for the 15% of selected stations over the entire time period. Negative PBIAS
indicates that the gap-filling and gridding overestimates the observation and vice versa, with an optimum
value of zero. We ran 10 samples of random stations. For each sample, we calculated the spatial mean and
s.d. of PBIAS for all combinations (Table 3).

As shown in Table 3, the mean and standard deviation of PBIAS for station-IDW are smaller
(closer to zero) than other combinations with the exception of the standard deviation of Sample
4 where the smallest values are produced by averaged station-IDW and MSWEP. This indicates
that the IDW method, applied to ground-based observation rainfall produces the best rainfall estimate
for Java. We suspect that suspect that the blended products (MSWEP and CHIRPS) are best applied to
larger scales and that the reason that station-IDW performs better, is because it is derived from many
more stations.

Figure 3 shows a spatial map of PBIAS for cross-validation of the three combinations. For all samples,
the station-IDW rainfall estimate has smaller errors than combination using MSWEP and CHIRPS.
However, all three combinations exhibit similar patterns of overestimation near mountainous areas,
indicating persistent errors in quantifying orographic gradients.

At the watershed scale, station-IDW (Fig. 4b) exhibits more variability relative to other combinations
(Fig. 4c,d). Distinctive differences in rainfall between watersheds such as PG, GD and BD can be seen
for all three combinations. However, the MSWEP and CHIRPS blends have reduced variability relative
to IDW-station. Given the similarities in both blended precipitation products and their reduced
sensitivity to elevation, it is expected that station-IDW rainfall reconciles spatial variability more
explicitly, as it contains information from many more stations than the other products and is gridded at a
finer resolution.

Figure 5 illustrates watershed-scale variability between gridded precipitation at daily and monthly
time steps for each product combination. We validate the gridded precipitation with observed
streamflow to underscore the importance of the water balance for understanding hydrologic processes,
as discharge, Q, represents an integration of precipitation over an entire watershed22,23. We compare
statistical features of daily gridded precipitation and observed streamflow in Citarum (CT), Progo (PG),
Bengawan (BG), Grindulu (GD) and Bedadung (BD) watersheds. These watersheds have discharge
that passed quality control procedures outlined by [8]. We use Q-Q plot to match the quantiles
between the observed and interpolated esitmates and to identify the presence of outliers. As shown in the
Q-Q plots, both gridded precipitation and observed streamflow have similar distributions with slight
differences between station-IDW and averaged CHIRPS in PG and GD. The monthly gridded
precipitation hyetograph follows the streamflow hydrograph in all the watersheds, with a few exceptions
such as the earlier years of PG, while the year 2001 at GD likely has erroneous discharge, as it greatly
exceeds precipitation. All three combinations have similar hyetograph shape. Overall, these features
characterize the key hydrologic processes in Java, minimal lag time between monthly precipitation and
streamflow24.
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Figure 4. Watershed-scale validation. (a) topography of Java Island overlain by all watersheds; (b), (c) and

(d) station-IDW, station-IDW+MSWEP, station-IDW+CHIRPS, respectively, overlain by 5 study watersheds.
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An additional island-scale validation was conducted, comparing probability density functions (PDFs),
scatterplots, and time series of station and gridded data for P, Tmin and Tmax. Both spatial (Fig. 6a,e,i)
and temporal (Fig. 6b,f,j) PDFs were estimated, with the former computed using the mean island-wide
field for each day, and the latter computed as the mean inter-grid-cell difference averaged over time. In
addition, the daily and seasonal variability of the dataset was examined in scatterplots (Fig. 6c,g,k) and
comparing their monthly time series (Fig. 6d,h,l). Given the relative similarity of the three combinations
shown already at station and watershed scales, we perform the remaining island scale analyses using
station-IDW only.

The gridded and station-based precipitation are comparably distributed over time and space with
similar spatial PDF features for minimum and maximum temperature. However, the temporal PDFs for
temperature exhibit fairly large differences, which we attribute to large distances between temperature
stations. Overall, scatterplots and monthly time series of the spatial average of meteorological fields
indicate that the gridded product closely matches the station data for all variables, with regression lines
close to the 1:1 line (black line) (Fig. 3c,g,k).

Usage Notes
We caution data users who aim to use this dataset for trend analyses that many stations do not extend
for the entire period 1985–2014. Another point of caution is that the pre-1990 period has greater
than 50% of stations reporting missing data. Similarly, users of data in West Java particularly in the
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period of 1985–1994 and 2005–2014 should be aware that most stations have more than 70%
missing data.
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