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Abstract: Artificial Neural Network (ANN), together with a Particle Swarm Optimization (PSO) and
Finite Element Model (FEM), was used to forecast the process performances for the Micro Electrical
Discharge Machining (micro-EDM) drilling process. The integrated ANN-PSO methodology has a
double direction functionality, responding to different industrial needs. It allows to optimize the
process parameters as a function of the required performances and, at the same time, it allows to
forecast the process performances fixing the process parameters. The functionality is strictly related to
the input and/or output fixed in the model. The FEM model was based on the capacity of modeling
the removal process through the mesh element deletion, simulating electrical discharges through a
proper heat-flux. This paper compares these prevision models, relating the expected results with the
experimental data. In general, the results show that the integrated ANN-PSO methodology is more
accurate in the performance previsions. Furthermore, the ANN-PSO model is faster and easier to
apply, but it requires a large amount of historical data for the ANN training. On the contrary, the
FEM is more complex to set up, since many physical and thermal characteristics of the materials are
necessary, and a great deal of time is required for a single simulation.

Keywords: forecast; micro-EDM; FEM; ANN; PSO

1. Introduction

Micro Electro Discharge Machining (micro-EDM) is a non-conventional process able
to remove material from the workpiece by means of the thermal energy generated by rapid
electric sparks, occurring between electrode and workpiece in a dielectric medium that
separates the two elements. It is widely used for making micro features in difficult-to-cut
materials. In particular, it is successfully applied for executing micro-holes in several fields
such as automotive (e.g., the nozzle of gasoline and diesel injectors), aerospace (e.g., cooling
holes of turbine blades), textile (e.g., for spinnerets tools), micro-mechanicals (e.g., watch
components), and medical (e.g., micro-fluidic devices). The micro-EDM is a contactless
material removal process in which the sparks cause the melting and the vaporizing of the
material since they develop an intense amount of heat which is transferred to the workpiece
surface in a very focused area. In this way, the workpiece temperature locally increases
exceeding the melting temperature and, thanks to the vaporization phenomenon and the
dielectric flush, the material is removed from the workpiece surface.

The phenomena occurring during the electrical discharge process are still the object of
several studies and different models for the prediction of actual removing mechanism can
be found in literature and are used as a basis for predicting the main process performances.
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In particular, numerical models have been developed for simulating the spark erosion
process, while analytical models, developed combining different optimization algorithms,
were used for forecasting the process performances and optimizing the process parameters
combinations. Among all the developed methods, FEM is noteworthy. In [1] the tempera-
ture distribution and the thermal stress caused on the workpiece due to the applied heat
flux during a single spark discharge were investigated. The development of compressive
and tensile stresses in a thin layer around the discharge area, which could damage the
surface, was observed. The FEM was used to evaluate the crater dimensions, the material
removal rate (MRR), the residual stresses, and the phase transformations on the cathode
after the occurrence of sparks; the temperature dependence on material properties, the
inclusion of latent melt heat, the Gaussian distribution of heat flux, and the spark radius
dependence on peak current and discharge width were taken into account [2,3]. The effect
of different parameters on the temperature distribution of the cathode was analyzed, show-
ing that the temperature distribution and the crater dimension are directly proportional
to the values of current, voltage and duty cycle. However, the crater dimension increases
until a certain value of discharge duration while the crater dimension decreases for further
increments in discharge duration [4].

To make the FEM closer to the real EDM process, it is important to consider, for a
single-spark model, the variability as a function of the operating parameters. For example,
in [5] the authors took into account the variable nature of the energy fraction and the
plasma flushing efficiency as a function of both discharge current and pulse on-time. In
this work, the plasma flushing efficiency was used as a correction term, applied following
the simulation, to calculate the crater dimension.

Regarding the analytical model, due to a large number of involved variables, the
complexity of the process and the fact that the dimensional precision of the part improves
as the process performance (MRR) gets worse, it is difficult to accurately predict the process
performances and the part quality as a function of the process parameters. Thus, process
optimization becomes a very hard task. For this reason, techniques such as regression
analysis, artificial neural network (ANN), multi-objective optimization techniques and
other optimization algorithms like a genetic algorithm (GA) and surface response (SR)
have received great attention from researchers over the past 10 years. In particular, the
ANN remains one of the most applied techniques for process modelling, but, once trained,
it is used coupled with optimization algorithms such as genetic algorithm, resident advisor
algorithm, or response surface. For example, an integrated method using artificial neural
network (ANN) and genetic algorithm (GA) was used for analyzing the material removal
rate (MRR) and for optimizing the process parameters, showing errors within acceptable
limits and determining optimum process parameters for the desired output value through
the GA [6].

In [7] an ANN was developed and used to predict the surface roughness in wire-
EDM (WEDM) of Cr-Mo-V special steel, applied in the automotive industry. The neural
network training was performed with experimental results obtained using a Taguchi
method. The mathematical relation between the workpiece surface roughness and WEDM
cutting parameters was established by multiple regression analysis methods. Predicted
values of surface roughness by back-propagation (BPN) and general regression neural
networks (GRNN) were compared with the experimental values and their closeness was
analyzed, showing that values in the BPN network with two hidden layers are closer to the
experimental results than the GRNN network and multiple regression values. The artificial
neural network (ANN) was also used in the development of a predictive model of the
material removal rate (MRR) in EDM using an input-output pattern of raw data coming
from process experiments for copper-electrode and steel-workpiece [8].

Based on the literature review, the focus of the optimization process can be dedicated to
the study of specific workpiece material, the investigation of a single process performance
parameter, or the analysis of a specific EDM configuration.
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In several works, the study was focus on the specific workpiece material. For example,
a general regression neural network approach on AISI D2 tool steel was applied in [9].
In 2018 a multi-objective optimization, using an integration between the ANN and the
non-dominated sorting genetic algorithm II (NSGA-II), was performed on A2 steel [10].
AISI 304 was the material selected for developing a predictive model using signal-to-noise
analysis (S/N), response surface methodology (RSM) and ANN in [11]. 17-4PH and AISI
1020 were the materials selected for the prediction of EDM process parameters using
ANN and other optimization algorithms in [12,13]. All the solutions reported in these
works show that, whatever optimization algorithm is applied to the ANN, it is possible to
obtain effective optimization and predictive techniques. In general, these approaches allow
forecasting results with an accuracy between 90% and 95%.

In the second category of researches, for example, only the MRR was involved in
the prediction process of several works that analyze different types of electrodes and
workpiece [14–16]. In other works, authors focused their attention on the evaluation of
surface finishing, assessing the ANN method by investigating its accuracy in predicting
the mean surface roughness of the EDM surface. The mean surface roughness predicted
from multi-layer feed-forward neural network resulted to be very close to experimental
results [17]. The study shows that the alternative ANN approach can be used to successfully
predict the microcracking of tungsten carbide during the EDM process. An artificial
neural network coupled with the Taguchi approach was applied for optimization and
prediction of surface roughness, giving a good agreement between experimental results
and predicted results. Furthermore, the study shows that high discharge energy causes
surface defects such as cracks, craters, thick recast layer, micropores, pinholes, residual
stresses, and debris [18,19]. For example, in [20], the attention is focused on the prediction
and comparison of machining performances during wire EDM (WEDM) of Al7075-TiB2
through an ANN model. In all these cases, the models could be considered as characterized
by some limitations since they have validity only for wire configuration and it is difficult
to modify to expand their applicability to drilling, sinking or milling configurations.

The present study compares new approaches for predicting and optimizing perfor-
mances and process parameters for the micro-EDM drilling process. In the numerical
approach, a FEM model, developed by the authors in previous work [21], was considered
for simulating the material removal process by means of a damage routine. This latter
model deletes the mesh elements that reach the melting temperature of the material due to
the flow of heat transmitted through continuous electrical discharges. For the analytical
model, an approach that integrates the Artificial Neural Network (ANN) with the Particle
Swarm Optimization algorithm (PSO) was developed and validated. The prediction accu-
racy of both the forecast methodologies was compared based on main process indicators,
such as the Material Removal Rate (MRR), machining time, and dimensional deviation.

2. Prevision Models

In this section, the developed prediction models were described. In particular, the
first numerical method uses a commercial Deform 2D code specific for the simulation of
thermo-mechanical forming processes setting up an axisymmetric 2D model; a single step
simulation was performed, while an external flux was imposed on the model. For the
simulation of a non-conventional process, representing a new possible application, the
EDM process can be simulated on its macro aspects. The second method (analytical) is
based on the development of an integrated approach, considering the Artificial Neural
Network (ANN) combined with the Particle Swarm Optimization (PSO).

2.1. FEM Model

The FEM model was based on the capacity of the code to simulate the removal or
the separation of the material through the mesh elements detection. Its development and
set-up were described in detail in the authors’ previous work [21]. The electrical discharges
were simulated by means of suitable heat flux and the material melting temperature was
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set as a trigger for the element deletion. For developing the FEM code, first of all, the
single discharge cycle simulation was set and tested for verifying the good predictive
ability. The simulation of the material removal process was realized using a specific
external routine based on the deletion of all those elements that reach a specific target
temperature, corresponding to the melting temperature of the workpiece material. To
assess the effectiveness of the model, it was matched with the models already presented in
the literature and both simulations and results were compared.

To simulate a complete process, it was necessary to consider the continuous cycle of
the electrical discharges occurring between the electrode and the workpiece. This was
modelled by assuming a heat flux corresponding to the thermal energy generated by the
average number of discharges occurring in the time unit and randomly distributed on the
electrode surface. Beyond the workpiece and the electrode objects, a third symbolic element
representing the dielectric was added. This solution was used to allow the heat transfer by
conduction because of the absence of contact between the workpiece and electrode. The
heat exchange was modelled pushing a constant heat flux on the electrode surface, using a
simulated dielectric as a conductive medium and evaluating the fraction transferred to the
workpiece and the achieved temperature distribution.

A significant aspect of the modelling was the definition of the properties and the
behavior of the material selected to simulate the dielectric medium; a thermal expansion
coefficient equal to zero was assumed to keep the volume of the object constant, in order to
not affect the shape during the removal process.

The dielectric medium has an important function for the thermal conduction; in fact,
in the real EDM process, this medium is characterized by both electrical insulation property
(to allow the generation of potential difference) and thermal insulation property (to shield
the electrode from the thermal shock and to cool it). The thermal conductivity and the
volumetric thermal capacity were set to reproduce the typical properties of hydrocarbon
oil.

To simulate the process as truthfully as possible, it was necessary to guarantee a
constant distance between the electrode and the workpiece. In the real process, the gap
control is performed by a closed-loop system managing the process parameters, such as
current, voltage and tool axial stroke. This solution was not available in the simulation;
therefore, a constant speed was applied to the electrode. In the contact area between the
elements, the heat exchange coefficient was imposed equal to 1000 W/m2K, as suggested
by the literature [22]. All the workpiece surfaces were considered adiabatic, except for the
area in which the heat flux is applied. On the electrode surfaces a heat exchange boundary
condition was applied with the external environment, characterized by a temperature equal
to 20 ◦C. The convective exchange coefficient was set equal to 0.02 W/mm K.

An electrode having a tubular geometry was modelled. During these tests, it was
observed that the electrode temperature, after a preliminary stage, reached a steady-state
condition for the entire machining cycle. In this way, the dielectric was sufficiently hot
to guarantee the continuous melting of the workpiece and the moving forward of the
electrode itself. The dielectric helps the electrode cooling. Since it was not possible to
simulate the continuous recycling of the medium in the working area to allow the heat
removal, it was necessary to impose an increased thermal exchange on the top of the
dielectric element. In this way, a dielectric flux inside the electrode and the removal of
part of the generated heat was simulated, maintaining stable operating temperatures and
allowing the process to proceed stably.

To guarantee a realistic thermal effect, another modelling solution was added: the
thermal exchange between the electrode and the dielectric medium was hindered near to
the end of the electrode (in the inner part, for some hundred microns), applying a small
gap to avoid the touch between the two elements. Thanks to this approach, the flow can be
directed mainly towards the electrode, while the dielectric continues to act as a cooler in
the upper part of the electrode, from where the heat is removed.
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A specific damage model was set up to eliminate the elements of the workpiece
during the simulation. This model is based on a parameter that represents the value of a
physic entity, such as the temperature or the strength. This value can be calculated in each
simulated step and for all the mesh elements. A threshold can be set and, when an element
reaches this value, it is canceled in the following step. In this case, the workpiece melting
temperature was assumed as a threshold condition.

In general, the FEM model was based on the imposition of a heat flux estimation as
reported in Equation (1).

Q = FcVI/πr2
c (1)

where Fc is the fraction of energy transferred to the cathode, V and I represent voltage
and peak of current of micro-EDM machining, respectively, and rc is the radius of the heat
source. The model resulted to be able to reproduce with accuracy the geometry and it
resulted to be comparable to the real process in terms of Material Removal Rate (MRR) and
machining time (t) [21].

2.2. ANN-PSO Model
2.2.1. ANN Design

The ANN-PSO model is a 2-step optimization methodology characterized by a bidirec-
tional functionality. The neural network was designed and trained based on the historical
data about the micro-EDM drilling performed under several conditions in terms of process,
workpiece and electrode characteristics (material and electrode diameter). The second step
of the model involved the PSO algorithm in order to use the trained ANN for identifying
optimal process parameters under different multi-objective functions and by introducing
several constraints in the solution space definition. The main advantage of this model is
the possibility to effectively work when constraints are fixed not only for the ANN inputs
(process parameters and/or workpiece and electrode characteristics) but also for the ANN
outputs (process performances), respecting the imposed multi-objective function that aims
to maximize the Material Removal Rate (MRR) and minimize the machining time and
the dimensional deviation. In this way, the model can respond to the industrial scenario
externally imposing some input and/or output at the same time, based on the operator’s
decision of maximizing and optimizing the productivity and the technical specifications
defined by the design.

The ANN was built considering six inputs (IN) and three outputs nodes (ON). Specifi-
cally, the input nodes are represented by the peak current (I), voltage (V), frequency (F),
electrode diameter (φ), workpiece material (WP), and electrode material (El). The output
nodes are represented by the material removal rate (MRR), the machining time (t), and
the dimensional deviation (DD). For the hidden layer, based on the literature review, a
single hidden layer may be sufficient, while the right number of Hidden Nodes (HN) is the
most challenging and interesting aspect in the definition of an optimized ANN structure.
Creating an ANN with too few or too many HN can generate underfitting or overfitting
situations. For selecting the eligible number of HN in the single hidden layer, a range in
which the number of neurons varies was considered taking into account some heuristic
methods to define the upper and the lower limit for the HN as a function of IN and ON.
Specifically, according to the literature [23,24], the lower bound (MTI) was defined as
reported in Equation (2).

MTI =
IN + ON

2
(2)

The upper bound of HN was defined as the maximum values obtained between the
Kudrycky [24] (Equation (3)), Kolmogorov [25] (Equation (4)), and Lippman [26] (Equation
(5)) equations.

KUD = 3 × ON (3)

KOL = 2 × IN + 1 (4)

LIP = ON × (IN + 1) (5)
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Through a MATLAB code, the ANN performances were tested varying the HN in the
range 5 (MTI)–21 (LIP). For identifying the best ANN configuration, the Coefficient of Vari-
ation (CV) was selected for the error evaluation. CV is a statistical indicator independent
from the distribution giving a meaningful evaluation. It was defined as the ratio between
standard deviation and the average value of Root Mean Square Error (σRMSEi and µRMSEi )
of each output i. Fixing the number of hidden nodes, the sum of CVi (where i identifies
the correlated output) was estimated and, as optimal configuration, the one characterized
by the lower level of prevision error was selected (minCVi). Figure 1 shows the optimal
configuration and details about selected input and output nodes.
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Figure 1. ANN structure.

All input and output nodes are normalized between 0 and 1 to avoid effects due
to the large differences in the actual values of the variables. Once the ANN structure
was defined, the network required training, validation, and testing. The dataset involved
in the definition of the ANN was collected on a Sarix SX-200 (Sarix SA, Sant’Antonino,
Switzerland) micro-EDM machining. 70% of the dataset was used for the training, 15% for
the test, and 15% for the validation. Figure 2 shows the predicted data (Output) through
the ANN and the actual values (Target). For all analyzed output (MRR; Machining Time
and DD), it is possible to note that predicted data well fit the actual values of the outputs.
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to 10−6).

2.2.2. PSO Algorithm

Such a trained ANN is able to reliably predict the process performance once the
working conditions were defined (fixing the input values), but it is not able to optimize
the process since an objective function is not defined. For this reason, an optimization
algorithm was introduced. Among the various developed algorithms, Particle Swarm
Optimization was chosen for this study. In PSO the potential solutions fly, simulating
a flock of birds, through the problem space by following the current optimum particles
which are those that better satisfy the imposed objective function.

In this work, the possible values for the ANN represent the problem space of PSO in or-
der to find the input values that minimize the objective function. The general functionalities
of PSO are reported in the flowchart in Figure 3.
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Figure 3. General functionalities of the PSO algorithm.

In this specific case, a multi-objective function was selected as an objective function
since the outputs considered in the present research (MRR, Machining Time, and DD) are
conflicting because it is important to increase the MRR, while Machining Time and DD
should be minimized. The multi-objective function is reported in Equation (6).

min f (I, V, F, ∅, WP, El) = t + DD − MRR (6)

where f (I, V, F, ∅, WP, El) is an unknown function substituted by the trained ANN.
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2.2.3. Model Validation

The main characteristic of this 2-step model is the possibility of forcing into the
developed Matlab code both input and/or outputs. For the model validation, it was
selected to force into the model the characteristics of the workpiece and the electrode for
optimizing the process parameters, minimizing the objective function. In Table 1, the
forced input and the optimization results in terms of process paraments are reported.
The outputs obtained through the integrated ANN-PSO model were compared with the
experimental results to define the forecast precision. The experimental tests were performed
on plates with a thickness equal to 3 mm and the process parameters set up for the drilling
machining were defined through the optimization process performed by means of the
developed model for verifying the system reliability. The forecast percentage error achieved
by the model can be observed in Figure 4, where it is possible to observe that the deviation
between the forecast and experimental performances is less than 30%.

Table 1. Forced inputs and optimized process parameters.

Input Case Imposed
Input

Predicted
Input Case Imposed

Input
Predicted

Input

φ

Case 01
300 µm 60

Case 02
300 µm 56

WP WC 153 WC 110
El Brass 130 WC 100

φ

Case 03
150 µm 40

Case 04
100 µm 100

WP AISI 316L 95 AISI 316L 120
El WC 120 WC 150

φ

Case 05
300 µm 140

Case 06
300 86

WP Al 130 Al 115
El WC 90 Brass 100
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3. Experimental Procedure

In the present work, one of the authors’ aims was to underline a possible different
accuracy in the prevision capacity of the different methodologies and to investigate if one
method could be defined as better than the other. To do that, some experimental cases were
taken into account. In particular, some drilling tests were performed using a Sarix SX-200
micro-EDM machine (Sarix SA, Sant’Antonino, Switzerland). A stainless steel AISI304
having a thickness equal to 3 mm was used as a workpiece and two different materials and
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diameters were considered for the electrode. Specifically, 150 µm and 300 µm were selected
as external diameters for both tungsten carbide and brass tubular electrodes. Hydrocarbon
oil was used as a dielectric fluid. Table 2 reports the properties of both workpiece and
electrode materials. Differences in the electrode gave rise to differences in terms of heat flux
and machining speed, decisive factors for the simulation models with which the results
were compared.

Table 2. Micro-EDM main process parameters.

Physical Property AISI 304 Tungsten Carbide Brass

Density (g/cm3) 8.00 14.80 8.47
Melting Temperature (K) 1673.15–1728.15 3140.15 1178.15–1203.15

Electrical resistivity (Ω·cm) 72 × 10−6 20 × 10−6 6.63 × 10−6

Thermal conductivity
(W/mK) 16.2 70 121

Specific heat (J/g · K) 0.50 0.30 0.38

Three different sets of process conditions (Table 3) were selected for the tests varying
the main process parameters (peak current, voltage, and frequency). The selection of vari-
able process parameters and the corresponding levels was based on the input parameters
taken into account in the developed simulative models, considering the factors necessary
for the definition of the heat flux in the FEM model. For the experimental tests, two runs
for each combination were performed.

Based on the prevision models and their outputs, during the experimental tests, the
machining time was recorded and the MRR and the geometrical deviation of the diameter
from the nominal value were calculated as reported in Equations (7) and (8), respectively.

MRR =
VMR

t
(7)

DD = Dhole − Del (8)

where the hole diameters (Dhole) were measured by means of an optical microscope, while
Del refers to the nominal diameter of the hole which matches with the electrode diameter.

Table 3. Micro-EDM main process parameters.

Electrode
Material

Electrode
Diameter Level Peak Current

(I-Index)
Voltage
(V-V)

Frequency
(F-kHz)

Tungsten
Carbide

300 µm
Low 23 110 110

Medium 37 115 115
High 50 120 120

150 µm
Low 20 70 110

Medium 40 95 115
High 60 110 120

Brass

300 µm
Low 40 135 130

Medium 60 143 135
High 80 150 140

150 µm
Low 10 70 120

Medium 15 95 120
High 20 110 120

4. Comparison of FEM and ANN-PSO Model with Experimental Results

The experimental results were compared with the predicted data obtained through
both the FEM and ANN-PSO models. For the integrated ANN-PSO model, the process
parameters used for the experiments were fixed into the PSO step to obtain the optimal
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outputs. In the FEM model, the process parameters were used to define the heat flux
identifying three intensity levels (low, medium, and high). Specifically, for each level
of parameters set, a different value of heat flux was estimated considering the process
parameters applied in the experimental tests, as reported in Section 2.1. In this way, the
heat flux set into the FEM model was varied on three levels indicated as low, medium, and
high, as reported in Table 4.

Table 4. Parameters setup for the FEM simulation tests.

Electrode Diameter 300 µm 150 µm

Electrode Material Level Heat Flux [kW/mm2] Heat Flux [kW/mm2]

Tungsten carbide
Low 8.95 19.81

Medium 15.05 53.76
High 21.22 93.37

Brass
Low 19.10 9.90

Medium 30.35 20.10
High 42.40 31.10

Once the experiments and the simulative model were run, the data related to the
output indicators were collected and the deviation between the experimental and the
simulative results were estimated as a percentage for identifying the differences and
defining the different behavior of the models.

The percentage errors are summarized in Figures 5 and 6 as a function of the electrode
diameter. Both models predicted the results with certain stability; regardless of the tested
conditions, the results are consistent with each other, showing repeatability and consistency
in the previsions. Considering the different electrode diameters, the simulation appears
to have similar behavior. In particular, it is possible to state that the FEM model makes
greater forecasting errors than the integrated ANN-PSO model in estimating MRR and Di-
mensional Deviation, showing a percentage of error up to 50% (especially overestimating).
The machining time resulted to be the better simulated indicator in both the developed
models.

Considering the general evidence of the error estimation, it is clear that the ANN-PSO
simulation fits better with the experimental results, maintaining a low percentage of error
for all the indicators in all the tested situations.
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5. Conclusions

This work compared two different simulation techniques for forecasting the perfor-
mance indicators of the micro-EDM process. In particular, in this case, three indicators
were taken into account even though both models could be modified by introducing more
or different indicators.

The FEM model was developed by the authors in a previous work where the model
definition and the validation are described in detail. The integrated ANN-PSO model was
introduced presenting the ANN configuration, the PSO algorithm for optimization, and
the validation.

A comparison between the application of these two models was performed consid-
ering six different drilling tests, where two different types of electrode materials and
geometry were taken into account.

For each type of electrode, three machining conditions were tested evaluating different
levels of machining (low, medium, and high).

The experimental data were compared with the data provided by the two simulation
methods and the percentage deviation between predictive approaches and experiments
was calculated for evaluating the reliability and precision of the forecast. In this way, it
was possible to define if one of the models is more accurate than the other and which is the
error that we can expect from the application of these methodologies.

In general, the comparison shows a low percentage of error for the integrated ANN-
PSO method for the dimensional deviation and the material removal rate, while the
machining time results to be the indicators better predicted by both models. Despite this
consideration, it is important to remark that to build an effective trained ANN, a great
amount of data is necessary. On the other side, running a FEM simulation requires a lot of
time for data elaboration and for computing the information.
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writing—review and editing, G.D. and C.G.; supervision, G.M. All authors have read and agreed to
the published version of the manuscript.
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